added getSolver() into LUDecomposition
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@728528 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
1f3d5634d5
commit
008807938f
|
@ -17,7 +17,6 @@
|
|||
|
||||
package org.apache.commons.math.linear;
|
||||
|
||||
|
||||
/**
|
||||
* Calculates the LUP-decomposition of a square matrix.
|
||||
* <p>The LUP-decomposition of a matrix A consists of three matrices
|
||||
|
@ -33,7 +32,7 @@ package org.apache.commons.math.linear;
|
|||
public class LUDecompositionImpl implements LUDecomposition {
|
||||
|
||||
/** Serializable version identifier. */
|
||||
private static final long serialVersionUID = 3446121671437672843L;
|
||||
private static final long serialVersionUID = 1954692554563387537L;
|
||||
|
||||
/** Entries of LU decomposition. */
|
||||
private double lu[][];
|
||||
|
@ -61,20 +60,16 @@ public class LUDecompositionImpl implements LUDecomposition {
|
|||
|
||||
/**
|
||||
* Calculates the LU-decomposition of the given matrix.
|
||||
* <p>Calling this constructor is equivalent to first call the no-arguments
|
||||
* constructor and then call {@link #decompose(RealMatrix)}.</p>
|
||||
* @param matrix The matrix to decompose.
|
||||
* @exception InvalidMatrixException if matrix is not square
|
||||
*/
|
||||
public LUDecompositionImpl(RealMatrix matrix)
|
||||
throws InvalidMatrixException {
|
||||
decompose(matrix);
|
||||
this(matrix, DEFAULT_TOO_SMALL);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the LU-decomposition of the given matrix.
|
||||
* <p>Calling this constructor is equivalent to first call the no-arguments
|
||||
* constructor and then call {@link #decompose(RealMatrix, double)}.</p>
|
||||
* @param matrix The matrix to decompose.
|
||||
* @param singularityThreshold threshold (based on partial row norm)
|
||||
* under which a matrix is considered singular
|
||||
|
@ -82,21 +77,11 @@ public class LUDecompositionImpl implements LUDecomposition {
|
|||
*/
|
||||
public LUDecompositionImpl(RealMatrix matrix, double singularityThreshold)
|
||||
throws InvalidMatrixException {
|
||||
decompose(matrix, singularityThreshold);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public void decompose(RealMatrix matrix)
|
||||
throws InvalidMatrixException {
|
||||
decompose(matrix, DEFAULT_TOO_SMALL);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public void decompose(RealMatrix matrix, double singularityThreshold)
|
||||
throws InvalidMatrixException {
|
||||
if (!matrix.isSquare()) {
|
||||
throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension());
|
||||
}
|
||||
|
||||
final int m = matrix.getColumnDimension();
|
||||
lu = matrix.getData();
|
||||
pivot = new int[m];
|
||||
|
@ -222,7 +207,26 @@ public class LUDecompositionImpl implements LUDecomposition {
|
|||
/** {@inheritDoc} */
|
||||
public int[] getPivot()
|
||||
throws IllegalStateException {
|
||||
return pivot;
|
||||
return pivot.clone();
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double getDeterminant() {
|
||||
if (singular) {
|
||||
return 0;
|
||||
} else {
|
||||
final int m = pivot.length;
|
||||
double determinant = even ? 1 : -1;
|
||||
for (int i = 0; i < m; i++) {
|
||||
determinant *= lu[i][i];
|
||||
}
|
||||
return determinant;
|
||||
}
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public boolean isSingular() {
|
||||
return singular;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
|
@ -231,9 +235,197 @@ public class LUDecompositionImpl implements LUDecomposition {
|
|||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public boolean isSingular()
|
||||
throws IllegalStateException {
|
||||
return singular;
|
||||
public DecompositionSolver getSolver() {
|
||||
return new Solver(lu, pivot, singular);
|
||||
}
|
||||
|
||||
private static class Solver implements DecompositionSolver {
|
||||
|
||||
/** Serializable version identifier. */
|
||||
private static final long serialVersionUID = -6353105415121373022L;
|
||||
|
||||
/** Entries of LU decomposition. */
|
||||
private final double lu[][];
|
||||
|
||||
/** Pivot permutation associated with LU decomposition. */
|
||||
private final int[] pivot;
|
||||
|
||||
/** Singularity indicator. */
|
||||
private final boolean singular;
|
||||
|
||||
/**
|
||||
* Build a solver from decomposed matrix.
