Merged EigenDecomposition and EigenDecompositionImpl (see MATH-662).

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1173965 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastien Brisard 2011-09-22 06:43:55 +00:00
parent 166c691938
commit 041df9cd9b
5 changed files with 548 additions and 614 deletions

View File

@ -17,14 +17,19 @@
package org.apache.commons.math.linear;
import org.apache.commons.math.exception.MaxCountExceededException;
import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.FastMath;
/**
* An interface to classes that implement an algorithm to calculate the
* eigen decomposition of a real matrix.
* Calculates the eigen decomposition of a real <strong>symmetric</strong>
* matrix.
* <p>The eigen decomposition of matrix A is a set of two matrices:
* V and D such that A = V &times; D &times; V<sup>T</sup>.
* A, V and D are all m &times; m matrices.</p>
* <p>This interface is similar in spirit to the <code>EigenvalueDecomposition</code>
* <p>This class is similar in spirit to the <code>EigenvalueDecomposition</code>
* class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a>
* library, with the following changes:</p>
* <ul>
@ -36,12 +41,134 @@ package org.apache.commons.math.linear;
* <li>a {@link #getDeterminant() getDeterminant} method has been added.</li>
* <li>a {@link #getSolver() getSolver} method has been added.</li>
* </ul>
* <p>
* As of 2.0, this class supports only <strong>symmetric</strong> matrices, and
* hence computes only real realEigenvalues. This implies the D matrix returned
* by {@link #getD()} is always diagonal and the imaginary values returned
* {@link #getImagEigenvalue(int)} and {@link #getImagEigenvalues()} are always
* null.
* </p>
* <p>
* When called with a {@link RealMatrix} argument, this implementation only uses
* the upper part of the matrix, the part below the diagonal is not accessed at
* all.
* </p>
* <p>
* This implementation is based on the paper by A. Drubrulle, R.S. Martin and
* J.H. Wilkinson 'The Implicit QL Algorithm' in Wilksinson and Reinsch (1971)
* Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag,
* New-York
* </p>
* @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a>
* @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a>
* @version $Id$
* @since 2.0
* @since 2.0 (changed to concrete class in 3.0)
*/
public interface EigenDecomposition {
public class EigenDecomposition{
/** Maximum number of iterations accepted in the implicit QL transformation */
private byte maxIter = 30;
/** Main diagonal of the tridiagonal matrix. */
private double[] main;
/** Secondary diagonal of the tridiagonal matrix. */
private double[] secondary;
/**
* Transformer to tridiagonal (may be null if matrix is already
* tridiagonal).
*/
private TriDiagonalTransformer transformer;
/** Real part of the realEigenvalues. */
private double[] realEigenvalues;
/** Imaginary part of the realEigenvalues. */
private double[] imagEigenvalues;
/** Eigenvectors. */
private ArrayRealVector[] eigenvectors;
/** Cached value of V. */
private RealMatrix cachedV;
/** Cached value of D. */
private RealMatrix cachedD;
/** Cached value of Vt. */
private RealMatrix cachedVt;
/**
* Calculates the eigen decomposition of the given symmetric matrix.
*
* @param matrix Matrix to decompose. It <em>must</em> be symmetric.
* @param splitTolerance Dummy parameter (present for backward
* compatibility only).
* @throws NonSymmetricMatrixException if the matrix is not symmetric.
* @throws MaxCountExceededException if the algorithm fails to converge.
*/
public EigenDecomposition(final RealMatrix matrix,
final double splitTolerance) {
if (isSymmetric(matrix, true)) {
transformToTridiagonal(matrix);
findEigenVectors(transformer.getQ().getData());
}
}
/**
* Calculates the eigen decomposition of the symmetric tridiagonal
* matrix. The Householder matrix is assumed to be the identity matrix.
*
* @param main Main diagonal of the symmetric triadiagonal form
* @param secondary Secondary of the tridiagonal form
* @param splitTolerance Dummy parameter (present for backward
* compatibility only).
* @throws MaxCountExceededException if the algorithm fails to converge.
*/
public EigenDecomposition(final double[] main,final double[] secondary,
final double splitTolerance) {
this.main = main.clone();
this.secondary = secondary.clone();
transformer = null;
final int size=main.length;
double[][] z = new double[size][size];
for (int i=0;i<size;i++) {
z[i][i]=1.0;
}
findEigenVectors(z);
}
/**
* Check if a matrix is symmetric.
*
* @param matrix Matrix to check.
* @param raiseException If {@code true}, the method will throw an
* exception if {@code matrix} is not symmetric.
* @return {@code true} if {@code matrix} is symmetric.
* @throws NonSymmetricMatrixException if the matrix is not symmetric and
* {@code raiseException} is {@code true}.
*/
private boolean isSymmetric(final RealMatrix matrix,
boolean raiseException) {
final int rows = matrix.getRowDimension();
final int columns = matrix.getColumnDimension();
final double eps = 10 * rows * columns * MathUtils.EPSILON;
for (int i = 0; i < rows; ++i) {
for (int j = i + 1; j < columns; ++j) {
final double mij = matrix.getEntry(i, j);
final double mji = matrix.getEntry(j, i);
if (FastMath.abs(mij - mji) >
(FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * eps)) {
if (raiseException) {
throw new NonSymmetricMatrixException(i, j, eps);
}
return false;
}
}
}
return true;
}
/**
* Returns the matrix V of the decomposition.
@ -52,7 +179,19 @@ public interface EigenDecomposition {
* or right-handed system).</p>
* @return the V matrix
*/
RealMatrix getV();
public RealMatrix getV() {
if (cachedV == null) {
final int m = eigenvectors.length;
cachedV = MatrixUtils.createRealMatrix(m, m);
for (int k = 0; k < m; ++k) {
cachedV.setColumnVector(k, eigenvectors[k]);
}
}
// return the cached matrix
return cachedV;
}
/**
* Returns the block diagonal matrix D of the decomposition.
