Sort members.

This commit is contained in:
Gary Gregory 2021-08-02 13:23:50 -04:00
parent fc99d09083
commit 90d2a9bcee
2 changed files with 621 additions and 621 deletions

View File

@ -43,21 +43,94 @@ import org.apache.commons.collections4.sequence.SequencesComparator;
*/
public class ListUtils {
/**
* Don't allow instances.
* A simple wrapper to use a CharSequence as List.
*/
private ListUtils() {}
private static final class CharSequenceAsList extends AbstractList<Character> {
private final CharSequence sequence;
CharSequenceAsList(final CharSequence sequence) {
this.sequence = sequence;
}
@Override
public Character get(final int index) {
return Character.valueOf(sequence.charAt(index));
}
@Override
public int size() {
return sequence.length();
}
}
/**
* Returns an immutable empty list if the argument is {@code null},
* or the argument itself otherwise.
*
* @param <T> the element type
* @param list the list, possibly {@code null}
* @return an empty list if the argument is {@code null}
* A helper class used to construct the longest common subsequence.
*/
public static <T> List<T> emptyIfNull(final List<T> list) {
return list == null ? Collections.<T>emptyList() : list;
private static final class LcsVisitor<E> implements CommandVisitor<E> {
private final ArrayList<E> sequence;
LcsVisitor() {
sequence = new ArrayList<>();
}
public List<E> getSubSequence() {
return sequence;
}
@Override
public void visitDeleteCommand(final E object) {
// noop
}
@Override
public void visitInsertCommand(final E object) {
// noop
}
@Override
public void visitKeepCommand(final E object) {
sequence.add(object);
}
}
/**
* Provides a partition view on a {@link List}.
* @since 4.0
*/
private static class Partition<T> extends AbstractList<List<T>> {
private final List<T> list;
private final int size;
private Partition(final List<T> list, final int size) {
this.list = list;
this.size = size;
}
@Override
public List<T> get(final int index) {
final int listSize = size();
if (index < 0) {
throw new IndexOutOfBoundsException("Index " + index + " must not be negative");
}
if (index >= listSize) {
throw new IndexOutOfBoundsException("Index " + index + " must be less than size " +
listSize);
}
final int start = index * size;
final int end = Math.min(start + size, list.size());
return list.subList(start, end);
}
@Override
public boolean isEmpty() {
return list.isEmpty();
}
@Override
public int size() {
return (int) Math.ceil((double) list.size() / (double) size);
}
}
/**
@ -74,6 +147,82 @@ public class ListUtils {
return list == null ? defaultList : list;
}
/**
* Returns an immutable empty list if the argument is {@code null},
* or the argument itself otherwise.
*
* @param <T> the element type
* @param list the list, possibly {@code null}
* @return an empty list if the argument is {@code null}
*/
public static <T> List<T> emptyIfNull(final List<T> list) {
return list == null ? Collections.<T>emptyList() : list;
}
/**
* Returns a fixed-sized list backed by the given list.
* Elements may not be added or removed from the returned list, but
* existing elements can be changed (for instance, via the
* {@link List#set(int, Object)} method).
*
* @param <E> the element type
* @param list the list whose size to fix, must not be null
* @return a fixed-size list backed by that list
* @throws NullPointerException if the List is null
*/
public static <E> List<E> fixedSizeList(final List<E> list) {
return FixedSizeList.fixedSizeList(list);
}
/**
* Generates a hash code using the algorithm specified in
* {@link java.util.List#hashCode()}.
* <p>
* This method is useful for implementing {@code List} when you cannot
* extend AbstractList. The method takes Collection instances to enable other
* collection types to use the List implementation algorithm.
*
* @see java.util.List#hashCode()
* @param list the list to generate the hashCode for, may be null
* @return the hash code
*/
public static int hashCodeForList(final Collection<?> list) {
if (list == null) {
return 0;
}
int hashCode = 1;
final Iterator<?> it = list.iterator();
while (it.hasNext()) {
final Object obj = it.next();
hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
}
return hashCode;
}
/**
* Finds the first index in the given List which matches the given predicate.
* <p>
* If the input List or predicate is null, or no element of the List
* matches the predicate, -1 is returned.
*
* @param <E> the element type
* @param list the List to search, may be null
* @param predicate the predicate to use, may be null
* @return the first index of an Object in the List which matches the predicate or -1 if none could be found
*/
public static <E> int indexOf(final List<E> list, final Predicate<E> predicate) {
if (list != null && predicate != null) {
for (int i = 0; i < list.size(); i++) {
final E item = list.get(i);
if (predicate.evaluate(item)) {
return i;
}
}
}
return CollectionUtils.INDEX_NOT_FOUND;
}
/**
* Returns a new list containing all elements that are contained in
* both given lists.
@ -105,105 +254,6 @@ public class ListUtils {
return result;
}
/**
* Subtracts all elements in the second list from the first list,
* placing the results in a new list.
* <p>
* This differs from {@link List#removeAll(Collection)} in that
* cardinality is respected; if <Code>list1</Code> contains two
* occurrences of <Code>null</Code> and <Code>list2</Code> only
* contains one occurrence, then the returned list will still contain
* one occurrence.