|
||||
* @param lu entries of LU decomposition
|
||||
* @param pivot pivot permutation associated with LU decomposition
|
||||
* @param singular singularity indicator
|
||||
*/
|
||||
private Solver(final double[][] lu, final int[] pivot, final boolean singular) {
|
||||
this.lu = lu;
|
||||
this.pivot = pivot;
|
||||
this.singular = singular;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public boolean isNonSingular() {
|
||||
return !singular;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double[] solve(double[] b)
|
||||
throws IllegalStateException, IllegalArgumentException, InvalidMatrixException {
|
||||
|
||||
final int m = pivot.length;
|
||||
if (b.length != m) {
|
||||
throw new IllegalArgumentException("constant vector has wrong length");
|
||||
}
|
||||
if (singular) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final double[] bp = new double[m];
|
||||
|
||||
// Apply permutations to b
|
||||
for (int row = 0; row < m; row++) {
|
||||
bp[row] = b[pivot[row]];
|
||||
}
|
||||
|
||||
// Solve LY = b
|
||||
for (int col = 0; col < m; col++) {
|
||||
for (int i = col + 1; i < m; i++) {
|
||||
bp[i] -= bp[col] * lu[i][col];
|
||||
}
|
||||
}
|
||||
|
||||
// Solve UX = Y
|
||||
for (int col = m - 1; col >= 0; col--) {
|
||||
bp[col] /= lu[col][col];
|
||||
for (int i = 0; i < col; i++) {
|
||||
bp[i] -= bp[col] * lu[i][col];
|
||||
}
|
||||
}
|
||||
|
||||
return bp;
|
||||
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public RealVector solve(RealVector b)
|
||||
throws IllegalStateException, IllegalArgumentException, InvalidMatrixException {
|
||||
try {
|
||||
return solve((RealVectorImpl) b);
|
||||
} catch (ClassCastException cce) {
|
||||
|
||||
final int m = pivot.length;
|
||||
if (b.getDimension() != m) {
|
||||
throw new IllegalArgumentException("constant vector has wrong length");
|
||||
}
|
||||
if (singular) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final double[] bp = new double[m];
|
||||
|
||||
// Apply permutations to b
|
||||
for (int row = 0; row < m; row++) {
|
||||
bp[row] = b.getEntry(pivot[row]);
|
||||
}
|
||||
|
||||
// Solve LY = b
|
||||
for (int col = 0; col < m; col++) {
|
||||
for (int i = col + 1; i < m; i++) {
|
||||
bp[i] -= bp[col] * lu[i][col];
|
||||
}
|
||||
}
|
||||
|
||||
// Solve UX = Y
|
||||
for (int col = m - 1; col >= 0; col--) {
|
||||
bp[col] /= lu[col][col];
|
||||
for (int i = 0; i < col; i++) {
|
||||
bp[i] -= bp[col] * lu[i][col];
|
||||
}
|
||||
}
|
||||
|
||||
return new RealVectorImpl(bp, false);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/** Solve the linear equation A × X = B.