@ -63,7 +202,13 @@ public interface EigenDecomposition {
* @see #getRealEigenvalues()
* @see #getImagEigenvalues()
*/
RealMatrix getD();
public RealMatrix getD() {
if (cachedD == null) {
// cache the matrix for subsequent calls
cachedD = MatrixUtils.createRealDiagonalMatrix(realEigenvalues);
}
return cachedD;
}
/**
* Returns the transpose of the matrix V of the decomposition.
@ -74,7 +219,20 @@ public interface EigenDecomposition {
* or right-handed system).</p>
* @return the transpose of the V matrix
*/
RealMatrix getVT();
public RealMatrix getVT() {
if (cachedVt == null) {
final int m = eigenvectors.length;
cachedVt = MatrixUtils.createRealMatrix(m, m);
for (int k = 0; k < m; ++k) {
cachedVt.setRowVector(k, eigenvectors[k]);
}
}
// return the cached matrix
return cachedVt;
}
/**
* Returns a copy of the real parts of the eigenvalues of the original matrix.
@ -83,7 +241,9 @@ public interface EigenDecomposition {
* @see #getRealEigenvalue(int)
* @see #getImagEigenvalues()
*/
double[] getRealEigenvalues();
public double[] getRealEigenvalues() {
return realEigenvalues.clone();
}
/**
* Returns the real part of the i<sup>th</sup> eigenvalue of the original matrix.
@ -93,7 +253,9 @@ public interface EigenDecomposition {
* @see #getRealEigenvalues()
* @see #getImagEigenvalue(int)
*/
double getRealEigenvalue(int i);
public double getRealEigenvalue(final int i) {
return realEigenvalues[i];
}
/**
* Returns a copy of the imaginary parts of the eigenvalues of the original matrix.
@ -102,7 +264,9 @@ public interface EigenDecomposition {
* @see #getImagEigenvalue(int)
* @see #getRealEigenvalues()
*/
double[] getImagEigenvalues();
public double[] getImagEigenvalues() {
return imagEigenvalues.clone();
}
/**
* Returns the imaginary part of the i<sup>th</sup> eigenvalue of the original matrix.
@ -112,7 +276,9 @@ public interface EigenDecomposition {
* @see #getImagEigenvalues()
* @see #getRealEigenvalue(int)
*/
double getImagEigenvalue(int i);
public double getImagEigenvalue(final int i) {
return imagEigenvalues[i];
}
/**
* Returns a copy of the i<sup>th</sup> eigenvector of the original matrix.
@ -120,18 +286,338 @@ public interface EigenDecomposition {
* @return copy of the i<sup>th</sup> eigenvector of the original matrix
* @see #getD()
*/
RealVector getEigenvector(int i);
public RealVector getEigenvector(final int i) {
return eigenvectors[i].copy();
}
/**
* Return the determinant of the matrix
* @return determinant of the matrix
*/
double getDeterminant();
public double getDeterminant() {
double determinant = 1;
for (double lambda : realEigenvalues) {
determinant *= lambda;
}
return determinant;
}
/**
* Get a solver for finding the A &times; X = B solution in exact linear sense.
* @return a solver
*/
DecompositionSolver getSolver();
public DecompositionSolver getSolver() {
return new Solver(realEigenvalues, imagEigenvalues, eigenvectors);
}
/** Specialized solver. */
private static class Solver implements DecompositionSolver {
/** Real part of the realEigenvalues. */
private double[] realEigenvalues;
/** Imaginary part of the realEigenvalues. */
private double[] imagEigenvalues;
/** Eigenvectors. */
private final ArrayRealVector[] eigenvectors;
/**
* Build a solver from decomposed matrix.
* @param realEigenvalues
* real parts of the eigenvalues
* @param imagEigenvalues
* imaginary parts of the eigenvalues
* @param eigenvectors
* eigenvectors
*/
private Solver(final double[] realEigenvalues,
final double[] imagEigenvalues,
final ArrayRealVector[] eigenvectors) {
this.realEigenvalues = realEigenvalues;
this.imagEigenvalues = imagEigenvalues;
this.eigenvectors = eigenvectors;
}
/**
* Solve the linear equation A &times; X = B for symmetric matrices A.
* <p>
* This method only find exact linear solutions, i.e. solutions for
* which ||A &times; X - B|| is exactly 0.
* </p>
* @param b Right-hand side of the equation A &times; X = B
* @return a Vector X that minimizes the two norm of A &times; X - B
* @throws DimensionMismatchException if the matrices dimensions do not match.
* @throws SingularMatrixException if the decomposed matrix is singular.
*/
public RealVector solve(final RealVector b) {
if (!isNonSingular()) {
throw new SingularMatrixException();
}
final int m = realEigenvalues.length;
if (b.getDimension() != m) {
throw new DimensionMismatchException(b.getDimension(), m);
}
final double[] bp = new double[m];
for (int i = 0; i < m; ++i) {
final ArrayRealVector v = eigenvectors[i];
final double[] vData = v.getDataRef();
final double s = v.dotProduct(b) / realEigenvalues[i];
for (int j = 0; j < m; ++j) {
bp[j] += s * vData[j];
}
}
return new ArrayRealVector(bp, false);
}
/** {@inheritDoc} */
public RealMatrix solve(RealMatrix b) {
if (!isNonSingular()) {
throw new SingularMatrixException();
}
final int m = realEigenvalues.length;
if (b.getRowDimension() != m) {
throw new DimensionMismatchException(b.getRowDimension(), m);
}
final int nColB = b.getColumnDimension();
final double[][] bp = new double[m][nColB];
final double[] tmpCol = new double[m];
for (int k = 0; k < nColB; ++k) {
for (int i = 0; i < m; ++i) {
tmpCol[i] = b.getEntry(i, k);
bp[i][k] = 0;
}
for (int i = 0; i < m; ++i) {
final ArrayRealVector v = eigenvectors[i];
final double[] vData = v.getDataRef();
double s = 0;
for (int j = 0; j < m; ++j) {
s += v.getEntry(j) * tmpCol[j];
}
s /= realEigenvalues[i];
for (int j = 0; j < m; ++j) {
bp[j][k] += s * vData[j];
}
}
}
return new Array2DRowRealMatrix(bp, false);
}
/**
* Check if the decomposed matrix is non-singular.