*
* @param <E> the element type
* @param list1 the list to subtract from
* @param list2 the list to subtract
* @return a new list containing the results
* @throws NullPointerException if either list is null
*/
public static <E> List<E> subtract(final List<E> list1, final List<? extends E> list2) {
final ArrayList<E> result = new ArrayList<>();
final HashBag<E> bag = new HashBag<>(list2);
for (final E e : list1) {
if (!bag.remove(e, 1)) {
result.add(e);
}
}
return result;
}
/**
* Returns the sum of the given lists. This is their intersection
* subtracted from their union.
*
* @param <E> the element type
* @param list1 the first list
* @param list2 the second list
* @return a new list containing the sum of those lists
* @throws NullPointerException if either list is null
*/
public static <E> List<E> sum(final List<? extends E> list1, final List<? extends E> list2) {
return subtract(union(list1, list2), intersection(list1, list2));
}
/**
* Returns a new list containing the second list appended to the
* first list. The {@link List#addAll(Collection)} operation is
* used to append the two given lists into a new list.
*
* @param <E> the element type
* @param list1 the first list
* @param list2 the second list
* @return a new list containing the union of those lists
* @throws NullPointerException if either list is null
*/
public static <E> List<E> union(final List<? extends E> list1, final List<? extends E> list2) {
final ArrayList<E> result = new ArrayList<>(list1.size() + list2.size());
result.addAll(list1);
result.addAll(list2);
return result;
}
/**
* Selects all elements from input collection which match the given
* predicate into an output list.
* <p>
* A {@code null} predicate matches no elements.
*
* @param <E> the element type
* @param inputCollection the collection to get the input from, may not be null
* @param predicate the predicate to use, may be null
* @return the elements matching the predicate (new list)
* @throws NullPointerException if the input list is null
*
* @since 4.0
* @see CollectionUtils#select(Iterable, Predicate)
*/
public static <E> List<E> select(final Collection<? extends E> inputCollection,
final Predicate<? super E> predicate) {
return CollectionUtils.select(inputCollection, predicate, new ArrayList<E>(inputCollection.size()));
}
/**
* Selects all elements from inputCollection which don't match the given
* predicate into an output collection.
* <p>
* If the input predicate is {@code null}, the result is an empty list.
*
* @param <E> the element type
* @param inputCollection the collection to get the input from, may not be null
* @param predicate the predicate to use, may be null
* @return the elements <b>not</b> matching the predicate (new list)
* @throws NullPointerException if the input collection is null
*
* @since 4.0
* @see CollectionUtils#selectRejected(Iterable, Predicate)
*/
public static <E> List<E> selectRejected(final Collection<? extends E> inputCollection,
final Predicate<? super E> predicate) {
return CollectionUtils.selectRejected(inputCollection, predicate, new ArrayList<E>(inputCollection.size()));
}
/**
* Tests two lists for value-equality as per the equality contract in
* {@link java.util.List#equals(java.lang.Object)}.
@ -258,182 +308,6 @@ public class ListUtils {
return !(it1.hasNext() || it2.hasNext());
}
/**
* Generates a hash code using the algorithm specified in
* {@link java.util.List#hashCode()}.
* <p>
* This method is useful for implementing {@code List} when you cannot
* extend AbstractList. The method takes Collection instances to enable other
* collection types to use the List implementation algorithm.
*
* @see java.util.List#hashCode()
* @param list the list to generate the hashCode for, may be null
* @return the hash code
*/
public static int hashCodeForList(final Collection<?> list) {
if (list == null) {
return 0;
}
int hashCode = 1;
final Iterator<?> it = list.iterator();
while (it.hasNext()) {
final Object obj = it.next();
hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
}
return hashCode;
}
/**
* Returns a List containing all the elements in {@code collection}
* that are also in {@code retain}. The cardinality of an element {@code e}
* in the returned list is the same as the cardinality of {@code e}
* in {@code collection} unless {@code retain} does not contain {@code e}, in which
* case the cardinality is zero. This method is useful if you do not wish to modify
* the collection {@code c} and thus cannot call {@code collection.retainAll(retain);}.
* <p>
* This implementation iterates over {@code collection}, checking each element in
* turn to see if it's contained in {@code retain}. If it's contained, it's added
* to the returned list. As a consequence, it is advised to use a collection type for
* {@code retain} that provides a fast (e.g. O(1)) implementation of
* {@link Collection#contains(Object)}.
*
* @param <E> the element type
* @param collection the collection whose contents are the target of the #retailAll operation
* @param retain the collection containing the elements to be retained in the returned collection
* @return a {@code List} containing all the elements of {@code c}
* that occur at least once in {@code retain}.
* @throws NullPointerException if either parameter is null
* @since 3.2
*/
public static <E> List<E> retainAll(final Collection<E> collection, final Collection<?> retain) {
final List<E> list = new ArrayList<>(Math.min(collection.size(), retain.size()));
for (final E obj : collection) {
if (retain.contains(obj)) {
list.add(obj);
}
}
return list;
}
/**
* Removes the elements in {@code remove} from {@code collection}. That is, this
* method returns a list containing all the elements in {@code collection}
* that are not in {@code remove}. The cardinality of an element {@code e}
* in the returned collection is the same as the cardinality of {@code e}
* in {@code collection} unless {@code remove} contains {@code e}, in which
* case the cardinality is zero. This method is useful if you do not wish to modify
* {@code collection} and thus cannot call {@code collection.removeAll(remove);}.
