commons-math/xdocs/userguide/utilities.xml

181 lines
7.1 KiB
XML
Raw Normal View History

<?xml version="1.0"?>
<!--
Copyright 2003-2004 The Apache Software Foundation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
<!-- $Revision: 1.9 $ $Date$ -->
<document url="utilities.html">
<properties>
<title>The Commons Math User Guide - Utilites</title>
</properties>
<body>
<section name="6 Utilities">
<subsection name="6.1 Overview" href="overview">
<p>
The <a href="../apidocs/org/apache/commons/math/util/package-summary.html">
org.apache.commons.math.util</a> package collects a group of array utilities,
value transformers, and numerical routines used by implementation classes in
commons-math.
</p>
</subsection>
<subsection name="6.2 Double array utilities" href="arrays">
<p>
To maintain statistics based on a "rolling" window of values, a resizable
array implementation was developed and is provided for reuse in the
<code>util</code> package. The core functionality provided is described in
the documentation for the interface,
<a href="../apidocs/org/apache/commons/math/util/DoubleArray.html">
org.apache.commons.math.util.DoubleArray.</a> This interface adds one
method, <code>addElementRolling(double)</code> to basic list accessors.
The <code>addElementRolling</code> method adds an element
(the actual parameter) to the end of the list and removes the first element
in the list.
</p>
<p>
The <a href="../apidocs/org/apache/commons/math/util/ResizableDoubleArray.html">
org.apache.commons.math.util.ResizableDoubleArray</a> class provides a
configurable, array-backed implementation of the <code>DoubleArray</code>
interface. When <code>addElementRolling</code> is invoked, the underlying
array is expanded if necessary, the new element is added to the end of the
array and the "usable window" of the array is moved forward, so that
the first element is effectively discarded, what was the second becomes the
first, and so on. To efficiently manage storage, two maintenance
operations need to be periodically performed -- orphaned elements at the
beginning of the array need to be reclaimed and space for new elements at
the end needs to be created. Both of these operations are handled
automatically, with frequency / effect driven by the configuration
properties <code>expansionMode</code>, <code>expansionFactor</code> and
<code>contractionCriteria.</code> See
<a href="../apidocs/org/apache/commons/math/util/ResizableDoubleArray.html">
ResizableDoubleArray</a>
for details.
</p>
</subsection>
<subsection name="6.3 Continued Fractions" href="continued_fractions">
<p>
The <a href="../apidocs/org/apache/commons/math/util/ContinuedFraction.html">
org.apache.commons.math.util.ContinuedFraction</a> class provides a generic
way to create and evaluate continued fractions. The easiest way to create a
continued fraction is to subclass <code>ContinuedFraction</code> and
override the <code>getA</code> and <code>getB</code> methods which return
the continued fraction terms. The precise definition of these terms is
explained in <a href="http://mathworld.wolfram.com/ContinuedFraction.html">
Continued Fraction, equation (1)</a> from MathWorld.
</p>
<p>
As an example, the constant Pi could be computed using the continued fraction
defined at <a href="http://functions.wolfram.com/Constants/Pi/10/0002/">
http://functions.wolfram.com/Constants/Pi/10/0002/</a>. The following
anonymous class provides the implementation:
<source>ContinuedFraction c = new ContinuedFraction() {
public double getA(int n, double x) {
switch(n) {
case 0: return 3.0;
default: return 6.0;
}
}
public double getB(int n, double x) {
double y = (2.0 * n) - 1.0;
return y * y;
}
}</source>
</p>
<p>
Then, to evalute Pi, simply call any of the <code>evalute</code> methods
(Note, the point of evalution in this example is meaningless since Pi is a
constant).
</p>
<p>
For a more practical use of continued fractions, consider the exponential
function with the continued fraction definition of
<a href="http://functions.wolfram.com/ElementaryFunctions/Exp/10/">
http://functions.wolfram.com/ElementaryFunctions/Exp/10/</a>. The
following anonymous class provides its implementation:
<source>ContinuedFraction c = new ContinuedFraction() {
public double getA(int n, double x) {
if (n % 2 == 0) {
switch(n) {
case 0: return 1.0;
default: return 2.0;
}
} else {
return n;
}
}
public double getB(int n, double x) {
if (n % 2 == 0) {
return -x;
} else {
return x;
}
}
}</source>
</p>
<p>
Then, to evalute <i>e</i><sup>x</sup> for any value x, simply call any of the
<code>evalute</code> methods.
</p>
</subsection>
<subsection name="6.4 binomial coefficients, factorials and other common math functions" href="math_utils">
<p>
A collection of reusable math functions is provided in the
<a href="../apidocs/org/apache/commons/math/util/MathUtils.html">MathUtils</a>
utility class. MathUtils currently includes methods to compute the following: <ul>
<li>
Binomial coeffiecients -- "n choose k" available as an (exact) long value,
<code>binomialCoefficient(int, int)</code> for small n, k; as a double,
<code>binomialCoefficientDouble(int, int)</code> for larger values; and in
a "super-sized" version, <code>binomialCoefficientLog(int, int)</code>
that returns the natural logarithm of the value.</li>
<li>
Factorials -- like binomial coefficients, these are available as exact long
values, <code>factorial(int)</code>; doubles,
<code>factorialDouble(int)</code>; or logs, <code>factorialLog(int)</code>. </li>
<li>
Hyperbolic sine and cosine functions --
<code>cosh(double), sinh(double)</code></li>
<li>
sign (+1 if argument &gt; 0, 0 if x = 0, and -1 if x &lt; 0) and
indicator (+1.0 if argument &gt;= 0 and -1.0 if argument &lt; 0) functions
for variables of all primitive numeric types.</li>
<li>
a hash function, <code>hash(double),</code> returning a long-valued
hash code for a double value.
</li>
<li>
Convience methods to round floating-point number to arbitrary precision.
</li>
<li>
Least common multiple and greatest common denominator functions.
</li>
</ul>
</p>
</subsection>
</section>
</body>
</document>