commons-math/xdocs/userguide/stat.xml

351 lines
16 KiB
XML
Raw Normal View History

<?xml version="1.0"?>
<!--
Copyright 2003-2004 The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
<!-- $Revision: 1.16 $ $Date: 2004/04/26 20:06:50 $ -->
<document url="stat.html">
<properties>
<title>The Commons Math User Guide - Statistics</title>
</properties>
<body>
<section name="1 Statistics and Distributions">
<subsection name="1.1 Overview" href="overview">
<p>
The statistics and distributions packages provide frameworks and implementations for
basic univariate statistics, frequency distributions, bivariate regression, t- and chi-square test
statistics and some commonly used probability distributions.
</p>
</subsection>
<subsection name="1.2 Univariate statistics" href="univariate">
<p>
The stat package includes a framework and default implementations for the following univariate
statistics:
<ul>
<li>arithmetic and geometric means</li>
<li>variance and standard deviation</li>
<li>sum, product, log sum, sum of squared values</li>
<li>minimum, maximum, median, and percentiles</li>
<li>skewness and kurtosis</li>
<li>first, second, third and fourth moments</li>
</ul>
</p>
<p>
With the exception of percentiles and the median, all of these statistics can be computed without
maintaining the full list of input data values in memory. The stat package provides interfaces and
implementations that do not require value storage as well as implementations that operate on arrays
of stored values.
</p>
<p>
The top level interface is
<a href="../apidocs/org/apache/commons/math/stat/univariate/UnivariateStatistic.html">
org.apache.commons.math.stat.univariate.UnivariateStatistic.</a> This interface, implemented by
all statistics, consists of <code>evaluate()</code> methods that take double[] arrays as arguments and return
the value of the statistic. This interface is extended by
<a href="../apidocs/org/apache/commons/math/stat/univariate/StorelessUnivariateStatistic.html">
StorelessUnivariateStatistic</a>, which adds <code>increment(),</code>
<code>getResult()</code> and associated methods to support "storageless" implementations that
maintain counters, sums or other state information as values are added using the <code>increment()</code>
method.
</p>
<p>
Abstract implementations of the top level interfaces are provided in
<a href="../apidocs/org/apache/commons/math/stat/univariate/AbstractUnivariateStatistic.html">
AbstractUnivariateStatistic</a> and
<a href="../apidocs/org/apache/commons/math/stat/univariate/AbstractStorelessUnivariateStatistic.html">
AbstractStorelessUnivariateStatistic</a> respectively.
</p>
<p>
Each statistic is implemented as a separate class, in one of the subpackages (moment, rank, summary) and
each extends one of the abstract classes above (depending on whether or not value storage is required to
compute the statistic).
There are several ways to instantiate and use statistics. Statistics can be instantiated and used directly, but it is
generally more convenient (and efficient) to access them using the provided aggregates, <a href="../apidocs/org/apache/commons/math/stat/DescriptiveStatistics.html">
DescriptiveStatistics</a> and <a href="../apidocs/org/apache/commons/math/stat/SummaryStatistics.html">
SummaryStatistics.</a>
</p>
<p>
<code>DescriptiveStatistics</code> maintains the input data in memory and has the capability
of producing "rolling" statistics computed from a "window" consisting of the most recently added values.
</p>
<p>
<code>SummaryStatisics</code> does not store the input data values in memory, so the statistics
included in this aggregate are limited to those that can be computed in one pass through the data
without access to the full array of values.
</p>
<p>
<table>
<tr><th>Aggregate</th><th>Statistics Included</th><th>Values stored?</th><th>"Rolling" capability?</th></tr>
<tr><td><a href="../apidocs/org/apache/commons/math/stat/DescriptiveStatistics.html">
DescriptiveStatistics</a></td><td>min, max, mean, geometric mean, n, sum, sum of squares, standard deviation, variance, percentiles, skewness, kurtosis, median</td><td>Yes</td><td>Yes</td></tr>
<tr><td><a href="../apidocs/org/apache/commons/math/stat/SummaryStatistics.html">
SummaryStatistics</a></td><td>min, max, mean, geometric mean, n, sum, sum of squares, standard deviation, variance</td><td>No</td><td>No</td></tr>
</table>
</p>
<p>
There is also a utility class, <a href="../apidocs/org/apache/commons/math/stat/StatUtils.html">
StatUtils</a>, that provides static methods for computing statistics directly from double[] arrays.
</p>
<p>
Here are some examples showing how to compute univariate statistics.