* <p>
* This implementation iterates over {@code collection}, checking each element in
* turn to see if it's contained in {@code remove}. If it's not contained, it's added
* to the returned list. As a consequence, it is advised to use a collection type for
* {@code remove} that provides a fast (e.g. O(1)) implementation of
* {@link Collection#contains(Object)}.
*
* @param <E> the element type
* @param collection the collection from which items are removed (in the returned collection)
* @param remove the items to be removed from the returned {@code collection}
* @return a {@code List} containing all the elements of {@code c} except
* any elements that also occur in {@code remove}.
* @throws NullPointerException if either parameter is null
* @since 3.2
*/
public static <E> List<E> removeAll(final Collection<E> collection, final Collection<?> remove) {
final List<E> list = new ArrayList<>();
for (final E obj : collection) {
if (!remove.contains(obj)) {
list.add(obj);
}
}
return list;
}
/**
* Returns a synchronized list backed by the given list.
* <p>
* You must manually synchronize on the returned list's iterator to
* avoid non-deterministic behavior:
*
* <pre>
* List list = ListUtils.synchronizedList(myList);
* synchronized (list) {
* Iterator i = list.iterator();
* while (i.hasNext()) {
* process (i.next());
* }
* }
* </pre>
*
* This method is just a wrapper for {@link Collections#synchronizedList(List)}.
*
* @param <E> the element type
* @param list the list to synchronize, must not be null
* @return a synchronized list backed by the given list
* @throws NullPointerException if the list is null
*/
public static <E> List<E> synchronizedList(final List<E> list) {
return Collections.synchronizedList(list);
}
/**
* Returns an unmodifiable list backed by the given list.
* <p>
* This method uses the implementation in the decorators subpackage.
*
* @param <E> the element type
* @param list the list to make unmodifiable, must not be null
* @return an unmodifiable list backed by the given list
* @throws NullPointerException if the list is null
*/
public static <E> List<E> unmodifiableList(final List<? extends E> list) {
return UnmodifiableList.unmodifiableList(list);
}
/**
* Returns a predicated (validating) list backed by the given list.
* <p>
* Only objects that pass the test in the given predicate can be added to the list.
* Trying to add an invalid object results in an IllegalArgumentException.
* It is important not to use the original list after invoking this method,
* as it is a backdoor for adding invalid objects.
*
* @param <E> the element type
* @param list the list to predicate, must not be null
* @param predicate the predicate for the list, must not be null
* @return a predicated list backed by the given list
* @throws NullPointerException if the List or Predicate is null
*/
public static <E> List<E> predicatedList(final List<E> list, final Predicate<E> predicate) {
return PredicatedList.predicatedList(list, predicate);
}
/**
* Returns a transformed list backed by the given list.
* <p>
* This method returns a new list (decorating the specified list) that
* will transform any new entries added to it.
* Existing entries in the specified list will not be transformed.
* <p>
* Each object is passed through the transformer as it is added to the
* List. It is important not to use the original list after invoking this
* method, as it is a backdoor for adding untransformed objects.
* <p>
* Existing entries in the specified list will not be transformed.
* If you want that behavior, see {@link TransformedList#transformedList}.
*
* @param <E> the element type
* @param list the list to predicate, must not be null
* @param transformer the transformer for the list, must not be null
* @return a transformed list backed by the given list
* @throws NullPointerException if the List or Transformer is null
*/
public static <E> List<E> transformedList(final List<E> list,
final Transformer<? super E, ? extends E> transformer) {
return TransformedList.transformingList(list, transformer);
}
/**
* Returns a "lazy" list whose elements will be created on demand.
* <p>
@ -500,41 +374,27 @@ public class ListUtils {
}
/**
* Returns a fixed-sized list backed by the given list.
* Elements may not be added or removed from the returned list, but
* existing elements can be changed (for instance, via the
* {@link List#set(int, Object)} method).
*
* @param <E> the element type
* @param list the list whose size to fix, must not be null
* @return a fixed-size list backed by that list
* @throws NullPointerException if the List is null
*/
public static <E> List<E> fixedSizeList(final List<E> list) {
return FixedSizeList.fixedSizeList(list);
}
/**
* Finds the first index in the given List which matches the given predicate.
* Returns the longest common subsequence (LCS) of two {@link CharSequence} objects.
* <p>
* If the input List or predicate is null, or no element of the List
* matches the predicate, -1 is returned.
* This is a convenience method for using {@link #longestCommonSubsequence(List, List)}
* with {@link CharSequence} instances.
