Apache ActiveMQ Artemis broker balancers allow incoming client connections to be distributed across multiple [target brokers](target-brokers).
The target brokers are grouped in [pools](#pools) and the broker balancers use a [target key](#target-key)
to select a target broker from a pool of brokers according to a [policy](#policies).
### This feature is still **EXPERIMENTAL** and not meant to be run in production yet. Furthermore, its configuration can change until declared as **officially stable**.
## Target Broker
Target broker is a broker that can accept incoming client connections and is local or remote.
The local target is a special target that represents the same broker hosting the broker balancer.
The remote target is another reachable broker.
## Target Key
The broker balancer uses a target key to select a target broker.
It is a string retrieved from an incoming client connection, the supported values are:
*`CLIENT_ID` is the JMS client ID;
*`SNI_HOST` is the hostname indicated by the client in the SNI extension of the TLS protocol;
*`SOURCE_IP` is the source IP address of the client;
*`USER_NAME` is the username indicated by the client.
The cluster pool uses a [cluster connection](clusters.md#configuring-cluster-connections) to get the target brokers to add.
Let's take a look at a cluster pool example from broker.xml that uses a cluster connection:
```xml
<pool>
<cluster-connection>cluster1</cluster-connection>
</pool>
```
### Discovery Pool
The discovery pool uses a [discovery group](clusters.md#discovery-groups) to discover the target brokers to add.
Let's take a look at a discovery pool example from broker.xml that uses a discovery group:
```xml
<pool>
<discovery-group-refdiscovery-group-name="dg1"/>
</pool>
```
### Static Pool
The static pool uses a list of static connectors to define the target brokers to add.
Let's take a look at a static pool example from broker.xml that uses a list of static connectors:
```xml
<pool>
<static-connectors>
<connector-ref>connector1</connector-ref>
<connector-ref>connector2</connector-ref>
<connector-ref>connector3</connector-ref>
</static-connectors>
</pool>
```
### Defining pools
A pool is defined by the `pool` element that includes the following items:
* the `username` element defines the username to connect to the target broker;
* the `password` element defines the password to connect to the target broker;
* the `check-period` element defines how often to check the target broker, measured in milliseconds, default is `5000`;
* the `quorum-size` element defines the minimum number of ready targets to activate the pool, default is `1`;
* the `quorum-timeout` element defines the timeout to get the minimum number of ready targets, measured in milliseconds, default is `3000`;
* the `local-target-enabled` element defines whether the pool has to include a local target, default is `false`;
* the `cluster-connection` element defines the [cluster connection](clusters.md#configuring-cluster-connections) used by the [cluster pool](#cluster-pool).
* the `static-connectors` element defines a list of static connectors used by the [static pool](#static-pool);
* the `discovery-group` element defines the [discovery group](clusters.md#discovery-groups) used by the [discovery pool](#discovery-pool).
Let's take a look at a pool example from broker.xml:
```xml
<pool>
<quorum-size>2</quorum-size>
<check-period>1000</check-period>
<local-target-enabled>true</local-target-enabled>
<static-connectors>
<connector-ref>connector1</connector-ref>
<connector-ref>connector2</connector-ref>
<connector-ref>connector3</connector-ref>
</static-connectors>
</pool>
```
## Policies
The policy define how to select a broker from a pool. The included policies are:
*`FIRST_ELEMENT` to select the first target broker from the pool which is ready. It is useful to select the ready target brokers
according to the priority defined with their sequence order, ie supposing there are 2 target brokers
this policy selects the second target broker only when the first target broker isn't ready.
*`ROUND_ROBIN` to select a target sequentially from a pool, this policy is useful to evenly distribute;
*`CONSISTENT_HASH` to select a target by a key. This policy always selects the same target broker for the same key until it is removed from the pool.
*`LEAST_CONNECTIONS` to select the targets with the fewest active connections. This policy helps you maintain an equal distribution of active connections with the target brokers.
A policy is defined by the `policy` element. Let's take a look at a policy example from broker.xml:
```xml
<policyname="FIRST_ELEMENT"/>
```
## Cache
The broker balancer provides a cache with a timeout to improve the stickiness of the target broker selected,
returning the same target broker for a target key as long as it is present in the cache and is ready.
So a broker balancer with the cache enabled doesn't strictly follow the configured policy.
* the `target-key` element defines what key to select a target broker, the supported values are: `CLIENT_ID`, `SNI_HOST`, `SOURCE_IP`, `USER_NAME`, default is `SOURCE_IP`, see [target key](#target-key) for further details;
* the `target-key-filter` element defines a regular expression to filter the resolved keys;
* the `local-target-filter` element defines a regular expression to match the keys that have to return a local target;
* the `cache-timeout` element is the time period for a target broker to remain in the cache, measured in milliseconds, setting `0` will disable the cache, default is `-1`, meaning no expiration;
* the `pool` element defines the pool to group the target brokers, see [pools](#pools).