The parameter failoverOnInitialConnection wouldn't seem to be used and
makes no sense any more, because the connectors are retried in a loop.
So someone can just add the backup in the initial connection.
In LargeMessageImpl.copy(long) it need to open the underlying
file in order to read and copy bytes into the new copied message.
However there is a chance that another thread can come in and close
the file in the middle, making the copy failed
with "channel is null" error.
This is happening in cases where a large message is sent to a jms
topic (multicast address). During delivery it to multiple
subscribers, some consumer is doing delivery and closed the
underlying file after. Some other consumer is rolling back
the messages and eventually move it to DLQ (which will call
the above copy method). So there is a chance this bug being hit on.
The crititical analyser trigger the broker shutdown if try to
removeAllMessages with a huge queue. The iterQueue is split so as
not to keep the lock too time.
When CoreMessage is doing copyHeadersAndProperties() it doesn't
make a full copy of its properties (a TypedProperties object).
It will cause problem when multiple threads/parties are modifying the
properties of the copied messages from the same message.
This will be particular bad if the message is a large message
where moveHeadersAndProperties is being used.
It use RandomAccessFile to allow using heap buffers without additional
copies and/or leaks of direct buffers, as performed by FileChannel JDK
implementation (see https://bugs.openjdk.java.net/browse/JDK-8147468)
When an openwire client closes the session, the broker doesn't
clean up its server consumer references even though the core
consumers are closed. This results a leak when sessions within
a connection are created and closed when the connection keeps open.
It would fail on cannot destroy queue
as the failure could be asynchronous, introducing a quick race, which is acceptable
you just need to make sure the async operation will finish before removing the queue.
Fix is to introduce a Wait.assertEquals call.
After a node is scaled down to a target node, the sf queue in the
target node is not deleted.
Normally this is fine because may be reused when the scaled down
node is back up.
However in cloud environment many drainer pods can be created and
then shutdown in order to drain the messages to a live node (pod).
Each drainer pod will have a different node-id. Over time the sf
queues in the target broker node grows and those sf queues are
no longer reused.
Although use can use management API/console to manually delete
them, it would be nice to have an option to automatically delete
those sf queue/address resources after scale down.
In this PR it added a boolean configuration parameter called
cleanup-sf-queue to scale down policy so that if the parameter
is "true" the broker will send a message to the
target broker signalling that the SF queue is no longer
needed and should be deleted.
If the parameter is not defined (default) or is "false"
the scale down won't remove the sf queue.
When converting from AMQP to core and back again support annotations that
aren't able to be placed into Core message properties by storing the bytes
from encoding the types to AMQP encodings and then decoding them again
when converting back into AMQP messages.
Requires update to proton-j 0.33.2 for encoding fix
The core server session tracks details about producers like what
addresses have had messages sent to them, the most recent message ID
sent to each address, and the number of messages sent to each address.
This information is made available to users via the
listProducersInfoAsJSON method on the various management interfaces
(JMX, web console, etc.). However, in situations where a server session
is long lived (e.g. in a pool) and is used to send to many different
addresses (e.g. randomly named temporary JMS queues) this info can
accumulate to a problematic degree. Therefore, we should limit the
amount of producer details saved by the session.
this test was basically broken, it was silently failing as it was ignoring results and taking a long time to finish.
As this test is multiplied along many options (Netty, Replicated, JDBC) this was taking considerable extra time
on the testsuite.
Most connection related properties, like the SSL ones, currently
have to be encoded in the brokerURL. When configuring connections
purely through JNDI bindings, this is not always desireable.
This commit allows one to configure all properties included
in TransportConstants.ALLOWABLE_CONNECTOR_KEYS to be listed separately
in the JNDI bindings. These properties are then zipped into any
provided brokerURL. For properties that appear in both places,
the one specified separately in the JNDI bindings takes priority.
This commit should not affect any configuration other than those
configure through JNDIReferenceFactory.
Wait netty event loop group shutdown to avoid too many opened FDs after
server stops, when netty configuration is used. Clear server
activateCallbacks to avoid reactivation of previous nodeManager and
consequent FD leaks on restart. Fix LargeServerMessageImpl.copy to avoid
FD leaks when a large message expiry or it is sent to DLA. Terminate
HawtDispatcher global queue to avoid pipes and eventpolls leaks after a
MQTT test.
cherry-picking commit 9617058ba0649af4eea15ce8793f86de827c4b7f
NO-JIRA adding check for open FD on the testsuite
cherry-picking commit 0facb7ddf4d3baa14a3add4290684aff7fd46053
NO-JIRA addressing connections leaks on integration tests
If a jms client (be it openwire, amqp, or core jms) receives a message that
is from a different protocol, the JMSMessageID maybe null when the
jms client expects it.