*
* @param <E> the element type
* @param list the List to search, may be null
* @param predicate the predicate to use, may be null
* @return the first index of an Object in the List which matches the predicate or -1 if none could be found
* @param charSequenceA the first sequence
* @param charSequenceB the second sequence
* @return the longest common subsequence as {@link String}
* @throws NullPointerException if either sequence is {@code null}
* @since 4.0
*/
public static <E> int indexOf(final List<E> list, final Predicate<E> predicate) {
if (list != null && predicate != null) {
for (int i = 0; i < list.size(); i++) {
final E item = list.get(i);
if (predicate.evaluate(item)) {
return i;
}
}
public static String longestCommonSubsequence(final CharSequence charSequenceA, final CharSequence charSequenceB) {
Objects.requireNonNull(charSequenceA, "charSequenceA");
Objects.requireNonNull(charSequenceB, "charSequenceB");
final List<Character> lcs = longestCommonSubsequence(new CharSequenceAsList(charSequenceA),
new CharSequenceAsList(charSequenceB));
final StringBuilder sb = new StringBuilder();
for (final Character ch : lcs) {
sb.append(ch);
}
return CollectionUtils.INDEX_NOT_FOUND;
return sb.toString();
}
/**
@ -575,81 +435,6 @@ public class ListUtils {
return visitor.getSubSequence();
}
/**
* Returns the longest common subsequence (LCS) of two {@link CharSequence} objects.
* <p>
* This is a convenience method for using {@link #longestCommonSubsequence(List, List)}
* with {@link CharSequence} instances.
*
* @param charSequenceA the first sequence
* @param charSequenceB the second sequence
* @return the longest common subsequence as {@link String}
* @throws NullPointerException if either sequence is {@code null}
* @since 4.0
*/
public static String longestCommonSubsequence(final CharSequence charSequenceA, final CharSequence charSequenceB) {
Objects.requireNonNull(charSequenceA, "charSequenceA");
Objects.requireNonNull(charSequenceB, "charSequenceB");
final List<Character> lcs = longestCommonSubsequence(new CharSequenceAsList(charSequenceA),
new CharSequenceAsList(charSequenceB));
final StringBuilder sb = new StringBuilder();
for (final Character ch : lcs) {
sb.append(ch);
}
return sb.toString();
}
/**
* A helper class used to construct the longest common subsequence.
*/
private static final class LcsVisitor<E> implements CommandVisitor<E> {
private final ArrayList<E> sequence;
LcsVisitor() {
sequence = new ArrayList<>();
}
@Override
public void visitInsertCommand(final E object) {
// noop
}
@Override
public void visitDeleteCommand(final E object) {
// noop
}
@Override
public void visitKeepCommand(final E object) {
sequence.add(object);
}
public List<E> getSubSequence() {
return sequence;
}
}
/**
* A simple wrapper to use a CharSequence as List.
*/
private static final class CharSequenceAsList extends AbstractList<Character> {
private final CharSequence sequence;
CharSequenceAsList(final CharSequence sequence) {
this.sequence = sequence;
}
@Override
public Character get(final int index) {
return Character.valueOf(sequence.charAt(index));
}
@Override
public int size() {
return sequence.length();
}
}
/**
* Returns consecutive {@link List#subList(int, int) sublists} of a
* list, each of the same size (the final list may be smaller). For example,
@ -681,41 +466,256 @@ public class ListUtils {
}
/**
* Provides a partition view on a {@link List}.
* @since 4.0
* Returns a predicated (validating) list backed by the given list.
* <p>
* Only objects that pass the test in the given predicate can be added to the list.
* Trying to add an invalid object results in an IllegalArgumentException.
* It is important not to use the original list after invoking this method,
* as it is a backdoor for adding invalid objects.
*
* @param <E> the element type
* @param list the list to predicate, must not be null
* @param predicate the predicate for the list, must not be null
* @return a predicated list backed by the given list
* @throws NullPointerException if the List or Predicate is null
*/
private static class Partition<T> extends AbstractList<List<T>> {
private final List<T> list;
private final int size;
private Partition(final List<T> list, final int size) {
this.list = list;
this.size = size;
}
@Override
public List<T> get(final int index) {
final int listSize = size();
if (index < 0) {
throw new IndexOutOfBoundsException("Index " + index + " must not be negative");
}
if (index >= listSize) {
throw new IndexOutOfBoundsException("Index " + index + " must be less than size " +
listSize);
}
final int start = index * size;
final int end = Math.min(start + size, list.size());
return list.subList(start, end);
}
@Override
public int size() {
return (int) Math.ceil((double) list.size() / (double) size);
}
@Override
public boolean isEmpty() {
return list.isEmpty();
}
public static <E> List<E> predicatedList(final List<E> list, final Predicate<E> predicate) {
return PredicatedList.predicatedList(list, predicate);
}
/**
* Removes the elements in {@code remove} from {@code collection}. That is, this
* method returns a list containing all the elements in {@code collection}
* that are not in {@code remove}. The cardinality of an element {@code e}
* in the returned collection is the same as the cardinality of {@code e}
* in {@code collection} unless {@code remove} contains {@code e}, in which
* case the cardinality is zero. This method is useful if you do not wish to modify
* {@code collection} and thus cannot call {@code collection.removeAll(remove);}.