<dl>
<dt>Compute summary statistics for a list of double values</dt>
<br></br>
<dd>Using the <code>DescriptiveStatistics</code> aggregate (values are stored in memory):
<source>
// Get a DescriptiveStatistics instance using factory method
DescriptiveStatistics stats = DescriptiveStatistics.newInstance();
// Add the data from the array
for( int i = 0; i &lt; inputArray.length; i++) {
stats.addValue(inputArray[i]);
}
// Compute some statistics
double mean = stats.getMean();
double std = stats.getStandardDeviation();
double median = stats.getMedian();
</source>
</dd>
<dd>Using the <code>SummaryStatistics</code> aggregate (values are <strong>not</strong> stored in memory):
<source>
// Get a SummaryStatistics instance using factory method
SummaryStatistics stats = SummaryStatistics.newInstance();
// Read data from an input stream, adding values and updating sums, counters, etc. necessary for stats
while (line != null) {
line = in.readLine();
stats.addValue(Double.parseDouble(line.trim()));
}
in.close();
// Compute the statistics
double mean = stats.getMean();
double std = stats.getStandardDeviation();
//double median = stats.getMedian(); &lt;-- NOT AVAILABLE in SummaryStatistics
</source>
</dd>
<dd>Using the <code>StatUtils</code> utility class:
<source>
// Compute statistics directly from the array -- assume values is a double[] array
double mean = StatUtils.mean(values);
double std = StatUtils.variance(values);
double median = StatUtils.percentile(50);
// Compute the mean of the first three values in the array
mean = StatuUtils.mean(values, 0, 3);
</source>
</dd>
<dt>Maintain a "rolling mean" of the most recent 100 values from an input stream</dt>
<br></br>
<dd>Use a <code>DescriptiveStatistics</code> instance with window size set to 100
<source>
// Create a DescriptiveStats instance and set the window size to 100
DescriptiveStatistics stats = DescriptiveStatistics.newInstance();
stats.setWindowSize(100);
// Read data from an input stream, displaying the mean of the most recent 100 observations
// after every 100 observations
long nLines = 0;
while (line != null) {
line = in.readLine();
stats.addValue(Double.parseDouble(line.trim()));
if (nLines == 100) {
nLines = 0;
System.out.println(stats.getMean()); // "rolling" mean of most recent 100 values
}
}
in.close();
</source>
</dd>
</dl>
</p>
</subsection>
<subsection name="1.3 Frequency distributions" href="frequency">
<p>
<a href="../apidocs/org/apache/commons/math/stat/Frequency.html">
org.apache.commons.math.stat.univariate.Frequency</a>
provides a simple interface for maintaining counts and percentages of discrete
values.
</p>
<p>
Strings, integers, longs and chars are all supported as value types, as well as instances
of any class that implements <code>Comparable.</code> The ordering of values
used in computing cumulative frequencies is by default the <i>natural ordering,</i>
but this can be overriden by supplying a <code>Comparator</code> to the constructor.
Adding values that are not comparable to those that have already been added results in an
<code>IllegalArgumentException.</code>
</p>
<p>
Here are some examples.
<dl>
<dt>Compute a frequency distribution based on integer values</dt>
<br></br>
<dd>Mixing integers, longs, Integers and Longs:
<source>
Frequency f = new Frequency();
f.addValue(1);
f.addValue(new Integer(1));
f.addValue(new Long(1));
f.addValue(2)
f.addValue(new Integer(-1));
System.out.prinltn(f.getCount(1)); // displays 3
System.out.println(f.getCumPct(0)); // displays 0.2
System.out.println(f.getPct(new Integer(1))); // displays 0.6
System.out.println(f.getCumPct(-2)); // displays 0 -- all values are greater than this
System.out.println(f.getCumPct(10)); // displays 1 -- all values are less than this
</source>
</dd>
<dt>Count string frequencies</dt>
<br></br>
<dd>Using case-sensitive comparison, alpha sort order (natural comparator):
<source>
Frequency f = new Frequency();
f.addValue("one");
f.addValue("One");
f.addValue("oNe");
f.addValue("Z");
System.out.println(f.getCount("one")); // displays 1
System.out.println(f.getCumPct("Z")); // displays 0.5 -- second in sort order
System.out.println(f.getCumPct("Ot")); // displays 0.25 -- between first ("One") and second ("Z") value
</source>
</dd>
<dd>Using case-insensitive comparator:
<source>
Frequency f = new Frequency(String.CASE_INSENSITIVE_ORDER);
f.addValue("one");
f.addValue("One");
f.addValue("oNe");
f.addValue("Z");
System.out.println(f.getCount("one")); // displays 3
System.out.println(f.getCumPct("z")); // displays 1 -- last value
</source>
</dd>
</dl>
</p>
</subsection>
<subsection name="1.4 Bivariate regression" href="regression">
<p>
<a href="../apidocs/org/apache/commons/math/stat/multivariate/BivariateRegression.html">
org.apache.commons.math.stat.multivariate.BivariateRegression</a>
provides ordinary least squares regression with one independent variable, estimating
the linear model:
</p>
<p>
<code> y = intercept + slope * x </code>
</p>
<p>
Standard errors for <code>intercept</code> and <code>slope</code> are
available as well as ANOVA, r-square and Pearson's r statistics.