|
||||
* <p>The A matrix is implicit here. It is </p>
|
||||
* @param b right-hand side of the equation A × X = B
|
||||
* @return a vector X such that A × X = B
|
||||
* @exception IllegalStateException if {@link #decompose(RealMatrix) decompose}
|
||||
* has not been called
|
||||
* @exception IllegalArgumentException if matrices dimensions don't match
|
||||
* @exception InvalidMatrixException if decomposed matrix is singular
|
||||
*/
|
||||
public RealVectorImpl solve(RealVectorImpl b)
|
||||
throws IllegalStateException, IllegalArgumentException, InvalidMatrixException {
|
||||
return new RealVectorImpl(solve(b.getDataRef()), false);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public RealMatrix solve(RealMatrix b)
|
||||
throws IllegalStateException, IllegalArgumentException, InvalidMatrixException {
|
||||
|
||||
final int m = pivot.length;
|
||||
if (b.getRowDimension() != m) {
|
||||
throw new IllegalArgumentException("Incorrect row dimension");
|
||||
}
|
||||
if (singular) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final int nColB = b.getColumnDimension();
|
||||
|
||||
// Apply permutations to b
|
||||
final double[][] bp = new double[m][nColB];
|
||||
for (int row = 0; row < m; row++) {
|
||||
final double[] bpRow = bp[row];
|
||||
final int pRow = pivot[row];
|
||||
for (int col = 0; col < nColB; col++) {
|
||||
bpRow[col] = b.getEntry(pRow, col);
|
||||
}
|
||||
}
|
||||
|
||||
// Solve LY = b
|
||||
for (int col = 0; col < m; col++) {
|
||||
final double[] bpCol = bp[col];
|
||||
for (int i = col + 1; i < m; i++) {
|
||||
final double[] bpI = bp[i];
|
||||
final double luICol = lu[i][col];
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bpI[j] -= bpCol[j] * luICol;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve UX = Y
|
||||
for (int col = m - 1; col >= 0; col--) {
|
||||
final double[] bpCol = bp[col];
|
||||
final double luDiag = lu[col][col];
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bpCol[j] /= luDiag;
|
||||
}
|
||||
for (int i = 0; i < col; i++) {
|
||||
final double[] bpI = bp[i];
|
||||
final double luICol = lu[i][col];
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bpI[j] -= bpCol[j] * luICol;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new RealMatrixImpl(bp, false);
|
||||
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public RealMatrix getInverse()
|
||||
throws IllegalStateException, InvalidMatrixException {
|
||||
return solve(MatrixUtils.createRealIdentityMatrix(pivot.length));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -29,17 +29,21 @@ package org.apache.commons.math.linear;
|
|||
public class LUSolver implements DecompositionSolver {
|
||||
|
||||
/** Serializable version identifier. */
|
||||
private static final long serialVersionUID = -8775006035077527661L;
|
||||
private static final long serialVersionUID = -369589527412301256L;
|
||||
|
||||
/** Underlying decomposition. */
|
||||
private final LUDecomposition decomposition;
|
||||
/** Underlying solver. */
|
||||
private final DecompositionSolver solver;
|
||||
|
||||
/** Determinant. */
|
||||
private final double determinant;
|
||||
|
||||
/**
|
||||
* Simple constructor.
|
||||
* @param decomposition decomposition to use
|
||||
*/
|
||||
public LUSolver(final LUDecomposition decomposition) {
|
||||
this.decomposition = decomposition;
|
||||
this.solver = decomposition.getSolver();
|
||||
this.determinant = decomposition.getDeterminant();
|
||||
}
|
||||
|
||||
/** Solve the linear equation A × X = B for square matrices A.