* @return true if the decomposed matrix is non-singular
*/
public boolean isNonSingular() {
for (int i = 0; i < realEigenvalues.length; ++i) {
if ((realEigenvalues[i] == 0) && (imagEigenvalues[i] == 0)) {
return false;
}
}
return true;
}
/**
* Get the inverse of the decomposed matrix.
*
* @return the inverse matrix.
* @throws SingularMatrixException if the decomposed matrix is singular.
*/
public RealMatrix getInverse() {
if (!isNonSingular()) {
throw new SingularMatrixException();
}
final int m = realEigenvalues.length;
final double[][] invData = new double[m][m];
for (int i = 0; i < m; ++i) {
final double[] invI = invData[i];
for (int j = 0; j < m; ++j) {
double invIJ = 0;
for (int k = 0; k < m; ++k) {
final double[] vK = eigenvectors[k].getDataRef();
invIJ += vK[i] * vK[j] / realEigenvalues[k];
}
invI[j] = invIJ;
}
}
return MatrixUtils.createRealMatrix(invData);
}
}
/**
* Transform matrix to tridiagonal.
*
* @param matrix Matrix to transform.
*/
private void transformToTridiagonal(final RealMatrix matrix) {
// transform the matrix to tridiagonal
transformer = new TriDiagonalTransformer(matrix);
main = transformer.getMainDiagonalRef();
secondary = transformer.getSecondaryDiagonalRef();
}
/**
* Find eigenvalues and eigenvectors (Dubrulle et al., 1971)
*
* @param householderMatrix Householder matrix of the transformation
* to tri-diagonal form.
*/
private void findEigenVectors(double[][] householderMatrix) {
double[][]z = householderMatrix.clone();
final int n = main.length;
realEigenvalues = new double[n];
imagEigenvalues = new double[n];
double[] e = new double[n];
for (int i = 0; i < n - 1; i++) {
realEigenvalues[i] = main[i];
e[i] = secondary[i];
}
realEigenvalues[n - 1] = main[n - 1];
e[n - 1] = 0.0;
// Determine the largest main and secondary value in absolute term.
double maxAbsoluteValue=0.0;
for (int i = 0; i < n; i++) {
if (FastMath.abs(realEigenvalues[i])>maxAbsoluteValue) {
maxAbsoluteValue=FastMath.abs(realEigenvalues[i]);
}
if (FastMath.abs(e[i])>maxAbsoluteValue) {
maxAbsoluteValue=FastMath.abs(e[i]);
}
}
// Make null any main and secondary value too small to be significant
if (maxAbsoluteValue!=0.0) {
for (int i=0; i < n; i++) {
if (FastMath.abs(realEigenvalues[i])<=MathUtils.EPSILON*maxAbsoluteValue) {
realEigenvalues[i]=0.0;
}
if (FastMath.abs(e[i])<=MathUtils.EPSILON*maxAbsoluteValue) {
e[i]=0.0;
}
}
}
for (int j = 0; j < n; j++) {
int its = 0;
int m;
do {
for (m = j; m < n - 1; m++) {
double delta = FastMath.abs(realEigenvalues[m]) + FastMath.abs(realEigenvalues[m + 1]);
if (FastMath.abs(e[m]) + delta == delta) {
break;
}
}
if (m != j) {
if (its == maxIter) {
throw new MaxCountExceededException(LocalizedFormats.CONVERGENCE_FAILED,
maxIter);
}
its++;
double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]);
double t = FastMath.sqrt(1 + q * q);
if (q < 0.0) {
q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t);
} else {
q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t);
}
double u = 0.0;
double s = 1.0;
double c = 1.0;
int i;
for (i = m - 1; i >= j; i--) {
double p = s * e[i];
double h = c * e[i];
if (FastMath.abs(p) >= FastMath.abs(q)) {
c = q / p;
t = FastMath.sqrt(c * c + 1.0);
e[i + 1] = p * t;
s = 1.0 / t;
c = c * s;
} else {
s = p / q;
t = FastMath.sqrt(s * s + 1.0);
e[i + 1] = q * t;
c = 1.0 / t;
s = s * c;
}
if (e[i + 1] == 0.0) {
realEigenvalues[i + 1] -= u;
e[m] = 0.0;
break;
}
q = realEigenvalues[i + 1] - u;
t = (realEigenvalues[i] - q) * s + 2.0 * c * h;
u = s * t;
realEigenvalues[i + 1] = q + u;
q = c * t - h;
for (int ia = 0; ia < n; ia++) {
p = z[ia][i + 1];
z[ia][i + 1] = s * z[ia][i] + c * p;
z[ia][i] = c * z[ia][i] - s * p;
}
}
if (t == 0.0 && i >= j) {
continue;
}
realEigenvalues[j] -= u;
e[j] = q;
e[m] = 0.0;
}
} while (m != j);
}
//Sort the eigen values (and vectors) in increase order
for (int i = 0; i < n; i++) {
int k = i;
double p = realEigenvalues[i];
for (int j = i + 1; j < n; j++) {
if (realEigenvalues[j] > p) {
k = j;
p = realEigenvalues[j];
}
}
if (k != i) {
realEigenvalues[k] = realEigenvalues[i];
realEigenvalues[i] = p;
for (int j = 0; j < n; j++) {
p = z[j][i];
z[j][i] = z[j][k];
z[j][k] = p;
}
}
}
// Determine the largest eigen value in absolute term.
