Add SVD to GaussNewtonOptimizer

Allow using the SVD decomposition which has excellent stability and can
provide a "solution" for singular problems.

Figured out why one of the least squares tests did not check two of the
states. There was only one equation for the two states. The test now
verifies the states satisfy the constraint.

Patch provided by Evan Ward.

JIRA: MATH-1104

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1573351 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2014-03-02 19:54:43 +00:00
parent 8068e84a33
commit 007a701755
3 changed files with 178 additions and 5 deletions

View File

@ -29,15 +29,19 @@ import org.apache.commons.math3.linear.QRDecomposition;
import org.apache.commons.math3.linear.RealMatrix; import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector; import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.linear.SingularMatrixException; import org.apache.commons.math3.linear.SingularMatrixException;
import org.apache.commons.math3.linear.SingularValueDecomposition;
import org.apache.commons.math3.optim.ConvergenceChecker; import org.apache.commons.math3.optim.ConvergenceChecker;
import org.apache.commons.math3.util.Incrementor; import org.apache.commons.math3.util.Incrementor;
import org.apache.commons.math3.util.Pair; import org.apache.commons.math3.util.Pair;
/** /**
* Gauss-Newton least-squares solver. <p/> <p> This class solve a least-square problem by * Gauss-Newton least-squares solver.
* <p> This class solve a least-square problem by
* solving the normal equations of the linearized problem at each iteration. Either LU * solving the normal equations of the linearized problem at each iteration. Either LU
* decomposition or QR decomposition can be used to solve the normal equations. LU * decomposition or Cholesky decomposition can be used to solve the normal equations,
* decomposition is faster but QR decomposition is more robust for difficult problems. * or QR decomposition or SVD decomposition can be used to solve the linear system. LU
* decomposition is faster but QR decomposition is more robust for difficult problems,
* and SVD can compute a solution for rank-deficient problems.
* </p> * </p>
* *
* @version $Id$ * @version $Id$
@ -119,6 +123,22 @@ public class GaussNewtonOptimizer implements LeastSquaresOptimizer {
throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e); throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
} }
} }
},
/**
* Solve the linear least squares problem using the {@link
* SingularValueDecomposition}.
*
* <p> This method is slower, but can provide a solution for rank deficient and
* nearly singular systems.
*/
SVD {
@Override
protected RealVector solve(final RealMatrix jacobian,
final RealVector residuals) {
return new SingularValueDecomposition(jacobian)
.getSolver()
.solve(residuals);
}
}; };
/** /**

View File

@ -303,8 +303,12 @@ public abstract class AbstractLeastSquaresOptimizerAbstractTest {
problem.getBuilder().start(new double[]{2, 2, 2, 2, 2, 2}).build()); problem.getBuilder().start(new double[]{2, 2, 2, 2, 2, 2}).build());
Assert.assertEquals(0, optimum.getRMS(), TOl); Assert.assertEquals(0, optimum.getRMS(), TOl);
//TODO the first two elements of point were not previously checked RealVector point = optimum.getPoint();
assertEquals(TOl, optimum.getPoint(), 2, 1, 3, 4, 5, 6); //the first two elements are under constrained
//check first two elements obey the constraint: sum to 3
Assert.assertEquals(3, point.getEntry(0) + point.getEntry(1), TOl);
//#constrains = #states fro the last 4 elements
assertEquals(TOl, point.getSubVector(2, 4), 3, 4, 5, 6);
} }
@Test @Test

View File

@ -0,0 +1,149 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.fitting.leastsquares;
import org.apache.commons.math3.exception.ConvergenceException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.fitting.leastsquares.GaussNewtonOptimizer.Decomposition;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
import org.apache.commons.math3.geometry.euclidean.threed.Plane;
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math3.optim.SimpleVectorValueChecker;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
import java.io.IOException;
/**
* <p>Some of the unit tests are re-implementations of the MINPACK <a
* href="http://www.netlib.org/minpack/ex/file17">file17</a> and <a
* href="http://www.netlib.org/minpack/ex/file22">file22</a> test files.
* The redistribution policy for MINPACK is available <a
* href="http://www.netlib.org/minpack/disclaimer">here</a>/
*
* @version $Id$
*/
public class GaussNewtonOptimizerWithSVDTest
extends AbstractLeastSquaresOptimizerAbstractTest {
@Override
public int getMaxIterations() {
return 1000;
}
@Override
public LeastSquaresOptimizer getOptimizer() {
return new GaussNewtonOptimizer(Decomposition.SVD);
}
@Test
public void testMaxEvaluations() throws Exception {
try{
CircleVectorial circle = new CircleVectorial();
circle.addPoint( 30.0, 68.0);
circle.addPoint( 50.0, -6.0);
circle.addPoint(110.0, -20.0);
circle.addPoint( 35.0, 15.0);
circle.addPoint( 45.0, 97.0);
LeastSquaresProblem lsp = builder(circle)
.checkerPair(new SimpleVectorValueChecker(1e-30, 1e-30))
.maxIterations(Integer.MAX_VALUE)
.start(new double[]{98.680, 47.345})
.build();
optimizer.optimize(lsp);
fail(optimizer);
}catch (TooManyEvaluationsException e){
//expected
}
}
@Override
@Test
public void testCircleFittingBadInit() {
/*
* This test converged to the wrong solution with this optimizer.
* It seems that the state becomes so large that the convergence
* checker's relative tolerance test passes.
*/
try {
super.testCircleFittingBadInit();
fail(optimizer);
} catch (AssertionError e) {
//expected
}
}
@Override
@Test
public void testHahn1()
throws IOException {
/*
* TODO This test leads to a singular problem with the Gauss-Newton
* optimizer. This should be inquired.
*/
try{
super.testHahn1();
fail(optimizer);
} catch (ConvergenceException e){
//expected for LU
} catch (TooManyEvaluationsException e){
//expected for QR
}
}
@Test
@Override
public void testGetIterations() {
/* this diverges with SVD */
try {
super.testGetIterations();
fail(optimizer);
} catch (TooManyEvaluationsException e) {
//expected
}
}
@Test
@Override
public void testNonInvertible() throws Exception {
/* SVD can compute a solution to singular problems.
* In this case the target vector, b, is not in the
* span of the jacobian matrix, A. The closes point
* to b on the plane spanned by A is computed.
*/
LinearProblem problem = new LinearProblem(new double[][]{
{1, 2, -3},
{2, 1, 3},
{-3, 0, -9}
}, new double[]{1, 1, 1});
Optimum optimum = optimizer.optimize(problem.getBuilder().build());
Plane span = new Plane(Vector3D.ZERO, new Vector3D(1, 2, -3), new Vector3D(2, 1, 0), TOl);
double expected = FastMath.abs(span.getOffset(new Vector3D(1, 1, 1)));
double actual = optimum.getResiduals().getNorm();
//verify
Assert.assertEquals(expected, actual, TOl);
}
}