parent
d7f6c8da95
commit
012c15ce4d
|
@ -0,0 +1,96 @@
|
||||||
|
/*
|
||||||
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
* contributor license agreements. See the NOTICE file distributed with
|
||||||
|
* this work for additional information regarding copyright ownership.
|
||||||
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
* (the "License"); you may not use this file except in compliance with
|
||||||
|
* the License. You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
package org.apache.commons.math3.ml.neuralnet.twod.util;
|
||||||
|
|
||||||
|
import org.apache.commons.math3.ml.neuralnet.MapUtils;
|
||||||
|
import org.apache.commons.math3.ml.neuralnet.Neuron;
|
||||||
|
import org.apache.commons.math3.ml.neuralnet.twod.NeuronSquareMesh2D;
|
||||||
|
import org.apache.commons.math3.ml.distance.DistanceMeasure;
|
||||||
|
import org.apache.commons.math3.exception.NumberIsTooSmallException;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Visualization of high-dimensional data projection on a 2D-map.
|
||||||
|
* The method is described in
|
||||||
|
* <quote>
|
||||||
|
* <em>Using Smoothed Data Histograms for Cluster Visualization in Self-Organizing Maps</em>
|
||||||
|
* <br>
|
||||||
|
* by Elias Pampalk, Andreas Rauber and Dieter Merkl.
|
||||||
|
* </quote>
|
||||||
|
*/
|
||||||
|
public class SmoothedDataHistogram implements MapDataVisualization {
|
||||||
|
/** Smoothing parameter. */
|
||||||
|
private final int smoothingBins;
|
||||||
|
/** Distance. */
|
||||||
|
private final DistanceMeasure distance;
|
||||||
|
/** Normalization factor. */
|
||||||
|
private final double membershipNormalization;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @param smoothingBins Number of bins.
|
||||||
|
* @param distance Distance.
|
||||||
|
*/
|
||||||
|
public SmoothedDataHistogram(int smoothingBins,
|
||||||
|
DistanceMeasure distance) {
|
||||||
|
this.smoothingBins = smoothingBins;
|
||||||
|
this.distance = distance;
|
||||||
|
|
||||||
|
double sum = 0;
|
||||||
|
for (int i = 0; i < smoothingBins; i++) {
|
||||||
|
sum += smoothingBins - i;
|
||||||
|
}
|
||||||
|
|
||||||
|
this.membershipNormalization = 1d / sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* {@inheritDoc}
|
||||||
|
*
|
||||||
|
* @throws NumberIsTooSmallException if the size of the {@code map}
|
||||||
|
* is smaller than the number of {@link SmoothedDataHistogram(int,DistanceMeasure)
|
||||||
|
* smoothing bins}.
|
||||||
|
*/
|
||||||
|
public double[][] computeImage(NeuronSquareMesh2D map,
|
||||||
|
Iterable<double[]> data) {
|
||||||
|
final int nR = map.getNumberOfRows();
|
||||||
|
final int nC = map.getNumberOfColumns();
|
||||||
|
|
||||||
|
final int mapSize = nR * nC;
|
||||||
|
if (mapSize < smoothingBins) {
|
||||||
|
throw new NumberIsTooSmallException(mapSize, smoothingBins, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
final LocationFinder finder = new LocationFinder(map);
|
||||||
|
|
||||||
|
// Histogram bins.
|
||||||
|
final double[][] histo = new double[nR][nC];
|
||||||
|
|
||||||
|
for (double[] sample : data) {
|
||||||
|
final Neuron[] sorted = MapUtils.sort(sample,
|
||||||
|
map.getNetwork(),
|
||||||
|
distance);
|
||||||
|
for (int i = 0; i < smoothingBins; i++) {
|
||||||
|
final LocationFinder.Location loc = finder.getLocation(sorted[i]);
|
||||||
|
final int row = loc.getRow();
|
||||||
|
final int col = loc.getColumn();
|
||||||
|
histo[row][col] += (smoothingBins - i) * membershipNormalization;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return histo;
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue