Use "BigFraction" class from "Commons Numbers".
This commit is contained in:
parent
f8c031ee38
commit
0346204c7c
6
pom.xml
6
pom.xml
|
@ -161,6 +161,12 @@
|
|||
<version>${math.commons.numbers.version}</version>
|
||||
</dependency>
|
||||
|
||||
<dependency>
|
||||
<groupId>org.apache.commons</groupId>
|
||||
<artifactId>commons-numbers-field</artifactId>
|
||||
<version>${math.commons.numbers.version}</version>
|
||||
</dependency>
|
||||
|
||||
<dependency>
|
||||
<groupId>org.apache.commons</groupId>
|
||||
<artifactId>commons-rng-client-api</artifactId>
|
||||
|
|
|
@ -18,12 +18,16 @@
|
|||
package org.apache.commons.math4.stat.inference;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
import java.math.RoundingMode;
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.rng.simple.RandomSource;
|
||||
import org.apache.commons.rng.UniformRandomProvider;
|
||||
import org.apache.commons.statistics.distribution.ContinuousDistribution;
|
||||
import org.apache.commons.numbers.combinatorics.BinomialCoefficientDouble;
|
||||
import org.apache.commons.numbers.fraction.BigFraction;
|
||||
import org.apache.commons.numbers.field.BigFractionField;
|
||||
import org.apache.commons.numbers.field.FieldSquareMatrix;
|
||||
import org.apache.commons.math4.distribution.EnumeratedRealDistribution;
|
||||
import org.apache.commons.math4.distribution.AbstractRealDistribution;
|
||||
import org.apache.commons.math4.exception.InsufficientDataException;
|
||||
|
@ -35,11 +39,6 @@ import org.apache.commons.math4.exception.OutOfRangeException;
|
|||
import org.apache.commons.math4.exception.TooManyIterationsException;
|
||||
import org.apache.commons.math4.exception.NotANumberException;
|
||||
import org.apache.commons.math4.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math4.fraction.BigFraction;
|
||||
import org.apache.commons.math4.fraction.BigFractionField;
|
||||
import org.apache.commons.math4.fraction.FractionConversionException;
|
||||
import org.apache.commons.math4.linear.Array2DRowFieldMatrix;
|
||||
import org.apache.commons.math4.linear.FieldMatrix;
|
||||
import org.apache.commons.math4.linear.MatrixUtils;
|
||||
import org.apache.commons.math4.linear.RealMatrix;
|
||||
import org.apache.commons.math4.util.FastMath;
|
||||
|
@ -122,6 +121,8 @@ public class KolmogorovSmirnovTest {
|
|||
private static final double KS_SUM_CAUCHY_CRITERION = 1e-20;
|
||||
/** Convergence criterion for the sums in {@link #pelzGood(double, int)} */
|
||||
private static final double PG_SUM_RELATIVE_ERROR = 1e-10;
|
||||
/** 1/2 */
|
||||
private static final BigFraction ONE_HALF = BigFraction.of(1, 2);
|
||||
|
||||
/**
|
||||
* When product of sample sizes exceeds this value, 2-sample K-S test uses asymptotic
|
||||
|
@ -406,11 +407,10 @@ public class KolmogorovSmirnovTest {
|
|||
* @param n sample size
|
||||
* @return \(P(D_n < d)\)
|
||||
* @throws MathArithmeticException if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
|
||||
* - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
|
||||
* {@link BigFraction} in expressing {@code d} as
|
||||
* \((k - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
|
||||
*/
|
||||
public double cdf(double d, int n)
|
||||
throws MathArithmeticException {
|
||||
public double cdf(double d, int n) {
|
||||
return cdf(d, n, false);
|
||||
}
|
||||
|
||||
|
@ -425,11 +425,10 @@ public class KolmogorovSmirnovTest {
|
|||
* @param n sample size
|
||||
* @return \(P(D_n < d)\)
|
||||
* @throws MathArithmeticException if the algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
|
||||
* - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
|
||||
* {@link BigFraction} in expressing {@code d} as
|
||||
* \((k - h) / m\) for integer {@code k, m} and \(0 \le h < 1\)
|
||||
*/
|
||||
public double cdfExact(double d, int n)
|
||||
throws MathArithmeticException {
|
||||
public double cdfExact(double d, int n) {
|
||||
return cdf(d, n, true);
|
||||
}
|
||||
|
||||
|
@ -446,12 +445,10 @@ public class KolmogorovSmirnovTest {
|
|||
* sure; {@code true} is almost solely for verification purposes.