</p>
<p>
Observations (x,y pairs) can be added to the model one at a time or they
can be provided in a 2-dimensional array. The observations are not stored
in memory, so there is no limit to the number of observations that can be
added to the model.
</p>
<p>
<strong>Usage Notes</strong>: <ul>
<li> When there are fewer than two observations in the model, or when
there is no variation in the x values (i.e. all x values are the same)
all statistics return <code>NaN</code>. At least two observations with
different x coordinates are requred to estimate a bivariate regression
model.</li>
<li> getters for the statistics always compute values based on the current
set of observations -- i.e., you can get statistics, then add more data
and get updated statistics without using a new instance. There is no
"compute" method that updates all statistics. Each of the getters performs
the necessary computations to return the requested statistic.</li>
</ul>
</p>
<p>
<strong>Implementation Notes</strong>: <ul>
<li> As observations are added to the model, the sum of x values, y values,
cross products (x times y), and squared deviations of x and y from their
respective means are updated using updating formulas defined in
"Algorithms for Computing the Sample Variance: Analysis and
Recommendations", Chan, T.F., Golub, G.H., and LeVeque, R.J.
1983, American Statistician, vol. 37, pp. 242-247, referenced in
Weisberg, S. "Applied Linear Regression". 2nd Ed. 1985. All regression
statistics are computed from these sums.</li>
<li> Inference statistics (confidence intervals, parameter significance levels)
are based on on the assumption that the observations included in the model are
drawn from a <a href="http://mathworld.wolfram.com/BivariateNormalDistribution.html">
Bivariate Normal Distribution</a></li>
</ul>
</p>
<p>
Here is are some examples.
<dl>
<dt>Estimate a model based on observations added one at a time</dt>
<br></br>
<dd>Instantiate a regression instance and add data points
<source>
regression = new BivariateRegression();
regression.addData(1d, 2d);
// At this point, with only one observation, all regression statistics will return NaN
regression.addData(3d, 3d);
// With only two observations, slope and intercept can be computed
// but inference statistics will return NaN
regression.addData(3d, 3d);
// Now all statistics are defined.
</source>
</dd>
<dd>Compute some statistics based on observations added so far
<source>
System.out.println(regression.getIntercept()); // displays intercept of regression line
System.out.println(regression.getSlope()); // displays slope of regression line
System.out.println(regression.getSlopeStdErr()); // displays slope standard error
</source>
</dd>
<dd>Use the regression model to predict the y value for a new x value
<source>
System.out.println(regression.predict(1.5d) // displays predicted y value for x = 1.5
</source>
More data points can be added and subsequent getXxx calls will incorporate
additional data in statistics.
</dd>
<dt>Estimate a model from a double[][] array of data points</dt>
<br></br>
<dd>Instantiate a regression object and load dataset
<source>
double[][] data = { { 1, 3 }, {2, 5 }, {3, 7 }, {4, 14 }, {5, 11 }};
BivariateRegression regression = new BivariateRegression();
regression.addData(data);
</source>
</dd>
<dd>Estimate regression model based on data
<source>
System.out.println(regression.getIntercept()); // displays intercept of regression line
System.out.println(regression.getSlope()); // displays slope of regression line
System.out.println(regression.getSlopeStdErr()); // displays slope standard error
</source>
More data points -- even another double[][] array -- can be added and subsequent
getXxx calls will incorporate additional data in statistics.
</dd>
</dl>
</p>
</subsection>
<subsection name="1.5 Statistical tests" href="tests">
<p>This is yet to be written. Any contributions will be gratefully
accepted!</p>
</subsection>
</section>
</body>
</document>