[LANG-684] Levenshtein Distance Within a Given Threshold; submitted by Eli Lindsey
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/lang/trunk@1136496 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
734d218eb5
commit
0467966f4b
3
pom.xml
3
pom.xml
|
@ -287,6 +287,9 @@
|
||||||
<contributor>
|
<contributor>
|
||||||
<name>Rafal Krzewski</name>
|
<name>Rafal Krzewski</name>
|
||||||
</contributor>
|
</contributor>
|
||||||
|
<contributor>
|
||||||
|
<name>Eli Lindsey</name>
|
||||||
|
</contributor>
|
||||||
<contributor>
|
<contributor>
|
||||||
<name>Craig R. McClanahan</name>
|
<name>Craig R. McClanahan</name>
|
||||||
</contributor>
|
</contributor>
|
||||||
|
|
|
@ -19,6 +19,7 @@ package org.apache.commons.lang3;
|
||||||
import java.lang.reflect.InvocationTargetException;
|
import java.lang.reflect.InvocationTargetException;
|
||||||
import java.lang.reflect.Method;
|
import java.lang.reflect.Method;
|
||||||
import java.util.ArrayList;
|
import java.util.ArrayList;
|
||||||
|
import java.util.Arrays;
|
||||||
import java.util.Iterator;
|
import java.util.Iterator;
|
||||||
import java.util.List;
|
import java.util.List;
|
||||||
import java.util.Locale;
|
import java.util.Locale;
|
||||||
|
@ -6137,6 +6138,168 @@ public class StringUtils {
|
||||||
return p[n];
|
return p[n];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* <p>Find the Levenshtein distance between two Strings if it's less than or equal to a given
|
||||||
|
* threshold.</p>
|
||||||
|
*
|
||||||
|
* <p>This is the number of changes needed to change one String into
|
||||||
|
* another, where each change is a single character modification (deletion,
|
||||||
|
* insertion or substitution).</p>
|
||||||
|
*
|
||||||
|
* <p>This implementation follows from Algorithms on Strings, Trees and Sequences by Dan Gusfield
|
||||||
|
* and Chas Emerick's implementation of the Levenshtein distance algorithm from
|
||||||
|
* <a href="http://www.merriampark.com/ld.htm">http://www.merriampark.com/ld.htm</a></p>
|
||||||
|
*
|
||||||
|
* <pre>
|
||||||
|
* StringUtils.getLevenshteinDistance(null, *, *) = IllegalArgumentException
|
||||||
|
* StringUtils.getLevenshteinDistance(*, null, *) = IllegalArgumentException
|
||||||
|
* StringUtils.getLevenshteinDistance(*, *, -1) = IllegalArgumentException
|
||||||
|
* StringUtils.getLevenshteinDistance("","", 0) = 0
|
||||||
|
* StringUtils.getLevenshteinDistance("aaapppp", "", 8) = 7
|
||||||
|
* StringUtils.getLevenshteinDistance("aaapppp", "", 7) = 7
|
||||||
|
* StringUtils.getLevenshteinDistance("aaapppp", "", 6)) = -1
|
||||||
|
* StringUtils.getLevenshteinDistance("elephant", "hippo", 7) = 7
|
||||||
|
* StringUtils.getLevenshteinDistance("elephant", "hippo", 6) = -1
|
||||||
|
* StringUtils.getLevenshteinDistance("hippo", "elephant", 7) = 7
|
||||||
|
* StringUtils.getLevenshteinDistance("hippo", "elephant", 6) = -1
|
||||||
|
* </pre>
|
||||||
|
*
|
||||||
|
* @param s the first String, must not be null
|
||||||
|
* @param t the second String, must not be null
|
||||||
|
* @param threshold the target threshold, must not be negative
|
||||||
|
* @return result distance, or -1 if the distance would be greater than the threshold
|
||||||
|
* @throws IllegalArgumentException if either String input {@code null} or negative threshold
|
||||||
|
*/
|
||||||
|
public static int getLevenshteinDistance(CharSequence s, CharSequence t, int threshold) {
|
||||||
|
if(s == null || t == null) {
|
||||||
|
throw new IllegalArgumentException("String must not be null");
|
||||||
|
}
|
||||||
|
if(threshold < 0) {
|
||||||
|
throw new IllegalArgumentException("Threshold must not be negative");
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
This implementation only computes the distance if it's less than or equal to the
|
||||||
|
threshold value, returning -1 if it's greater. The advantage is performance: unbounded
|
||||||
|
distance is O(nm), but a bound of k allows us to reduce it to O(km) time by only
|
||||||
|
computing a diagonal stripe of width 2k+1 of the cost table.
|
||||||
|
It is also possible to use this to compute the unbounded Levenshtein distance by starting
|
||||||
|
the threshold at 1 and doubling each time until the distance is found; this is O(dm), where
|
||||||
|
d is the distance.
|
||||||
|
|
||||||
|
One subtlety comes from needing to ignore entries on the border of our stripe
|
||||||
|
eg.