maxAbsoluteValue=0.0;
for (int i = 0; i < n; i++) {
if (FastMath.abs(realEigenvalues[i])>maxAbsoluteValue) {
maxAbsoluteValue=FastMath.abs(realEigenvalues[i]);
}
}
// Make null any eigen value too small to be significant
if (maxAbsoluteValue!=0.0) {
for (int i=0; i < n; i++) {
if (FastMath.abs(realEigenvalues[i])<MathUtils.EPSILON*maxAbsoluteValue) {
realEigenvalues[i]=0.0;
}
}
}
eigenvectors = new ArrayRealVector[n];
double[] tmp = new double[n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
tmp[j] = z[j][i];
}
eigenvectors[i] = new ArrayRealVector(tmp);
}
}
}

View File

@ -1,552 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.linear;
import org.apache.commons.math.exception.MaxCountExceededException;
import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.FastMath;
/**
* Calculates the eigen decomposition of a real <strong>symmetric</strong>
* matrix.
* <p>
* The eigen decomposition of matrix A is a set of two matrices: V and D such
* that A = V D V<sup>T</sup>. A, V and D are all m &times; m matrices.
* </p>
* <p>
* As of 2.0, this class supports only <strong>symmetric</strong> matrices, and
* hence computes only real realEigenvalues. This implies the D matrix returned
* by {@link #getD()} is always diagonal and the imaginary values returned
* {@link #getImagEigenvalue(int)} and {@link #getImagEigenvalues()} are always
* null.
* </p>
* <p>
* When called with a {@link RealMatrix} argument, this implementation only uses
* the upper part of the matrix, the part below the diagonal is not accessed at
* all.
* </p>
* <p>
* This implementation is based on the paper by A. Drubrulle, R.S. Martin and
* J.H. Wilkinson 'The Implicit QL Algorithm' in Wilksinson and Reinsch (1971)
* Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag,
* New-York
* </p>
* @version $Id$
* @since 2.0
*/
public class EigenDecompositionImpl implements EigenDecomposition {
/** Maximum number of iterations accepted in the implicit QL transformation */
private byte maxIter = 30;
/** Main diagonal of the tridiagonal matrix. */
private double[] main;
/** Secondary diagonal of the tridiagonal matrix. */
private double[] secondary;
/**
* Transformer to tridiagonal (may be null if matrix is already
* tridiagonal).
*/
private TriDiagonalTransformer transformer;
/** Real part of the realEigenvalues. */
private double[] realEigenvalues;
/** Imaginary part of the realEigenvalues. */
private double[] imagEigenvalues;
/** Eigenvectors. */
private ArrayRealVector[] eigenvectors;
/** Cached value of V. */
private RealMatrix cachedV;
/** Cached value of D. */
private RealMatrix cachedD;
/** Cached value of Vt. */
private RealMatrix cachedVt;
/**
* Calculates the eigen decomposition of the given symmetric matrix.
*
* @param matrix Matrix to decompose. It <em>must</em> be symmetric.
* @param splitTolerance Dummy parameter (present for backward
* compatibility only).
* @throws NonSymmetricMatrixException if the matrix is not symmetric.
* @throws MaxCountExceededException if the algorithm fails to converge.
*/
public EigenDecompositionImpl(final RealMatrix matrix,
final double splitTolerance) {
if (isSymmetric(matrix, true)) {
transformToTridiagonal(matrix);
findEigenVectors(transformer.getQ().getData());
}
}
/**
* Calculates the eigen decomposition of the symmetric tridiagonal
* matrix. The Householder matrix is assumed to be the identity matrix.
*
* @param main Main diagonal of the symmetric triadiagonal form
* @param secondary Secondary of the tridiagonal form
* @param splitTolerance Dummy parameter (present for backward
* compatibility only).
* @throws MaxCountExceededException if the algorithm fails to converge.
*/
public EigenDecompositionImpl(final double[] main,final double[] secondary,
final double splitTolerance) {
this.main = main.clone();
this.secondary = secondary.clone();
transformer = null;
final int size=main.length;
double[][] z = new double[size][size];
for (int i=0;i<size;i++) {
z[i][i]=1.0;
}
findEigenVectors(z);
}
/**
* Check if a matrix is symmetric.
*
* @param matrix Matrix to check.
* @param raiseException If {@code true}, the method will throw an
* exception if {@code matrix} is not symmetric.
* @return {@code true} if {@code matrix} is symmetric.
* @throws NonSymmetricMatrixException if the matrix is not symmetric and
* {@code raiseException} is {@code true}.