* <p>
* This implementation iterates over {@code collection}, checking each element in
* turn to see if it's contained in {@code remove}. If it's not contained, it's added
* to the returned list. As a consequence, it is advised to use a collection type for
* {@code remove} that provides a fast (e.g. O(1)) implementation of
* {@link Collection#contains(Object)}.
*
* @param <E> the element type
* @param collection the collection from which items are removed (in the returned collection)
* @param remove the items to be removed from the returned {@code collection}
* @return a {@code List} containing all the elements of {@code c} except
* any elements that also occur in {@code remove}.
* @throws NullPointerException if either parameter is null
* @since 3.2
*/
public static <E> List<E> removeAll(final Collection<E> collection, final Collection<?> remove) {
final List<E> list = new ArrayList<>();
for (final E obj : collection) {
if (!remove.contains(obj)) {
list.add(obj);
}
}
return list;
}
/**
* Returns a List containing all the elements in {@code collection}
* that are also in {@code retain}. The cardinality of an element {@code e}
* in the returned list is the same as the cardinality of {@code e}
* in {@code collection} unless {@code retain} does not contain {@code e}, in which
* case the cardinality is zero. This method is useful if you do not wish to modify
* the collection {@code c} and thus cannot call {@code collection.retainAll(retain);}.
* <p>
* This implementation iterates over {@code collection}, checking each element in
* turn to see if it's contained in {@code retain}. If it's contained, it's added
* to the returned list. As a consequence, it is advised to use a collection type for
* {@code retain} that provides a fast (e.g. O(1)) implementation of
* {@link Collection#contains(Object)}.
*
* @param <E> the element type
* @param collection the collection whose contents are the target of the #retailAll operation
* @param retain the collection containing the elements to be retained in the returned collection
* @return a {@code List} containing all the elements of {@code c}
* that occur at least once in {@code retain}.
* @throws NullPointerException if either parameter is null
* @since 3.2
*/
public static <E> List<E> retainAll(final Collection<E> collection, final Collection<?> retain) {
final List<E> list = new ArrayList<>(Math.min(collection.size(), retain.size()));
for (final E obj : collection) {
if (retain.contains(obj)) {
list.add(obj);
}
}
return list;
}
/**
* Selects all elements from input collection which match the given
* predicate into an output list.
* <p>
* A {@code null} predicate matches no elements.
*
* @param <E> the element type
* @param inputCollection the collection to get the input from, may not be null
* @param predicate the predicate to use, may be null
* @return the elements matching the predicate (new list)
* @throws NullPointerException if the input list is null
*
* @since 4.0
* @see CollectionUtils#select(Iterable, Predicate)
*/
public static <E> List<E> select(final Collection<? extends E> inputCollection,
final Predicate<? super E> predicate) {
return CollectionUtils.select(inputCollection, predicate, new ArrayList<E>(inputCollection.size()));
}
/**
* Selects all elements from inputCollection which don't match the given
* predicate into an output collection.
* <p>
* If the input predicate is {@code null}, the result is an empty list.
*
* @param <E> the element type
* @param inputCollection the collection to get the input from, may not be null
* @param predicate the predicate to use, may be null
* @return the elements <b>not</b> matching the predicate (new list)
* @throws NullPointerException if the input collection is null
*
* @since 4.0
* @see CollectionUtils#selectRejected(Iterable, Predicate)
*/
public static <E> List<E> selectRejected(final Collection<? extends E> inputCollection,
final Predicate<? super E> predicate) {
return CollectionUtils.selectRejected(inputCollection, predicate, new ArrayList<E>(inputCollection.size()));
}
/**
* Subtracts all elements in the second list from the first list,
* placing the results in a new list.
* <p>
* This differs from {@link List#removeAll(Collection)} in that
* cardinality is respected; if <Code>list1</Code> contains two
* occurrences of <Code>null</Code> and <Code>list2</Code> only
* contains one occurrence, then the returned list will still contain
* one occurrence.
*
* @param <E> the element type
* @param list1 the list to subtract from
* @param list2 the list to subtract
* @return a new list containing the results
* @throws NullPointerException if either list is null
*/
public static <E> List<E> subtract(final List<E> list1, final List<? extends E> list2) {
final ArrayList<E> result = new ArrayList<>();
final HashBag<E> bag = new HashBag<>(list2);
for (final E e : list1) {
if (!bag.remove(e, 1)) {
result.add(e);
}
}
return result;
}
/**
* Returns the sum of the given lists. This is their intersection
* subtracted from their union.
*
* @param <E> the element type
* @param list1 the first list
* @param list2 the second list
* @return a new list containing the sum of those lists
* @throws NullPointerException if either list is null
*/
public static <E> List<E> sum(final List<? extends E> list1, final List<? extends E> list2) {
return subtract(union(list1, list2), intersection(list1, list2));
}
/**
* Returns a synchronized list backed by the given list.
* <p>
* You must manually synchronize on the returned list's iterator to
* avoid non-deterministic behavior:
*
* <pre>
* List list = ListUtils.synchronizedList(myList);
* synchronized (list) {
* Iterator i = list.iterator();
* while (i.hasNext()) {
* process (i.next());
* }
* }
* </pre>
*
* This method is just a wrapper for {@link Collections#synchronizedList(List)}.