|
||||||
|
p[] = |#|#|#|*
|
||||||
|
d[] = *|#|#|#|
|
||||||
|
We must ignore the entry to the left of the leftmost member
|
||||||
|
We must ignore the entry above the rightmost member
|
||||||
|
|
||||||
|
Another subtlety comes from our stripe running off the matrix if the strings aren't
|
||||||
|
of the same size. Since string s is always swapped to be the shorter of the two,
|
||||||
|
the stripe will always run off to the upper right instead of the lower left of the matrix.
|
||||||
|
|
||||||
|
As a concrete example, suppose s is of length 5, t is of length 7, and our threshold is 1.
|
||||||
|
In this case we're going to walk a stripe of length 3. The matrix would look like so:
|
||||||
|
|
||||||
|
1 2 3 4 5
|
||||||
|
1 |#|#| | | |
|
||||||
|
2 |#|#|#| | |
|
||||||
|
3 | |#|#|#| |
|
||||||
|
4 | | |#|#|#|
|
||||||
|
5 | | | |#|#|
|
||||||
|
6 | | | | |#|
|
||||||
|
7 | | | | | |
|
||||||
|
|
||||||
|
Note how the stripe leads off the table as there is no possible way to turn a string of length 5
|
||||||
|
into one of length 7 in edit distance of 1.
|
||||||
|
|
||||||
|
Additionally, this implementation decreases memory usage by using two
|
||||||
|
single-dimensional arrays and swapping them back and forth instead of allocating
|
||||||
|
an entire n by m matrix. This requires a few minor changes, such as immediately returning
|
||||||
|
when it's detected that the stripe has run off the matrix and initially filling the arrays with
|
||||||
|
large values so that entries we don't compute are ignored.
|
||||||
|
|
||||||
|
See Algorithms on Strings, Trees and Sequences by Dan Gusfield for some discussion.
|
||||||
|
*/
|
||||||
|
|
||||||
|
int n = s.length(); // length of s
|
||||||
|
int m = t.length(); // length of t
|
||||||
|
|
||||||
|
// if one string is empty, the edit distance is necessarily the length of the other
|
||||||
|
if(n == 0) {
|
||||||
|
return m <= threshold? m : -1;
|
||||||
|
} else if(m == 0) {
|
||||||
|
return n <= threshold? n : -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
if(n > m) {
|
||||||
|
// swap the two strings to consume less memory
|
||||||
|
CharSequence tmp = s;
|
||||||
|
s = t;
|
||||||
|
t = tmp;
|
||||||
|
n = m;
|
||||||
|
m = t.length();
|
||||||
|
}
|
||||||
|
|
||||||
|
int p[] = new int[n+1]; // 'previous' cost array, horizontally
|
||||||
|
int d[] = new int[n+1]; // cost array, horizontally
|
||||||
|
int _d[]; // placeholder to assist in swapping p and d
|
||||||
|
|
||||||
|
// fill in starting table values
|
||||||
|
int boundary = Math.min(n, threshold) + 1;
|
||||||
|
for(int i = 0; i < boundary; i++) {
|
||||||
|
p[i] = i;
|
||||||
|
}
|
||||||
|
// these fills ensure that the value above the rightmost entry of our
|
||||||
|
// stripe will be ignored in following loop iterations
|
||||||
|
Arrays.fill(p, boundary, p.length, Integer.MAX_VALUE);
|
||||||
|
Arrays.fill(d, Integer.MAX_VALUE);
|
||||||
|
|
||||||
|
// iterates through t
|
||||||
|
for(int j = 1; j <= m; j++) {
|
||||||
|
char t_j = t.charAt(j-1); // jth character of t
|
||||||
|
d[0] = j;
|
||||||
|
|
||||||
|
// compute stripe indices, constrain to array size
|
||||||
|
int min = Math.max(1, j - threshold);
|
||||||
|
int max = Math.min(n, j + threshold);
|
||||||
|
|
||||||
|
// the stripe may lead off of the table if s and t are of different sizes
|
||||||
|
if(min > max) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// ignore entry left of leftmost
|
||||||
|
if(min > 1) {
|
||||||
|
d[min-1] = Integer.MAX_VALUE;
|
||||||
|
}
|
||||||
|
|
||||||
|
// iterates through [min, max] in s
|
||||||
|
for(int i = min; i <= max; i++) {
|
||||||
|
if(s.charAt(i-1) == t_j) {
|
||||||
|
// diagonally left and up
|
||||||
|
d[i] = p[i-1];
|
||||||
|
} else {
|
||||||
|
// 1 + minimum of cell to the left, to the top, diagonally left and up
|
||||||
|
d[i] = 1 + Math.min(Math.min(d[i-1], p[i]), p[i-1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// copy current distance counts to 'previous row' distance counts
|
||||||
|
_d = p;
|
||||||
|
p = d;
|
||||||
|
d = _d;
|
||||||
|
}
|
||||||
|
|
||||||
|
// if p[n] is greater than the threshold, there's no guarantee on it being the correct
|
||||||
|
// distance
|
||||||
|
if(p[n] <= threshold) {
|
||||||
|
return p[n];
|
||||||
|
} else {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// startsWith
|
// startsWith