*/
private boolean isSymmetric(final RealMatrix matrix,
boolean raiseException) {
final int rows = matrix.getRowDimension();
final int columns = matrix.getColumnDimension();
final double eps = 10 * rows * columns * MathUtils.EPSILON;
for (int i = 0; i < rows; ++i) {
for (int j = i + 1; j < columns; ++j) {
final double mij = matrix.getEntry(i, j);
final double mji = matrix.getEntry(j, i);
if (FastMath.abs(mij - mji) >
(FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * eps)) {
if (raiseException) {
throw new NonSymmetricMatrixException(i, j, eps);
}
return false;
}
}
}
return true;
}
/** {@inheritDoc} */
public RealMatrix getV() {
if (cachedV == null) {
final int m = eigenvectors.length;
cachedV = MatrixUtils.createRealMatrix(m, m);
for (int k = 0; k < m; ++k) {
cachedV.setColumnVector(k, eigenvectors[k]);
}
}
// return the cached matrix
return cachedV;
}
/** {@inheritDoc} */
public RealMatrix getD() {
if (cachedD == null) {
// cache the matrix for subsequent calls
cachedD = MatrixUtils.createRealDiagonalMatrix(realEigenvalues);
}
return cachedD;
}
/** {@inheritDoc} */
public RealMatrix getVT() {
if (cachedVt == null) {
final int m = eigenvectors.length;
cachedVt = MatrixUtils.createRealMatrix(m, m);
for (int k = 0; k < m; ++k) {
cachedVt.setRowVector(k, eigenvectors[k]);
}
}
// return the cached matrix
return cachedVt;
}
/** {@inheritDoc} */
public double[] getRealEigenvalues() {
return realEigenvalues.clone();
}
/** {@inheritDoc} */
public double getRealEigenvalue(final int i) {
return realEigenvalues[i];
}
/** {@inheritDoc} */
public double[] getImagEigenvalues() {
return imagEigenvalues.clone();
}
/** {@inheritDoc} */
public double getImagEigenvalue(final int i) {
return imagEigenvalues[i];
}
/** {@inheritDoc} */
public RealVector getEigenvector(final int i) {
return eigenvectors[i].copy();
}
/**
* Return the determinant of the matrix
* @return determinant of the matrix
*/
public double getDeterminant() {
double determinant = 1;
for (double lambda : realEigenvalues) {
determinant *= lambda;
}
return determinant;
}
/** {@inheritDoc} */
public DecompositionSolver getSolver() {
return new Solver(realEigenvalues, imagEigenvalues, eigenvectors);
}
/** Specialized solver. */
private static class Solver implements DecompositionSolver {
/** Real part of the realEigenvalues. */
private double[] realEigenvalues;
/** Imaginary part of the realEigenvalues. */
private double[] imagEigenvalues;
/** Eigenvectors. */
private final ArrayRealVector[] eigenvectors;
/**
* Build a solver from decomposed matrix.
* @param realEigenvalues
* real parts of the eigenvalues
* @param imagEigenvalues
* imaginary parts of the eigenvalues
* @param eigenvectors
* eigenvectors
*/
private Solver(final double[] realEigenvalues,
final double[] imagEigenvalues,
final ArrayRealVector[] eigenvectors) {
this.realEigenvalues = realEigenvalues;
this.imagEigenvalues = imagEigenvalues;
this.eigenvectors = eigenvectors;
}
/**
* Solve the linear equation A &times; X = B for symmetric matrices A.
* <p>
* This method only find exact linear solutions, i.e. solutions for
* which ||A &times; X - B|| is exactly 0.
* </p>
* @param b Right-hand side of the equation A &times; X = B
* @return a Vector X that minimizes the two norm of A &times; X - B
* @throws DimensionMismatchException if the matrices dimensions do not match.
* @throws SingularMatrixException if the decomposed matrix is singular.
*/
public RealVector solve(final RealVector b) {
if (!isNonSingular()) {
throw new SingularMatrixException();
}
final int m = realEigenvalues.length;
if (b.getDimension() != m) {
throw new DimensionMismatchException(b.getDimension(), m);
}
final double[] bp = new double[m];
for (int i = 0; i < m; ++i) {
final ArrayRealVector v = eigenvectors[i];
final double[] vData = v.getDataRef();
final double s = v.dotProduct(b) / realEigenvalues[i];
for (int j = 0; j < m; ++j) {
bp[j] += s * vData[j];
}
}
return new ArrayRealVector(bp, false);
}
/** {@inheritDoc} */
public RealMatrix solve(RealMatrix b) {
if (!isNonSingular()) {
throw new SingularMatrixException();
}
final int m = realEigenvalues.length;
if (b.getRowDimension() != m) {
throw new DimensionMismatchException(b.getRowDimension(), m);
}
final int nColB = b.getColumnDimension();
final double[][] bp = new double[m][nColB];
final double[] tmpCol = new double[m];
for (int k = 0; k < nColB; ++k) {
for (int i = 0; i < m; ++i) {
tmpCol[i] = b.getEntry(i, k);
bp[i][k] = 0;
}
for (int i = 0; i < m; ++i) {
final ArrayRealVector v = eigenvectors[i];
final double[] vData = v.getDataRef();
double s = 0;
for (int j = 0; j < m; ++j) {
s += v.getEntry(j) * tmpCol[j];
}
s /= realEigenvalues[i];
for (int j = 0; j < m; ++j) {
bp[j][k] += s * vData[j];
}
}
}
return new Array2DRowRealMatrix(bp, false);
}
/**
* Check if the decomposed matrix is non-singular.
* @return true if the decomposed matrix is non-singular
*/
public boolean isNonSingular() {
for (int i = 0; i < realEigenvalues.length; ++i) {
if ((realEigenvalues[i] == 0) && (imagEigenvalues[i] == 0)) {
return false;
}
}
return true;
}
/**
* Get the inverse of the decomposed matrix.
*
* @return the inverse matrix.
* @throws SingularMatrixException if the decomposed matrix is singular.
*/
public RealMatrix getInverse() {
if (!isNonSingular()) {
throw new SingularMatrixException();
}
final int m = realEigenvalues.length;
final double[][] invData = new double[m][m];
for (int i = 0; i < m; ++i) {
final double[] invI = invData[i];
for (int j = 0; j < m; ++j) {
double invIJ = 0;
for (int k = 0; k < m; ++k) {
final double[] vK = eigenvectors[k].getDataRef();
invIJ += vK[i] * vK[j] / realEigenvalues[k];
}
invI[j] = invIJ;
}
}
return MatrixUtils.createRealMatrix(invData);
}
}
/**
* Transform matrix to tridiagonal.
*
* @param matrix Matrix to transform.
*/
private void transformToTridiagonal(final RealMatrix matrix) {
// transform the matrix to tridiagonal
transformer = new TriDiagonalTransformer(matrix);
main = transformer.getMainDiagonalRef();
secondary = transformer.getSecondaryDiagonalRef();
}
/**
* Find eigenvalues and eigenvectors (Dubrulle et al., 1971)
*
* @param householderMatrix Householder matrix of the transformation
* to tri-diagonal form.