|
||||
|
@ -52,42 +56,7 @@ public class LUSolver implements DecompositionSolver {
|
|||
*/
|
||||
public double[] solve(final double[] b)
|
||||
throws IllegalArgumentException, InvalidMatrixException {
|
||||
|
||||
final int[] pivot = decomposition.getPivot();
|
||||
final int m = pivot.length;
|
||||
if (b.length != m) {
|
||||
throw new IllegalArgumentException("constant vector has wrong length");
|
||||
}
|
||||
if (decomposition.isSingular()) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final double[] bp = new double[m];
|
||||
|
||||
// Apply permutations to b
|
||||
for (int row = 0; row < m; row++) {
|
||||
bp[row] = b[pivot[row]];
|
||||
}
|
||||
|
||||
// Solve LY = b
|
||||
final RealMatrix l = decomposition.getL();
|
||||
for (int col = 0; col < m; col++) {
|
||||
for (int i = col + 1; i < m; i++) {
|
||||
bp[i] -= bp[col] * l.getEntry(i, col);
|
||||
}
|
||||
}
|
||||
|
||||
// Solve UX = Y
|
||||
final RealMatrix u = decomposition.getU();
|
||||
for (int col = m - 1; col >= 0; col--) {
|
||||
bp[col] /= u.getEntry(col, col);
|
||||
for (int i = 0; i < col; i++) {
|
||||
bp[i] -= bp[col] * u.getEntry(i, col);
|
||||
}
|
||||
}
|
||||
|
||||
return bp;
|
||||
|
||||
return solver.solve(b);
|
||||
}
|
||||
|
||||
|
||||
|
@ -101,42 +70,7 @@ public class LUSolver implements DecompositionSolver {
|
|||
*/
|
||||
public RealVector solve(final RealVector b)
|
||||
throws IllegalArgumentException, InvalidMatrixException {
|
||||
|
||||
final int[] pivot = decomposition.getPivot();
|
||||
final int m = pivot.length;
|
||||
if (b.getDimension() != m) {
|
||||
throw new IllegalArgumentException("constant vector has wrong length");
|
||||
}
|
||||
if (decomposition.isSingular()) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final double[] bp = new double[m];
|
||||
|
||||
// Apply permutations to b
|
||||
for (int row = 0; row < m; row++) {
|
||||
bp[row] = b.getEntry(pivot[row]);
|
||||
}
|
||||
|
||||
// Solve LY = b
|
||||
final RealMatrix l = decomposition.getL();
|
||||
for (int col = 0; col < m; col++) {
|
||||
for (int i = col + 1; i < m; i++) {
|
||||
bp[i] -= bp[col] * l.getEntry(i, col);
|
||||
}
|
||||
}
|
||||
|
||||
// Solve UX = Y
|
||||
final RealMatrix u = decomposition.getU();
|
||||
for (int col = m - 1; col >= 0; col--) {
|
||||
bp[col] /= u.getEntry(col, col);
|
||||
for (int i = 0; i < col; i++) {
|
||||
bp[i] -= bp[col] * u.getEntry(i, col);
|
||||
}
|
||||
}
|
||||
|
||||
return new RealVectorImpl(bp, false);
|
||||
|
||||
return solver.solve(b);
|
||||
}
|
||||
|
||||
/** Solve the linear equation A × X = B for square matrices A.
|
||||
|
@ -149,79 +83,7 @@ public class LUSolver implements DecompositionSolver {
|
|||
*/
|
||||
public RealMatrix solve(final RealMatrix b)
|
||||
throws IllegalArgumentException, InvalidMatrixException {
|
||||
|
||||
final int[] pivot = decomposition.getPivot();
|
||||
final int m = pivot.length;
|
||||
if (b.getRowDimension() != m) {
|
||||
throw new IllegalArgumentException("Incorrect row dimension");
|
||||
}
|
||||
if (decomposition.isSingular()) {
|
||||
throw new SingularMatrixException();
|
||||
}
|
||||
|
||||
final int nColB = b.getColumnDimension();
|
||||
|
||||
// Apply permutations to b
|
||||
final double[][] bp = new double[m][nColB];
|
||||
for (int row = 0; row < m; row++) {
|
||||
final double[] bpRow = bp[row];
|
||||
final int pRow = pivot[row];
|
||||
for (int col = 0; col < nColB; col++) {
|
||||
bpRow[col] = b.getEntry(pRow, col);
|
||||
}
|
||||
}
|
||||
|
||||
// Solve LY = b
|
||||
final RealMatrix l = decomposition.getL();
|
||||
for (int col = 0; col < m; col++) {
|
||||
final double[] bpCol = bp[col];
|
||||
for (int i = col + 1; i < m; i++) {
|
||||
final double[] bpI = bp[i];
|
||||
final double luICol = l.getEntry(i, col);
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bpI[j] -= bpCol[j] * luICol;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve UX = Y
|
||||
final RealMatrix u = decomposition.getU();
|