*
* @param <E> the element type
* @param list the list to synchronize, must not be null
* @return a synchronized list backed by the given list
* @throws NullPointerException if the list is null
*/
public static <E> List<E> synchronizedList(final List<E> list) {
return Collections.synchronizedList(list);
}
/**
* Returns a transformed list backed by the given list.
* <p>
* This method returns a new list (decorating the specified list) that
* will transform any new entries added to it.
* Existing entries in the specified list will not be transformed.
* <p>
* Each object is passed through the transformer as it is added to the
* List. It is important not to use the original list after invoking this
* method, as it is a backdoor for adding untransformed objects.
* <p>
* Existing entries in the specified list will not be transformed.
* If you want that behavior, see {@link TransformedList#transformedList}.
*
* @param <E> the element type
* @param list the list to predicate, must not be null
* @param transformer the transformer for the list, must not be null
* @return a transformed list backed by the given list
* @throws NullPointerException if the List or Transformer is null
*/
public static <E> List<E> transformedList(final List<E> list,
final Transformer<? super E, ? extends E> transformer) {
return TransformedList.transformingList(list, transformer);
}
/**
* Returns a new list containing the second list appended to the
* first list. The {@link List#addAll(Collection)} operation is
* used to append the two given lists into a new list.
*
* @param <E> the element type
* @param list1 the first list
* @param list2 the second list
* @return a new list containing the union of those lists
* @throws NullPointerException if either list is null
*/
public static <E> List<E> union(final List<? extends E> list1, final List<? extends E> list2) {
final ArrayList<E> result = new ArrayList<>(list1.size() + list2.size());
result.addAll(list1);
result.addAll(list2);
return result;
}
/**
* Returns an unmodifiable list backed by the given list.
* <p>
* This method uses the implementation in the decorators subpackage.
*
* @param <E> the element type
* @param list the list to make unmodifiable, must not be null
* @return an unmodifiable list backed by the given list
* @throws NullPointerException if the list is null
*/
public static <E> List<E> unmodifiableList(final List<? extends E> list) {
return UnmodifiableList.unmodifiableList(list);
}
/**
* Don't allow instances.
*/
private ListUtils() {}
}

View File

@ -43,7 +43,9 @@ public class ListUtilsTest {
private static final String e = "e";
private static final String x = "x";
private static final Predicate<Number> EQUALS_TWO = input -> input.intValue() == 2;
private String[] fullArray;
private List<String> fullList;
@BeforeEach
@ -52,13 +54,69 @@ public class ListUtilsTest {
fullList = new ArrayList<>(Arrays.asList(fullArray));
}
@Test
public void testDefaultIfNull() {
assertTrue(ListUtils.defaultIfNull(null, Collections.emptyList()).isEmpty());
final List<Long> list = new ArrayList<>();
assertSame(list, ListUtils.defaultIfNull(list, Collections.<Long>emptyList()));
}
@Test
public void testEmptyIfNull() {
assertTrue(ListUtils.emptyIfNull(null).isEmpty());
final List<Long> list = new ArrayList<>();
assertSame(list, ListUtils.emptyIfNull(list));
}
@Test
public void testEquals() {
final Collection<String> data = Arrays.asList("a", "b", "c");
final List<String> a = new ArrayList<>( data );
final List<String> b = new ArrayList<>( data );
assertEquals(a, b);
assertTrue(ListUtils.isEqualList(a, b));
a.clear();
assertFalse(ListUtils.isEqualList(a, b));
assertFalse(ListUtils.isEqualList(a, null));
assertFalse(ListUtils.isEqualList(null, b));
assertTrue(ListUtils.isEqualList(null, null));
}
@Test
public void testHashCode() {
final Collection<String> data = Arrays.asList("a", "b", "c");
final List<String> a = new ArrayList<>(data);
final List<String> b = new ArrayList<>(data);
assertEquals(a.hashCode(), b.hashCode());
assertEquals(a.hashCode(), ListUtils.hashCodeForList(a));
assertEquals(b.hashCode(), ListUtils.hashCodeForList(b));
assertEquals(ListUtils.hashCodeForList(a), ListUtils.hashCodeForList(b));
a.clear();
assertNotEquals(ListUtils.hashCodeForList(a), ListUtils.hashCodeForList(b));
assertEquals(0, ListUtils.hashCodeForList(null));
}
/**
* Tests intersecting a non-empty list with an empty list.
* Tests the {@code indexOf} method in {@code ListUtils} class..
*/
@Test
public void testIntersectNonEmptyWithEmptyList() {
final List<String> empty = Collections.<String>emptyList();
assertTrue(ListUtils.intersection(empty, fullList).isEmpty(), "result not empty");
public void testIndexOf() {
Predicate<String> testPredicate = EqualPredicate.equalPredicate("d");
int index = ListUtils.indexOf(fullList, testPredicate);
assertEquals(d, fullList.get(index));
testPredicate = EqualPredicate.equalPredicate("de");
index = ListUtils.indexOf(fullList, testPredicate);
assertEquals(index, -1);
assertEquals(ListUtils.indexOf(null, testPredicate), -1);
assertEquals(ListUtils.indexOf(fullList, null), -1);
}
/**
@ -71,19 +129,19 @@ public class ListUtilsTest {
}
/**
* Tests intersecting a non-empty list with an subset of itself.
* Tests intersecting two lists in different orders.
*/
@Test
public void testIntersectNonEmptySubset() {
// create a copy
final List<String> other = new ArrayList<>(fullList);
// remove a few items
assertNotNull(other.remove(0));
assertNotNull(other.remove(1));
// make sure the intersection is equal to the copy
assertEquals(other, ListUtils.intersection(fullList, other));
public void testIntersectionOrderInsensitivity() {
final List<String> one = new ArrayList<>();
final List<String> two = new ArrayList<>();
one.add("a");
one.add("b");
two.add("a");
two.add("a");
two.add("b");
two.add("b");
assertEquals(ListUtils.intersection(one, two), ListUtils.intersection(two, one));
}
/**
@ -105,38 +163,28 @@ public class ListUtilsTest {
}
/**
* Tests intersecting two lists in different orders.
* Tests intersecting a non-empty list with an subset of itself.
*/
@Test
public void testIntersectionOrderInsensitivity() {
final List<String> one = new ArrayList<>();
final List<String> two = new ArrayList<>();
one.add("a");
one.add("b");
two.add("a");
two.add("a");
two.add("b");
two.add("b");
assertEquals(ListUtils.intersection(one, two), ListUtils.intersection(two, one));
public void testIntersectNonEmptySubset() {
// create a copy
final List<String> other = new ArrayList<>(fullList);
// remove a few items
assertNotNull(other.remove(0));
assertNotNull(other.remove(1));
// make sure the intersection is equal to the copy
assertEquals(other, ListUtils.intersection(fullList, other));
}
/**
* Tests intersecting a non-empty list with an empty list.
*/
@Test
public void testPredicatedList() {
final Predicate<Object> predicate = o -> o instanceof String;
final List<Object> list = ListUtils.predicatedList(new ArrayList<>(), predicate);
assertTrue(list instanceof PredicatedList, "returned object should be a PredicatedList");
try {
ListUtils.predicatedList(new ArrayList<>(), null);
fail("Expecting IllegalArgumentException for null predicate.");
} catch (final NullPointerException ex) {
// expected
}
try {
ListUtils.predicatedList(null, predicate);
fail("Expecting IllegalArgumentException for null list.");
} catch (final NullPointerException ex) {
// expected
}
public void testIntersectNonEmptyWithEmptyList() {
final List<String> empty = Collections.<String>emptyList();
assertTrue(ListUtils.intersection(empty, fullList).isEmpty(), "result not empty");
}
@Test
@ -180,158 +228,6 @@ public class ListUtilsTest {
assertEquals(6, list.size());
}
@Test
public void testEmptyIfNull() {
assertTrue(ListUtils.emptyIfNull(null).isEmpty());
final List<Long> list = new ArrayList<>();
assertSame(list, ListUtils.emptyIfNull(list));
}
@Test
public void testDefaultIfNull() {
assertTrue(ListUtils.defaultIfNull(null, Collections.emptyList()).isEmpty());
final List<Long> list = new ArrayList<>();
assertSame(list, ListUtils.defaultIfNull(list, Collections.<Long>emptyList()));
}
@Test
public void testEquals() {
final Collection<String> data = Arrays.asList("a", "b", "c");
final List<String> a = new ArrayList<>( data );
final List<String> b = new ArrayList<>( data );
assertEquals(a, b);
assertTrue(ListUtils.isEqualList(a, b));
a.clear();
assertFalse(ListUtils.isEqualList(a, b));
assertFalse(ListUtils.isEqualList(a, null));
assertFalse(ListUtils.isEqualList(null, b));
assertTrue(ListUtils.isEqualList(null, null));
}
@Test
public void testHashCode() {
final Collection<String> data = Arrays.asList("a", "b", "c");
final List<String> a = new ArrayList<>(data);
final List<String> b = new ArrayList<>(data);
assertEquals(a.hashCode(), b.hashCode());
assertEquals(a.hashCode(), ListUtils.hashCodeForList(a));
assertEquals(b.hashCode(), ListUtils.hashCodeForList(b));
assertEquals(ListUtils.hashCodeForList(a), ListUtils.hashCodeForList(b));
a.clear();
assertNotEquals(ListUtils.hashCodeForList(a), ListUtils.hashCodeForList(b));
assertEquals(0, ListUtils.hashCodeForList(null));
}
@Test
public void testRetainAll() {
final List<String> sub = new ArrayList<>();
sub.add(a);
sub.add(b);
sub.add(x);
final List<String> retained = ListUtils.retainAll(fullList, sub);
assertEquals(2, retained.size());
sub.remove(x);
assertEquals(retained, sub);
fullList.retainAll(sub);
assertEquals(retained, fullList);
try {
ListUtils.retainAll(null, null);
fail("expecting NullPointerException");
} catch(final NullPointerException npe){} // this is what we want
}
@Test
public void testRemoveAll() {
final List<String> sub = new ArrayList<>();
sub.add(a);
sub.add(b);
sub.add(x);
final List<String> remainder = ListUtils.removeAll(fullList, sub);
assertEquals(3, remainder.size());
fullList.removeAll(sub);
assertEquals(remainder, fullList);
try {
ListUtils.removeAll(null, null);
fail("expecting NullPointerException");
} catch(final NullPointerException npe) {} // this is what we want
}
@Test
public void testSubtract() {
final List<String> list = new ArrayList<>();
list.add(a);
list.add(b);
list.add(a);
list.add(x);
final List<String> sub = new ArrayList<>();
sub.add(a);
final List<String> result = ListUtils.subtract(list, sub);
assertEquals(3, result.size());
final List<String> expected = new ArrayList<>();
expected.add(b);
expected.add(a);
expected.add(x);
assertEquals(expected, result);
try {
ListUtils.subtract(list, null);
fail("expecting NullPointerException");
} catch(final NullPointerException npe) {} // this is what we want
}
@Test
public void testSubtractNullElement() {
final List<String> list = new ArrayList<>();
list.add(a);
list.add(null);
list.add(null);
list.add(x);
final List<String> sub = new ArrayList<>();
sub.add(null);
final List<String> result = ListUtils.subtract(list, sub);
assertEquals(3, result.size());
final List<String> expected = new ArrayList<>();
expected.add(a);
expected.add(null);
expected.add(x);
assertEquals(expected, result);
}
/**
* Tests the {@code indexOf} method in {@code ListUtils} class..
*/
@Test
public void testIndexOf() {
Predicate<String> testPredicate = EqualPredicate.equalPredicate("d");
int index = ListUtils.indexOf(fullList, testPredicate);
assertEquals(d, fullList.get(index));
testPredicate = EqualPredicate.equalPredicate("de");
index = ListUtils.indexOf(fullList, testPredicate);
assertEquals(index, -1);
assertEquals(ListUtils.indexOf(null, testPredicate), -1);
assertEquals(ListUtils.indexOf(fullList, null), -1);
}
@Test
@SuppressWarnings("boxing") // OK in test code
public void testLongestCommonSubsequence() {
@ -447,7 +343,62 @@ public class ListUtilsTest {
assertEquals(strings, partitionMax.get(0));
}
private static final Predicate<Number> EQUALS_TWO = input -> input.intValue() == 2;
@Test
public void testPredicatedList() {
final Predicate<Object> predicate = o -> o instanceof String;
final List<Object> list = ListUtils.predicatedList(new ArrayList<>(), predicate);
assertTrue(list instanceof PredicatedList, "returned object should be a PredicatedList");
try {
ListUtils.predicatedList(new ArrayList<>(), null);
fail("Expecting IllegalArgumentException for null predicate.");
} catch (final NullPointerException ex) {
// expected
}
try {
ListUtils.predicatedList(null, predicate);
fail("Expecting IllegalArgumentException for null list.");
} catch (final NullPointerException ex) {
// expected
}
}
@Test
public void testRemoveAll() {
final List<String> sub = new ArrayList<>();
sub.add(a);
sub.add(b);
sub.add(x);
final List<String> remainder = ListUtils.removeAll(fullList, sub);
assertEquals(3, remainder.size());
fullList.removeAll(sub);
assertEquals(remainder, fullList);
try {
ListUtils.removeAll(null, null);
fail("expecting NullPointerException");
} catch(final NullPointerException npe) {} // this is what we want
}
@Test
public void testRetainAll() {
final List<String> sub = new ArrayList<>();
sub.add(a);
sub.add(b);
sub.add(x);
final List<String> retained = ListUtils.retainAll(fullList, sub);
assertEquals(2, retained.size());
sub.remove(x);
assertEquals(retained, sub);
fullList.retainAll(sub);
assertEquals(retained, fullList);
try {
ListUtils.retainAll(null, null);
fail("expecting NullPointerException");
} catch(final NullPointerException npe){} // this is what we want
}
@Test
@SuppressWarnings("boxing") // OK in test code
@ -486,4 +437,53 @@ public class ListUtilsTest {
assertTrue(output1.contains(3L));
assertTrue(output1.contains(4L));
}
@Test
public void testSubtract() {
final List<String> list = new ArrayList<>();
list.add(a);
list.add(b);
list.add(a);
list.add(x);
final List<String> sub = new ArrayList<>();
sub.add(a);
final List<String> result = ListUtils.subtract(list, sub);
assertEquals(3, result.size());
final List<String> expected = new ArrayList<>();
expected.add(b);
expected.add(a);
expected.add(x);
assertEquals(expected, result);
try {
ListUtils.subtract(list, null);
fail("expecting NullPointerException");
} catch(final NullPointerException npe) {} // this is what we want
}
@Test
public void testSubtractNullElement() {
final List<String> list = new ArrayList<>();
list.add(a);
list.add(null);
list.add(null);
list.add(x);
final List<String> sub = new ArrayList<>();
sub.add(null);
final List<String> result = ListUtils.subtract(list, sub);
assertEquals(3, result.size());
final List<String> expected = new ArrayList<>();
expected.add(a);
expected.add(null);
expected.add(x);
assertEquals(expected, result);
}
}