*/
private void findEigenVectors(double[][] householderMatrix) {
double[][]z = householderMatrix.clone();
final int n = main.length;
realEigenvalues = new double[n];
imagEigenvalues = new double[n];
double[] e = new double[n];
for (int i = 0; i < n - 1; i++) {
realEigenvalues[i] = main[i];
e[i] = secondary[i];
}
realEigenvalues[n - 1] = main[n - 1];
e[n - 1] = 0.0;
// Determine the largest main and secondary value in absolute term.
double maxAbsoluteValue=0.0;
for (int i = 0; i < n; i++) {
if (FastMath.abs(realEigenvalues[i])>maxAbsoluteValue) {
maxAbsoluteValue=FastMath.abs(realEigenvalues[i]);
}
if (FastMath.abs(e[i])>maxAbsoluteValue) {
maxAbsoluteValue=FastMath.abs(e[i]);
}
}
// Make null any main and secondary value too small to be significant
if (maxAbsoluteValue!=0.0) {
for (int i=0; i < n; i++) {
if (FastMath.abs(realEigenvalues[i])<=MathUtils.EPSILON*maxAbsoluteValue) {
realEigenvalues[i]=0.0;
}
if (FastMath.abs(e[i])<=MathUtils.EPSILON*maxAbsoluteValue) {
e[i]=0.0;
}
}
}
for (int j = 0; j < n; j++) {
int its = 0;
int m;
do {
for (m = j; m < n - 1; m++) {
double delta = FastMath.abs(realEigenvalues[m]) + FastMath.abs(realEigenvalues[m + 1]);
if (FastMath.abs(e[m]) + delta == delta) {
break;
}
}
if (m != j) {
if (its == maxIter) {
throw new MaxCountExceededException(LocalizedFormats.CONVERGENCE_FAILED,
maxIter);
}
its++;
double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]);
double t = FastMath.sqrt(1 + q * q);
if (q < 0.0) {
q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t);
} else {
q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t);
}
double u = 0.0;
double s = 1.0;
double c = 1.0;
int i;
for (i = m - 1; i >= j; i--) {
double p = s * e[i];
double h = c * e[i];
if (FastMath.abs(p) >= FastMath.abs(q)) {
c = q / p;
t = FastMath.sqrt(c * c + 1.0);
e[i + 1] = p * t;
s = 1.0 / t;
c = c * s;
} else {
s = p / q;
t = FastMath.sqrt(s * s + 1.0);
e[i + 1] = q * t;
c = 1.0 / t;
s = s * c;
}
if (e[i + 1] == 0.0) {
realEigenvalues[i + 1] -= u;
e[m] = 0.0;
break;
}
q = realEigenvalues[i + 1] - u;
t = (realEigenvalues[i] - q) * s + 2.0 * c * h;
u = s * t;
realEigenvalues[i + 1] = q + u;
q = c * t - h;
for (int ia = 0; ia < n; ia++) {
p = z[ia][i + 1];
z[ia][i + 1] = s * z[ia][i] + c * p;
z[ia][i] = c * z[ia][i] - s * p;
}
}
if (t == 0.0 && i >= j) {
continue;
}
realEigenvalues[j] -= u;
e[j] = q;
e[m] = 0.0;
}
} while (m != j);
}
//Sort the eigen values (and vectors) in increase order
for (int i = 0; i < n; i++) {
int k = i;
double p = realEigenvalues[i];
for (int j = i + 1; j < n; j++) {
if (realEigenvalues[j] > p) {
k = j;
p = realEigenvalues[j];
}
}
if (k != i) {
realEigenvalues[k] = realEigenvalues[i];
realEigenvalues[i] = p;
for (int j = 0; j < n; j++) {
p = z[j][i];
z[j][i] = z[j][k];
z[j][k] = p;
}
}
}
// Determine the largest eigen value in absolute term.
maxAbsoluteValue=0.0;
for (int i = 0; i < n; i++) {
if (FastMath.abs(realEigenvalues[i])>maxAbsoluteValue) {
maxAbsoluteValue=FastMath.abs(realEigenvalues[i]);
}
}
// Make null any eigen value too small to be significant
if (maxAbsoluteValue!=0.0) {
for (int i=0; i < n; i++) {
if (FastMath.abs(realEigenvalues[i])<MathUtils.EPSILON*maxAbsoluteValue) {
realEigenvalues[i]=0.0;
}
}
}
eigenvectors = new ArrayRealVector[n];
double[] tmp = new double[n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
tmp[j] = z[j][i];
}
eigenvectors[i] = new ArrayRealVector(tmp);
}
}
}

View File

@ -28,7 +28,7 @@ import org.apache.commons.math.exception.NotPositiveException;
import org.apache.commons.math.exception.OutOfRangeException;
import org.apache.commons.math.exception.TooManyEvaluationsException;
import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.EigenDecompositionImpl;
import org.apache.commons.math.linear.EigenDecomposition;
import org.apache.commons.math.linear.MatrixUtils;
import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.optimization.GoalType;
@ -768,7 +768,7 @@ public class CMAESOptimizer extends
// to achieve O(N^2)
C = triu(C, 0).add(triu(C, 1).transpose());
// enforce symmetry to prevent complex numbers
EigenDecompositionImpl eig = new EigenDecompositionImpl(C, 1.0);
EigenDecomposition eig = new EigenDecomposition(C, 1.0);
B = eig.getV(); // eigen decomposition, B==normalized eigenvectors
D = eig.getD();
diagD = diag(D);

View File

@ -37,8 +37,8 @@ public class EigenDecompositionTest {
public void testDimension1() {
RealMatrix matrix =
MatrixUtils.createRealMatrix(new double[][] { { 1.5 } });
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
Assert.assertEquals(1.5, ed.getRealEigenvalue(0), 1.0e-15);
}
@ -49,8 +49,8 @@ public class EigenDecompositionTest {
{ 59.0, 12.0 },
{ 12.0, 66.0 }
});