|
||||||
//-----------------------------------------------------------------------
|
//-----------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
|
@ -1671,6 +1671,85 @@ public class StringUtilsTest extends TestCase {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public void testGetLevenshteinDistance_StringStringInt() {
|
||||||
|
// empty strings
|
||||||
|
assertEquals(0, StringUtils.getLevenshteinDistance("", "", 0));
|
||||||
|
assertEquals(7, StringUtils.getLevenshteinDistance("aaapppp", "", 8));
|
||||||
|
assertEquals(7, StringUtils.getLevenshteinDistance("aaapppp", "", 7));
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("aaapppp", "", 6));
|
||||||
|
|
||||||
|
// unequal strings, zero threshold
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("b", "a", 0));
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("a", "b", 0));
|
||||||
|
|
||||||
|
// equal strings
|
||||||
|
assertEquals(0, StringUtils.getLevenshteinDistance("aa", "aa", 0));
|
||||||
|
assertEquals(0, StringUtils.getLevenshteinDistance("aa", "aa", 2));
|
||||||
|
|
||||||
|
// same length
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("aaa", "bbb", 2));
|
||||||
|
assertEquals(3, StringUtils.getLevenshteinDistance("aaa", "bbb", 3));
|
||||||
|
|
||||||
|
// big stripe
|
||||||
|
assertEquals(6, StringUtils.getLevenshteinDistance("aaaaaa", "b", 10));
|
||||||
|
|
||||||
|
// distance less than threshold
|
||||||
|
assertEquals(7, StringUtils.getLevenshteinDistance("aaapppp", "b", 8));
|
||||||
|
assertEquals(3, StringUtils.getLevenshteinDistance("a", "bbb", 4));
|
||||||
|
|
||||||
|
// distance equal to threshold
|
||||||
|
assertEquals(7, StringUtils.getLevenshteinDistance("aaapppp", "b", 7));
|
||||||
|
assertEquals(3, StringUtils.getLevenshteinDistance("a", "bbb", 3));
|
||||||
|
|
||||||
|
// distance greater than threshold
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("a", "bbb", 2));
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("bbb", "a", 2));
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("aaapppp", "b", 6));
|
||||||
|
|
||||||
|
// stripe runs off array, strings not similar
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("a", "bbb", 1));
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("bbb", "a", 1));
|
||||||
|
|
||||||
|
// stripe runs off array, strings are similar
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("12345", "1234567", 1));
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("1234567", "12345", 1));
|
||||||
|
|
||||||
|
// old getLevenshteinDistance test cases
|
||||||
|
assertEquals(1, StringUtils.getLevenshteinDistance("frog", "fog",1) );
|
||||||
|
assertEquals(3, StringUtils.getLevenshteinDistance("fly", "ant",3) );
|
||||||
|
assertEquals(7, StringUtils.getLevenshteinDistance("elephant", "hippo",7) );
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("elephant", "hippo",6) );
|
||||||
|
assertEquals(7, StringUtils.getLevenshteinDistance("hippo", "elephant",7) );
|
||||||
|
assertEquals(-1, StringUtils.getLevenshteinDistance("hippo", "elephant",6) );
|
||||||
|
assertEquals(8, StringUtils.getLevenshteinDistance("hippo", "zzzzzzzz",8) );
|
||||||
|
assertEquals(8, StringUtils.getLevenshteinDistance("zzzzzzzz", "hippo",8) );
|
||||||
|
assertEquals(1, StringUtils.getLevenshteinDistance("hello", "hallo",1) );
|
||||||
|
|
||||||
|
// exceptions
|
||||||
|
try {
|
||||||
|
@SuppressWarnings("unused")
|
||||||
|
int d = StringUtils.getLevenshteinDistance("a", null, 0);
|
||||||
|
fail("expecting IllegalArgumentException");
|
||||||
|
} catch (IllegalArgumentException ex) {
|
||||||
|
// empty
|
||||||
|
}
|
||||||
|
try {
|
||||||
|
@SuppressWarnings("unused")
|
||||||
|
int d = StringUtils.getLevenshteinDistance(null, "a", 0);
|
||||||
|
fail("expecting IllegalArgumentException");
|
||||||
|
} catch (IllegalArgumentException ex) {
|
||||||
|
// empty
|
||||||
|
}
|
||||||
|
|
||||||
|
try {
|
||||||
|
@SuppressWarnings("unused")
|
||||||
|
int d = StringUtils.getLevenshteinDistance("a", "a", -1);
|
||||||
|
fail("expecting IllegalArgumentException");
|
||||||
|
} catch (IllegalArgumentException ex) {
|
||||||
|
// empty
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* A sanity check for {@link StringUtils#EMPTY}.
|
* A sanity check for {@link StringUtils#EMPTY}.
|
||||||
*/
|
*/
|
||||||
|
|
Loading…
Reference in New Issue