fixed formula in fast cosine transformer javadoc comments
JIRA: MATH-205 git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@656814 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
9022176c85
commit
033ac8e016
|
@ -53,7 +53,7 @@ public class FastCosineTransformer implements Serializable {
|
|||
* Transform the given real data set.
|
||||
* <p>
|
||||
* The formula is $ F_n = (1/2) [f_0 + (-1)^n f_N] +
|
||||
* \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
|
||||
* \Sigma_{k=1}^{N-1} f_k \cos(\pi nk/N) $
|
||||
* </p>
|
||||
*
|
||||
* @param f the real data array to be transformed
|
||||
|
@ -71,7 +71,7 @@ public class FastCosineTransformer implements Serializable {
|
|||
* Transform the given real function, sampled on the given interval.
|
||||
* <p>
|
||||
* The formula is $ F_n = (1/2) [f_0 + (-1)^n f_N] +
|
||||
* \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
|
||||
* \Sigma_{k=1}^{N-1} f_k \cos(\pi nk/N) $
|
||||
* </p>
|
||||
*
|
||||
* @param f the function to be sampled and transformed
|
||||
|
@ -94,7 +94,7 @@ public class FastCosineTransformer implements Serializable {
|
|||
* Transform the given real data set.
|
||||
* <p>
|
||||
* The formula is $ F_n = \sqrt{1/2N} [f_0 + (-1)^n f_N] +
|
||||
* \sqrt{2/N} \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
|
||||
* \sqrt{2/N} \Sigma_{k=1}^{N-1} f_k \cos(\pi nk/N) $
|
||||
* </p>
|
||||
*
|
||||
* @param f the real data array to be transformed
|
||||
|
@ -113,7 +113,7 @@ public class FastCosineTransformer implements Serializable {
|
|||
* Transform the given real function, sampled on the given interval.
|
||||
* <p>
|
||||
* The formula is $ F_n = \sqrt{1/2N} [f_0 + (-1)^n f_N] +
|
||||
* \sqrt{2/N} \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
|
||||
* \sqrt{2/N} \Sigma_{k=1}^{N-1} f_k \cos(\pi nk/N) $
|
||||
*
|
||||
* </p>
|
||||
*
|
||||
|
@ -138,7 +138,7 @@ public class FastCosineTransformer implements Serializable {
|
|||
* Inversely transform the given real data set.
|
||||
* <p>
|
||||
* The formula is $ f_k = (1/N) [F_0 + (-1)^k F_N] +
|
||||
* (2/N) \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
|
||||
* (2/N) \Sigma_{n=1}^{N-1} F_n \cos(\pi nk/N) $
|
||||
* </p>
|
||||
*
|
||||
* @param f the real data array to be inversely transformed
|
||||
|
@ -157,7 +157,7 @@ public class FastCosineTransformer implements Serializable {
|
|||
* Inversely transform the given real function, sampled on the given interval.
|
||||
* <p>
|
||||
* The formula is $ f_k = (1/N) [F_0 + (-1)^k F_N] +
|
||||
* (2/N) \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
|
||||
* (2/N) \Sigma_{n=1}^{N-1} F_n \cos(\pi nk/N) $
|
||||
* </p>
|
||||
*
|
||||
* @param f the function to be sampled and inversely transformed
|
||||
|
@ -181,7 +181,7 @@ public class FastCosineTransformer implements Serializable {
|
|||
* Inversely transform the given real data set.
|
||||
* <p>
|
||||
* The formula is $ f_k = \sqrt{1/2N} [F_0 + (-1)^k F_N] +
|
||||
* \sqrt{2/N} \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
|
||||
* \sqrt{2/N} \Sigma_{n=1}^{N-1} F_n \cos(\pi nk/N) $
|
||||
* </p>
|
||||
*
|
||||
* @param f the real data array to be inversely transformed
|
||||
|
@ -199,7 +199,7 @@ public class FastCosineTransformer implements Serializable {
|
|||
* Inversely transform the given real function, sampled on the given interval.
|
||||
* <p>
|
||||
* The formula is $ f_k = \sqrt{1/2N} [F_0 + (-1)^k F_N] +
|
||||
* \sqrt{2/N} \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
|
||||
* \sqrt{2/N} \Sigma_{n=1}^{N-1} F_n \cos(\pi nk/N) $
|
||||
* </p>
|
||||
*
|
||||
* @param f the function to be sampled and inversely transformed
|
||||
|
|
|
@ -41,6 +41,9 @@ Commons Math Release Notes</title>
|
|||
<body>
|
||||
<release version="1.3-SNAPSHOT" date="TBD"
|
||||
description="TBD">
|
||||
<action dev="luc" type="fix" issue="MATH-205" due-to="Roman Werpachowski">
|
||||
Fixed formula in fast cosine transformer javadoc comments.
|
||||
</action>
|
||||
<action dev="brentworden" type="fix" issue="MATH-193" due-to="Michael Heuer and Sebb">
|
||||
Javadoc and style fixes.
|
||||
</action>
|
||||
|
|
Loading…
Reference in New Issue