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
Assert.assertEquals(75.0, ed.getRealEigenvalue(0), 1.0e-15);
Assert.assertEquals(50.0, ed.getRealEigenvalue(1), 1.0e-15);
}
@ -63,8 +63,8 @@ public class EigenDecompositionTest {
{ -4824.0, 8693.0, 7920.0 },
{ -16560.0, 7920.0, 17300.0 }
});
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
Assert.assertEquals(50000.0, ed.getRealEigenvalue(0), 3.0e-11);
Assert.assertEquals(12500.0, ed.getRealEigenvalue(1), 3.0e-11);
Assert.assertEquals( 3125.0, ed.getRealEigenvalue(2), 3.0e-11);
@ -78,8 +78,8 @@ public class EigenDecompositionTest {
{ 10, 20, 30 },
{ 15, 30, 45 }
});
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
Assert.assertEquals(70.0, ed.getRealEigenvalue(0), 3.0e-11);
Assert.assertEquals(0.0, ed.getRealEigenvalue(1), 3.0e-11);
Assert.assertEquals(0.0, ed.getRealEigenvalue(2), 3.0e-11);
@ -94,8 +94,8 @@ public class EigenDecompositionTest {
{ 0.000, 0.000, 0.164, -0.048 },
{ 0.000, 0.000, -0.048, 0.136 }
});
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
Assert.assertEquals(1.0, ed.getRealEigenvalue(0), 1.0e-15);
Assert.assertEquals(0.4, ed.getRealEigenvalue(1), 1.0e-15);
Assert.assertEquals(0.2, ed.getRealEigenvalue(2), 1.0e-15);
@ -111,8 +111,8 @@ public class EigenDecompositionTest {
{ 0.1152, -0.2304, 0.3088, -0.1344 },
{ -0.2976, 0.1152, -0.1344, 0.3872 }
});
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
Assert.assertEquals(1.0, ed.getRealEigenvalue(0), 1.0e-15);
Assert.assertEquals(0.4, ed.getRealEigenvalue(1), 1.0e-15);
Assert.assertEquals(0.2, ed.getRealEigenvalue(2), 1.0e-15);
@ -143,8 +143,8 @@ public class EigenDecompositionTest {
new ArrayRealVector(new double[] { -0.584677060845929, 0.367177264979103, 0.721453187784497, -0.052971054621812, 0.005740715188257 })
};
EigenDecompositionImpl decomposition;
decomposition = new EigenDecompositionImpl(mainTridiagonal,
EigenDecomposition decomposition;
decomposition = new EigenDecomposition(mainTridiagonal,
secondaryTridiagonal,
MathUtils.SAFE_MIN);
@ -188,8 +188,8 @@ public class EigenDecompositionTest {
};
// the following line triggers the exception
EigenDecompositionImpl decomposition;
decomposition = new EigenDecompositionImpl(mainTridiagonal,
EigenDecomposition decomposition;
decomposition = new EigenDecomposition(mainTridiagonal,
secondaryTridiagonal,
MathUtils.SAFE_MIN);
@ -235,8 +235,8 @@ public class EigenDecompositionTest {
};
// the following line triggers the exception
EigenDecompositionImpl decomposition;
decomposition = new EigenDecompositionImpl(mainTridiagonal,
EigenDecomposition decomposition;
decomposition = new EigenDecomposition(mainTridiagonal,
secondaryTridiagonal,
MathUtils.SAFE_MIN);
@ -267,8 +267,8 @@ public class EigenDecompositionTest {
Arrays.sort(ref);
TriDiagonalTransformer t =
new TriDiagonalTransformer(createTestMatrix(r, ref));
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(t.getMainDiagonalRef(),
EigenDecomposition ed;
ed = new EigenDecomposition(t.getMainDiagonalRef(),
t.getSecondaryDiagonalRef(),
MathUtils.SAFE_MIN);
double[] eigenValues = ed.getRealEigenvalues();
@ -283,8 +283,8 @@ public class EigenDecompositionTest {
@Test
public void testDimensions() {
final int m = matrix.getRowDimension();
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
Assert.assertEquals(m, ed.getV().getRowDimension());
Assert.assertEquals(m, ed.getV().getColumnDimension());
Assert.assertEquals(m, ed.getD().getColumnDimension());
@ -296,8 +296,8 @@ public class EigenDecompositionTest {
/** test eigenvalues */
@Test
public void testEigenvalues() {
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
double[] eigenValues = ed.getRealEigenvalues();
Assert.assertEquals(refValues.length, eigenValues.length);
for (int i = 0; i < refValues.length; ++i) {
@ -314,8 +314,8 @@ public class EigenDecompositionTest {
bigValues[i] = 2 * r.nextDouble() - 1;
}
Arrays.sort(bigValues);
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(createTestMatrix(r, bigValues),
EigenDecomposition ed;
ed = new EigenDecomposition(createTestMatrix(r, bigValues),
MathUtils.SAFE_MIN);
double[] eigenValues = ed.getRealEigenvalues();
Assert.assertEquals(bigValues.length, eigenValues.length);
@ -327,8 +327,8 @@ public class EigenDecompositionTest {
/** test eigenvectors */
@Test
public void testEigenvectors() {
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
for (int i = 0; i < matrix.getRowDimension(); ++i) {
double lambda = ed.getRealEigenvalue(i);
RealVector v = ed.getEigenvector(i);
@ -340,8 +340,8 @@ public class EigenDecompositionTest {
/** test A = VDVt */
@Test
public void testAEqualVDVt() {
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(matrix, MathUtils.SAFE_MIN);
RealMatrix v = ed.getV();
RealMatrix d = ed.getD();
RealMatrix vT = ed.getVT();
@ -352,7 +352,7 @@ public class EigenDecompositionTest {
/** test that V is orthogonal */
@Test
public void testVOrthogonal() {
RealMatrix v = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN).getV();
RealMatrix v = new EigenDecomposition(matrix, MathUtils.SAFE_MIN).getV();
RealMatrix vTv = v.transpose().multiply(v);
RealMatrix id = MatrixUtils.createRealIdentityMatrix(vTv.getRowDimension());
Assert.assertEquals(0, vTv.subtract(id).getNorm(), 2.0e-13);
@ -363,8 +363,8 @@ public class EigenDecompositionTest {
public void testDiagonal() {
double[] diagonal = new double[] { -3.0, -2.0, 2.0, 5.0 };
RealMatrix m = createDiagonalMatrix(diagonal, diagonal.length, diagonal.length);
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(m, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(m, MathUtils.SAFE_MIN);
Assert.assertEquals(diagonal[0], ed.getRealEigenvalue(3), 2.0e-15);
Assert.assertEquals(diagonal[1], ed.getRealEigenvalue(2), 2.0e-15);
Assert.assertEquals(diagonal[2], ed.getRealEigenvalue(1), 2.0e-15);
@ -381,8 +381,8 @@ public class EigenDecompositionTest {
{2, 0, 2},
{4, 2, 3}
});
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(repeated, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(repeated, MathUtils.SAFE_MIN);
checkEigenValues((new double[] {8, -1, -1}), ed, 1E-12);
checkEigenVector((new double[] {2, 1, 2}), ed, 1E-12);
}
@ -397,8 +397,8 @@ public class EigenDecompositionTest {
{1, 3, -4},
{-4, -4, 8}
});
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(distinct, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(distinct, MathUtils.SAFE_MIN);
checkEigenValues((new double[] {2, 0, 12}), ed, 1E-12);
checkEigenVector((new double[] {1, -1, 0}), ed, 1E-12);
checkEigenVector((new double[] {1, 1, 1}), ed, 1E-12);
@ -415,8 +415,8 @@ public class EigenDecompositionTest {
{ 1.0, 1.0, 0.0 },
{ -1.0,0.0, 1.0 }
});
EigenDecompositionImpl ed;
ed = new EigenDecompositionImpl(indefinite, MathUtils.SAFE_MIN);
EigenDecomposition ed;
ed = new EigenDecomposition(indefinite, MathUtils.SAFE_MIN);
checkEigenValues((new double[] {2, 1, -1}), ed, 1E-12);
double isqrt3 = 1/FastMath.sqrt(3.0);
checkEigenVector((new double[] {isqrt3,isqrt3,-isqrt3}), ed, 1E-12);
@ -431,7 +431,7 @@ public class EigenDecompositionTest {
* values to differ by tolerance.
*/
protected void checkEigenValues(double[] targetValues,
EigenDecompositionImpl ed, double tolerance) {
EigenDecomposition ed, double tolerance) {
double[] observed = ed.getRealEigenvalues();
for (int i = 0; i < observed.length; i++) {
Assert.assertTrue(isIncludedValue(observed[i], targetValues, tolerance));
@ -463,7 +463,7 @@ public class EigenDecompositionTest {
* used to find vectors in one-dimensional eigenspaces.
*/
protected void checkEigenVector(double[] eigenVector,
EigenDecompositionImpl ed, double tolerance) {
EigenDecomposition ed, double tolerance) {
Assert.assertTrue(isIncludedColumn(eigenVector, ed.getV(), tolerance));
}

View File

@ -33,7 +33,7 @@ public class EigenSolverTest {
Random r = new Random(9994100315209l);
RealMatrix m =
EigenDecompositionTest.createTestMatrix(r, new double[] { 1.0, 0.0, -1.0, -2.0, -3.0 });
DecompositionSolver es = new EigenDecompositionImpl(m, MathUtils.SAFE_MIN).getSolver();
DecompositionSolver es = new EigenDecomposition(m, MathUtils.SAFE_MIN).getSolver();
Assert.assertFalse(es.isNonSingular());
try {
es.getInverse();
@ -49,7 +49,7 @@ public class EigenSolverTest {
Random r = new Random(9994100315209l);
RealMatrix m =
EigenDecompositionTest.createTestMatrix(r, new double[] { 1.0, 0.5, -1.0, -2.0, -3.0 });
DecompositionSolver es = new EigenDecompositionImpl(m, MathUtils.SAFE_MIN).getSolver();
DecompositionSolver es = new EigenDecomposition(m, MathUtils.SAFE_MIN).getSolver();
Assert.assertTrue(es.isNonSingular());
RealMatrix inverse = es.getInverse();
RealMatrix error =
@ -65,7 +65,7 @@ public class EigenSolverTest {
};
final RealMatrix matrix = EigenDecompositionTest.createTestMatrix(new Random(35992629946426l), refValues);
DecompositionSolver es = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN).getSolver();
DecompositionSolver es = new EigenDecomposition(matrix, MathUtils.SAFE_MIN).getSolver();
RealMatrix b = MatrixUtils.createRealMatrix(new double[2][2]);
try {
es.solve(b);
@ -98,7 +98,7 @@ public class EigenSolverTest {
{ 40, 2, 21, 9, 51, 19 },
{ 14, -1, 8, 0, 19, 14 }
});
DecompositionSolver es = new EigenDecompositionImpl(m, MathUtils.SAFE_MIN).getSolver();
DecompositionSolver es = new EigenDecomposition(m, MathUtils.SAFE_MIN).getSolver();
RealMatrix b = MatrixUtils.createRealMatrix(new double[][] {
{ 1561, 269, 188 },
{ 69, -21, 70 },