|
||||
* @return \(P(D_n < d)\)
|
||||
* @throws MathArithmeticException if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
|
||||
* - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
|
||||
* {@link BigFraction} in expressing {@code d} as
|
||||
* \((k - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
|
||||
*/
|
||||
public double cdf(double d, int n, boolean exact)
|
||||
throws MathArithmeticException {
|
||||
|
||||
public double cdf(double d, int n, boolean exact) {
|
||||
final double ninv = 1 / ((double) n);
|
||||
final double ninvhalf = 0.5 * ninv;
|
||||
|
||||
|
@ -488,18 +485,21 @@ public class KolmogorovSmirnovTest {
|
|||
* @param n sample size
|
||||
* @return the two-sided probability of \(P(D_n < d)\)
|
||||
* @throws MathArithmeticException if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
|
||||
* - h) / m\) for integer {@code k, m} and \(0 \le h < 1\).
|
||||
* {@link BigFraction}.
|
||||
*/
|
||||
private double exactK(double d, int n)
|
||||
throws MathArithmeticException {
|
||||
|
||||
private double exactK(double d, int n) {
|
||||
final int k = (int) Math.ceil(n * d);
|
||||
|
||||
final FieldMatrix<BigFraction> H = this.createExactH(d, n);
|
||||
final FieldMatrix<BigFraction> Hpower = H.power(n);
|
||||
final FieldSquareMatrix<BigFraction> H;
|
||||
try {
|
||||
H = createExactH(d, n);
|
||||
} catch (ArithmeticException e) {
|
||||
throw new MathArithmeticException(LocalizedFormats.FRACTION);
|
||||
}
|
||||
|
||||
BigFraction pFrac = Hpower.getEntry(k - 1, k - 1);
|
||||
final FieldSquareMatrix<BigFraction> Hpower = H.pow(n);
|
||||
|
||||
BigFraction pFrac = Hpower.get(k - 1, k - 1);
|
||||
|
||||
for (int i = 1; i <= n; ++i) {
|
||||
pFrac = pFrac.multiply(i).divide(n);
|
||||
|
@ -510,7 +510,7 @@ public class KolmogorovSmirnovTest {
|
|||
* divides afterwards. That gives NaN quite easy. This does not (scale is the number of
|
||||
* digits):
|
||||
*/
|
||||
return pFrac.bigDecimalValue(20, BigDecimal.ROUND_HALF_UP).doubleValue();
|
||||
return pFrac.bigDecimalValue(20, RoundingMode.HALF_UP).doubleValue();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -672,23 +672,20 @@ public class KolmogorovSmirnovTest {
|
|||
}
|
||||
return ret + (sqrtHalfPi / (sqrtN * n)) * (sum / (3240 * z6 * z4) +
|
||||
+ sum2 / (108 * z6));
|
||||
|
||||
}
|
||||
|
||||
/***
|
||||
/**
|
||||
* Creates {@code H} of size {@code m x m} as described in [1] (see above).
|
||||
*
|
||||
* @param d statistic
|
||||
* @param n sample size
|
||||
* @return H matrix
|
||||
* @throws NumberIsTooLargeException if fractional part is greater than 1
|
||||
* @throws FractionConversionException if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math4.fraction.BigFraction} in expressing {@code d} as \((k
|
||||
* - h) / m\) for integer {@code k, m} and \(0 <= h < 1\).
|
||||
* @throws NumberIsTooLargeException if fractional part is greater than 1.
|
||||
* @throws ArithmeticException if algorithm fails to convert {@code h} to a
|
||||
* {@link BigFraction}.
