Durable subscrption state is part of the MQTT specification which has
not been supported until now. This functionality is implemented via an
internal last-value queue. When an MQTT client creates, updates, or
adds a subscription a message using the client-ID as the last-value is
sent to the internal queue. When the broker restarts this data is read
from the queue and populates the in-memory MQTT data-structures.
Therefore subscribers can reconnect and resume their session's
subscriptions without have to manually resubscribe.
MQTT state is now managed centrally per-broker rather than in the
MQTTProtocolManager since there is one instance of MQTTProtocolManager
for each acceptor allowing MQTT connections. Managing state per acceptor
would allow odd behavior with clients connecting to different acceptors
with the same client ID.
The subscriptions are serialized as raw bytes with a "version" byte for
potential future use, but I intentionally avoided adding complex
scaffolding to support multiple versions. We can add that complexity
later if necessary.
Some tests needed to be changed since instantiating an MQTT protocol
manager now creates an internal queue. A handful of tests assume that no
queues will exist other than the ones they create themselves. I updated
the main test super-class so that an MQTT protocol manager is not
automatically instantiated when configuring a broker for in-vm support.
The exception thrown by serverLocator.connect() should be all you need on such case
and the caller should then be responsible for taking appropriate action.
This commit contains the following changes:
- eliminate used, undeclared dependencies
- eliminate unused, declared dependencies
- fix scope for test dependencies
- eliminate org.hamcrest completely as its use involved deprecated code
as well as dependencies from multiple versions
In rare cases a store operation could silently fails or starves, blocking the
related server session and all delivering messages. Those server sessions can
be closed adding a management method that cleans their operation context
before closing them.
When resource audit logging is enabled STOMP is completely inoperable
due to an NPE during the protocol handshake. Unfortunately the failure
is completely silent. There are no logs to indicate a problem.
This commit fixes this problem via the following changes:
- Mitigate the original NPE via a check for null
- Move the logic necessary to set the "protocol connection" on the
"transport connection" to a class shared by all implementations.
- Add exception handling to log failures like this in the future.
- Add tests to ensure the audit logging is correct.
Currently JavaDoc is generated for many classes that don't need it.
JavaDoc should be reserved for user-facing classes (e.g. those used by
client application developers and developers embedding a broker into
their application). This commit narrows down the configuration to just
the classes that are needed. This will save time during release builds,
and save disk space wherever these files are stored (e.g. Apache
website).
Improve the CORE client failover connecting to other live servers when all
reconnect attempts fails, i.e. in a cluster composed of 2 live servers,
when the server to which the CORE client is connected goes down the CORE
client should reconnect its sessions to the other liver broker.
When sending, for example, to a predefined anycast address and queue
from a multicast (JMS topic) producer, the routed count on the address
is incremented, but the message count on the matching queue is not. No
indication is given at the client end that the messages failed to get
routed - the messages are just silently dropped.
Fixing this problem requires a slight semantic change. The broker is now
more strict in what it allows specifically with regards to
auto-creation. If, for example, a JMS application attempts to send a
message to a topic and the corresponding multicast address doesn't exist
already or the broker cannot automatically create it or update it then
sending the message will fail.
Also, part of this commit moves a chunk of auto-create logic into
ServerSession and adds an enum for auto-create results. Aside from
helping fix this specific issue this can serve as a foundation for
de-duplicating the auto-create logic spread across many of the protocol
implementations.
- interrupted message breaking reference counting
After the server writing to the client is interrupted in AMQP, the reference counting was broken what would require the server restarted
in order to cleanup the files of any interrupted sends.
- Removed consumer during large message delivery damaging large messages
If the consumer failed to deliver messages for any reason, the message on the queue would be duplicated. what would wipe out the body of the message
and other journal errors would happen because of this.
extra debug capabilities added into RefCountMessage as part of ARTEMIS-4206 in order to identify these issues
I am adding three attributes to Address-settings:
* page-limit-bytes: Number of bytes. We will convert this metric into max number of pages internally by dividing max-bytes / page-size. It will allow a max based on an estimate.
* page-limit-messages: Number of messages
* page-full-message-policy: fail or drop
We will now allow paging, until these max values and then fail or drop messages.
Once these values are retracted, the address will remain full until a period where cleanup is kicked in by paging. So these values may have a certain delay on being applied, but they should always be cleared once cleanup happened.
Adds support for standard Java TLS and ActiveMQ Artemis-specific override
encrypted system property values for the key store and trust store
passwords, including a separate codec property