git-svn-id: https://svn.apache.org/repos/asf/activemq/trunk@1215432 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Robert Davies 2011-12-17 07:04:24 +00:00
parent e72f43f8e6
commit aa3ab12234
2 changed files with 575 additions and 302 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,236 @@
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kahadb.util;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.Map;
import java.util.Set;
/**
* LFU cache implementation based on http://dhruvbird.com/lfu.pdf, with some notable differences:
* <ul>
* <li>
* Frequency list is stored as an array with no next/prev pointers between nodes: looping over the array should be faster and more CPU-cache friendly than
* using an ad-hoc linked-pointers structure.
* </li>
* <li>
* The max frequency is capped at the cache size to avoid creating more and more frequency list entries, and all elements residing in the max frequency entry
* are re-positioned in the frequency entry linked set in order to put most recently accessed elements ahead of less recently ones,
* which will be collected sooner.
* </li>
* <li>
* The eviction factor determines how many elements (more specifically, the percentage of) will be evicted.
* </li>
* </ul>
* As a consequence, this cache runs in *amortized* O(1) time (considering the worst case of having the lowest frequency at 0 and having to evict all
* elements).
*
* @author Sergio Bossa
*/
public class LFUCache<Key, Value> implements Map<Key, Value> {
private final Map<Key, CacheNode<Key, Value>> cache;
private final LinkedHashSet[] frequencyList;
private int lowestFrequency;
private int maxFrequency;
//
private final int maxCacheSize;
private final float evictionFactor;
public LFUCache(int maxCacheSize, float evictionFactor) {
if (evictionFactor <= 0 || evictionFactor >= 1) {
throw new IllegalArgumentException("Eviction factor must be greater than 0 and lesser than or equal to 1");
}
this.cache = new HashMap<Key, CacheNode<Key, Value>>(maxCacheSize);
this.frequencyList = new LinkedHashSet[maxCacheSize];
this.lowestFrequency = 0;
this.maxFrequency = maxCacheSize - 1;
this.maxCacheSize = maxCacheSize;
this.evictionFactor = evictionFactor;
initFrequencyList();
}
public Value put(Key k, Value v) {
Value oldValue = null;
CacheNode<Key, Value> currentNode = cache.get(k);
if (currentNode == null) {
if (cache.size() == maxCacheSize) {
doEviction();
}
LinkedHashSet<CacheNode<Key, Value>> nodes = frequencyList[0];
currentNode = new CacheNode(k, v, 0);
nodes.add(currentNode);
cache.put(k, currentNode);
lowestFrequency = 0;
} else {
oldValue = currentNode.v;
currentNode.v = v;
}
return oldValue;
}
public void putAll(Map<? extends Key, ? extends Value> map) {
for (Map.Entry<? extends Key, ? extends Value> me : map.entrySet()) {
put(me.getKey(), me.getValue());
}
}
public Value get(Object k) {
CacheNode<Key, Value> currentNode = cache.get(k);
if (currentNode != null) {
int currentFrequency = currentNode.frequency;
if (currentFrequency < maxFrequency) {
int nextFrequency = currentFrequency + 1;
LinkedHashSet<CacheNode<Key, Value>> currentNodes = frequencyList[currentFrequency];
LinkedHashSet<CacheNode<Key, Value>> newNodes = frequencyList[nextFrequency];
moveToNextFrequency(currentNode, nextFrequency, currentNodes, newNodes);
cache.put((Key) k, currentNode);
if (lowestFrequency == currentFrequency && currentNodes.isEmpty()) {
lowestFrequency = nextFrequency;
}
} else {
// Hybrid with LRU: put most recently accessed ahead of others:
LinkedHashSet<CacheNode<Key, Value>> nodes = frequencyList[currentFrequency];
nodes.remove(currentNode);
nodes.add(currentNode);
}
return currentNode.v;
} else {
return null;
}
}
public Value remove(Object k) {
CacheNode<Key, Value> currentNode = cache.remove(k);
if (currentNode != null) {
LinkedHashSet<CacheNode<Key, Value>> nodes = frequencyList[currentNode.frequency];
nodes.remove(currentNode);
if (lowestFrequency == currentNode.frequency) {
findNextLowestFrequency();
}
return currentNode.v;
} else {
return null;
}
}
public int frequencyOf(Key k) {
CacheNode<Key, Value> node = cache.get(k);
if (node != null) {
return node.frequency + 1;
} else {
return 0;
}
}
public void clear() {
for (int i = 0; i <= maxFrequency; i++) {
frequencyList[i].clear();
}
cache.clear();
lowestFrequency = 0;
}
public Set<Key> keySet() {
return this.cache.keySet();
}
public Collection<Value> values() {
return null; //To change body of implemented methods use File | Settings | File Templates.
}
public Set<Entry<Key, Value>> entrySet() {
return null; //To change body of implemented methods use File | Settings | File Templates.
}
public int size() {
return cache.size();
}
public boolean isEmpty() {
return this.cache.isEmpty();
}
public boolean containsKey(Object o) {
return this.cache.containsKey(o);
}
public boolean containsValue(Object o) {
return false; //To change body of implemented methods use File | Settings | File Templates.
}
private void initFrequencyList() {
for (int i = 0; i <= maxFrequency; i++) {
frequencyList[i] = new LinkedHashSet<CacheNode<Key, Value>>();
}
}
private void doEviction() {
int currentlyDeleted = 0;
float target = maxCacheSize * evictionFactor;
while (currentlyDeleted < target) {
LinkedHashSet<CacheNode<Key, Value>> nodes = frequencyList[lowestFrequency];
if (nodes.isEmpty()) {
throw new IllegalStateException("Lowest frequency constraint violated!");
} else {
Iterator<CacheNode<Key, Value>> it = nodes.iterator();
while (it.hasNext() && currentlyDeleted++ < target) {
CacheNode<Key, Value> node = it.next();
it.remove();
cache.remove(node.k);
}
if (!it.hasNext()) {
findNextLowestFrequency();
}
}
}
}
private void moveToNextFrequency(CacheNode<Key, Value> currentNode, int nextFrequency, LinkedHashSet<CacheNode<Key, Value>> currentNodes, LinkedHashSet<CacheNode<Key, Value>> newNodes) {
currentNodes.remove(currentNode);
newNodes.add(currentNode);
currentNode.frequency = nextFrequency;
}
private void findNextLowestFrequency() {
while (lowestFrequency <= maxFrequency && frequencyList[lowestFrequency].isEmpty()) {
lowestFrequency++;
}
if (lowestFrequency > maxFrequency) {
lowestFrequency = 0;
}
}
private static class CacheNode<Key, Value> {
public final Key k;
public Value v;
public int frequency;
public CacheNode(Key k, Value v, int frequency) {
this.k = k;
this.v = v;
this.frequency = frequency;
}
}
}