||||
for (int col = m - 1; col >= 0; col--) {
|
||||
final double[] bpCol = bp[col];
|
||||
final double luDiag = u.getEntry(col, col);
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bpCol[j] /= luDiag;
|
||||
}
|
||||
for (int i = 0; i < col; i++) {
|
||||
final double[] bpI = bp[i];
|
||||
final double luICol = u.getEntry(i, col);
|
||||
for (int j = 0; j < nColB; j++) {
|
||||
bpI[j] -= bpCol[j] * luICol;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return MatrixUtils.createRealMatrix(bp);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the determinant of the matrix
|
||||
* @return determinant of the matrix
|
||||
* @see #isNonSingular()
|
||||
*/
|
||||
public double getDeterminant() {
|
||||
if (decomposition.isSingular()) {
|
||||
return 0;
|
||||
} else {
|
||||
final int m = decomposition.getPivot().length;
|
||||
final RealMatrix u = decomposition.getU();
|
||||
double determinant = decomposition.evenPermutation() ? 1 : -1;
|
||||
for (int i = 0; i < m; i++) {
|
||||
determinant *= u.getEntry(i, i);
|
||||
}
|
||||
return determinant;
|
||||
}
|
||||
return solver.solve(b);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -229,7 +91,7 @@ public class LUSolver implements DecompositionSolver {
|
|||
* @return true if the decomposed matrix is non-singular
|
||||
*/
|
||||
public boolean isNonSingular() {
|
||||
return !decomposition.isSingular();
|
||||
return solver.isNonSingular();
|
||||
}
|
||||
|
||||
/** Get the inverse of the decomposed matrix.
|
||||
|
@ -238,8 +100,15 @@ public class LUSolver implements DecompositionSolver {
|
|||
*/
|
||||
public RealMatrix getInverse()
|
||||
throws InvalidMatrixException {
|
||||
final int m = decomposition.getPivot().length;
|
||||
return solve(MatrixUtils.createRealIdentityMatrix(m));
|
||||
return solver.getInverse();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the determinant of the matrix
|
||||
* @return determinant of the matrix
|
||||
*/
|
||||
public double getDeterminant() {
|
||||
return determinant;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -67,7 +67,7 @@ System.out.println(p.getRowDimension()); // 2
|
|||
System.out.println(p.getColumnDimension()); // 2
|
||||
|
||||
// Invert p, using LU decomposition
|
||||
RealMatrix pInverse = new LUSolver(new LUDecompositionImpl(p))).getInverse();
|
||||
RealMatrix pInverse = new LUDecompositionImpl(p).getSolver().getInverse();
|
||||
</source>
|
||||
</p>
|
||||
<p>
|
||||
|
@ -115,7 +115,7 @@ RealMatrix pInverse = new LUSolver(new LUDecompositionImpl(p))).getInverse();
|
|||
RealMatrix coefficients =
|
||||
new RealMatrixImpl(new double[][] { { 2, 3, -2 }, { -1, 7, 6 }, { 4, -3, -5 } },
|
||||
false);
|
||||
LUSolver solver = new LUSolver(new LUDecompositionImpl(coefficients));
|
||||
DecompositionSolver solver = new LUDecompositionImpl(coefficients).getSolver();
|
||||
</source>
|
||||
Next create a <code>RealVector</code> array to represent the constant
|
||||
vector B and use <code>solve(RealVector)</code> to solve the system
|
||||
|
@ -132,8 +132,9 @@ RealVector solution = solver.solve(constants);
|
|||
for X is such that the residual AX-B has minimal norm. If an exact solution
|
||||
exist (i.e. if for some X the residual AX-B is exactly 0), then this exact
|
||||
solution is also the solution in least square sense. Some solvers like
|
||||
<code>LUSolver</code> can only find the solution for square matrices and when
|
||||
the solution is an exact linear solution. Other solvers like <code>QRDecomposition</code>
|
||||
the one obtained from <code>LUDecomposition</code> can only find the solution
|
||||
for square matrices and when the solution is an exact linear solution. Other
|
||||
solvers like the one obtained from <code>QRDecomposition</code>
|
||||
are more versatile and can also find solutions with non-square matrix A or when
|
||||
no exact solution exist (i.e. when the minimal value for AX-B norm is non-null).
|
||||
</p>
|
||||
|
|
Loading…
Reference in New Issue