|
||||
*/
|
||||
private FieldMatrix<BigFraction> createExactH(double d, int n)
|
||||
throws NumberIsTooLargeException, FractionConversionException {
|
||||
|
||||
private FieldSquareMatrix<BigFraction> createExactH(double d,
|
||||
int n) {
|
||||
final int k = (int) Math.ceil(n * d);
|
||||
final int m = 2 * k - 1;
|
||||
final double hDouble = k - n * d;
|
||||
|
@ -697,15 +694,15 @@ public class KolmogorovSmirnovTest {
|
|||
}
|
||||
BigFraction h = null;
|
||||
try {
|
||||
h = new BigFraction(hDouble, 1.0e-20, 10000);
|
||||
} catch (final FractionConversionException e1) {
|
||||
h = BigFraction.from(hDouble, 1e-20, 10000);
|
||||
} catch (final ArithmeticException e1) {
|
||||
try {
|
||||
h = new BigFraction(hDouble, 1.0e-10, 10000);
|
||||
} catch (final FractionConversionException e2) {
|
||||
h = new BigFraction(hDouble, 1.0e-5, 10000);
|
||||
h = BigFraction.from(hDouble, 1e-10, 10000);
|
||||
} catch (final ArithmeticException e2) {
|
||||
h = BigFraction.from(hDouble, 1e-5, 10000);
|
||||
}
|
||||
}
|
||||
final BigFraction[][] Hdata = new BigFraction[m][m];
|
||||
final FieldSquareMatrix<BigFraction> Hdata = FieldSquareMatrix.create(BigFractionField.get(), m);
|
||||
|
||||
/*
|
||||
* Start by filling everything with either 0 or 1.
|
||||
|
@ -713,9 +710,9 @@ public class KolmogorovSmirnovTest {
|
|||
for (int i = 0; i < m; ++i) {
|
||||
for (int j = 0; j < m; ++j) {
|
||||
if (i - j + 1 < 0) {
|
||||
Hdata[i][j] = BigFraction.ZERO;
|
||||
Hdata.set(i, j, BigFraction.ZERO);
|
||||
} else {
|
||||
Hdata[i][j] = BigFraction.ONE;
|
||||
Hdata.set(i, j, BigFraction.ONE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -726,7 +723,7 @@ public class KolmogorovSmirnovTest {
|
|||
*/
|
||||
final BigFraction[] hPowers = new BigFraction[m];
|
||||
hPowers[0] = h;
|
||||
for (int i = 1; i < m; ++i) {
|
||||
for (int i = 1; i < m; i++) {
|
||||
hPowers[i] = h.multiply(hPowers[i - 1]);
|
||||
}
|
||||
|
||||
|
@ -734,16 +731,19 @@ public class KolmogorovSmirnovTest {
|
|||
* First column and last row has special values (each other reversed).
|
||||
*/
|
||||
for (int i = 0; i < m; ++i) {
|
||||
Hdata[i][0] = Hdata[i][0].subtract(hPowers[i]);
|
||||
Hdata[m - 1][i] = Hdata[m - 1][i].subtract(hPowers[m - i - 1]);
|
||||
Hdata.set(i, 0,
|
||||
Hdata.get(i, 0).subtract(hPowers[i]));
|
||||
Hdata.set(m - 1, i,
|
||||
Hdata.get(m - 1, i).subtract(hPowers[m - i - 1]));
|
||||
}
|
||||
|
||||
/*
|
||||
* [1] states: "For 1/2 < h < 1 the bottom left element of the matrix should be (1 - 2*h^m +
|
||||
* (2h - 1)^m )/m!" Since 0 <= h < 1, then if h > 1/2 is sufficient to check:
|
||||
*/
|
||||
if (h.compareTo(BigFraction.ONE_HALF) == 1) {
|
||||
Hdata[m - 1][0] = Hdata[m - 1][0].add(h.multiply(2).subtract(1).pow(m));
|
||||
if (h.compareTo(ONE_HALF) == 1) {
|
||||
Hdata.set(m - 1, 0,
|
||||
Hdata.get(m - 1, 0).add(h.multiply(2).subtract(1).pow(m)));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -758,12 +758,13 @@ public class KolmogorovSmirnovTest {
|
|||
for (int j = 0; j < i + 1; ++j) {
|
||||
if (i - j + 1 > 0) {
|
||||
for (int g = 2; g <= i - j + 1; ++g) {
|
||||
Hdata[i][j] = Hdata[i][j].divide(g);
|
||||
Hdata.set(i, j,
|
||||
Hdata.get(i, j).divide(g));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return new Array2DRowFieldMatrix<>(BigFractionField.getInstance(), Hdata);
|
||||
return Hdata;
|
||||
}
|
||||
|
||||
/***
|
||||
|
|
Loading…
Reference in New Issue