From 085816b7cf48c7eb30bfed2c6197730552a1d55e Mon Sep 17 00:00:00 2001 From: Gilles Date: Tue, 17 May 2016 13:09:45 +0200 Subject: [PATCH] Javadoc. --- .../apache/commons/math4/special/Gamma.java | 81 +++++++++++-------- 1 file changed, 48 insertions(+), 33 deletions(-) diff --git a/src/main/java/org/apache/commons/math4/special/Gamma.java b/src/main/java/org/apache/commons/math4/special/Gamma.java index eb13d1b42..9f34f1cf0 100644 --- a/src/main/java/org/apache/commons/math4/special/Gamma.java +++ b/src/main/java/org/apache/commons/math4/special/Gamma.java @@ -214,18 +214,19 @@ public class Gamma { private static final double INV_GAMMA1P_M1_C13 = -.205633841697760710345015413002057E-06; /** - * Default constructor. Prohibit instantiation. + * Class contains only static methods. */ private Gamma() {} /** - * Returns the value of \( \log \Gamma(x) \) for \( x > 0 \). + * Computes the function \( \ln \Gamma(x) \) for \( x > 0 \). * *

* For \( x \leq 8 \), the implementation is based on the double precision * implementation in the NSWC Library of Mathematics Subroutines, * {@code DGAMLN}. For \( x \geq 8 \), the implementation is based on *

+ * * * * @param x Argument. - * @return the value of {@code log(Gamma(x))} or {@code NaN} if {@code x <= 0}. + * @return \( \ln \Gamma(x) \), or {@code NaN} if {@code x <= 0}. */ public static double logGamma(double x) { double ret; @@ -266,11 +267,11 @@ public class Gamma { } /** - * Returns the regularized gamma function \( P(a, x) \). + * Computes the regularized gamma function \( P(a, x) \). * - * @param a Parameter. + * @param a Parameter \( a \). * @param x Value. - * @return the regularized gamma function P(a, x). + * @return \( P(a, x) \) * @throws MaxCountExceededException if the algorithm fails to converge. */ public static double regularizedGammaP(double a, double x) { @@ -278,7 +279,7 @@ public class Gamma { } /** - * Returns the regularized gamma function \( P(a, x) \). + * Computes the regularized gamma function \( P(a, x) \). * * The implementation of this method is based on: * * - * @param a the a parameter. - * @param x the value. + * @param a Parameter \( a \). + * @param x Argument. * @param epsilon When the absolute value of the nth item in the * series is less than epsilon the approximation ceases to calculate * further elements in the series. * @param maxIterations Maximum number of "iterations" to complete. - * @return the regularized gamma function P(a, x) + * @return \( P(a, x) \) * @throws MaxCountExceededException if the algorithm fails to converge. */ public static double regularizedGammaP(double a, @@ -347,11 +348,11 @@ public class Gamma { } /** - * Returns the regularized gamma function Q(a, x) = 1 - P(a, x). + * Computes the regularized gamma function \( Q(a, x) = 1 - P(a, x) \). * - * @param a the a parameter. - * @param x the value. - * @return the regularized gamma function Q(a, x) + * @param a Parameter \( a \). + * @param x Argument. + * @return \( Q(a, x) \) * @throws MaxCountExceededException if the algorithm fails to converge. */ public static double regularizedGammaQ(double a, double x) { @@ -359,7 +360,7 @@ public class Gamma { } /** - * Returns the regularized gamma function \( Q(a, x) = 1 - P(a, x) \). + * Computes the regularized gamma function \( Q(a, x) = 1 - P(a, x) \). * * The implementation of this method is based on: * * - * @param a the a parameter. - * @param x the value. + * @param a Parameter \( a \). + * @param x Argument. * @param epsilon When the absolute value of the nth item in the * series is less than epsilon the approximation ceases to calculate * further elements in the series. * @param maxIterations Maximum number of "iterations" to complete. - * @return the regularized gamma function P(a, x) + * @return \( Q(a, x) \) * @throws MaxCountExceededException if the algorithm fails to converge. */ public static double regularizedGammaQ(final double a, @@ -423,7 +424,9 @@ public class Gamma { /** - * Computes the digamma function. + * Computes the digamma function, defined as the logarithmic derivative + * of the \( \Gamma \) function: + * \( \frac{d}{dx}(\ln \Gamma(x)) = \frac{\Gamma^\prime(x)}{\Gamma(x)} \). * *

This is an independently written implementation of the algorithm described in * Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976. @@ -477,16 +480,17 @@ public class Gamma { } /** - * Computes the trigamma function. - * This function is derived by taking the derivative of the implementation - * of digamma. + * Computes the trigamma function \( \psi_1(x) = \frac{d^2}{dx^2} (\ln \Gamma(x)) \). + *

+ * This function is the derivative of the {@link #digamma(double) digamma function}. + *

* * @param x Argument. - * @return {@code trigamma(x)} to within \( 10^{-8} \) relative or absolute + * @return \( \psi_1(x) \) to within \( 10^{-8} \) relative or absolute * error whichever is smaller * * @see Trigamma - * @see Gamma#digamma(double) + * @see #digamma(double) * * @since 2.0 */ @@ -512,23 +516,26 @@ public class Gamma { } /** + * Computes the Lanczos approximation used to compute the gamma function. + * *

- * Returns the Lanczos approximation used to compute the gamma function. * The Lanczos approximation is related to the Gamma function by the * following equation * \[ - * \Gamma(x) = \sqrt{2\pi} \, \frac{(x + g + 1/2)^{x + \frac{1}{2}} \, e^{-x - g - \frac{1}{2}} \, \mathrm{lanczos}(x)} - * {x} + * \Gamma(x) = \sqrt{2\pi} \, \frac{(g + x + \frac{1}{2})^{x + \frac{1}{2}} \, e^{-(g + x + \frac{1}{2})} \, \mathrm{lanczos}(x)} + * {x} * \] * where \(g\) is the Lanczos constant. *

* * @param x Argument. * @return The Lanczos approximation. + * * @see Lanczos Approximation * equations (1) through (5), and Paul Godfrey's * Note on the computation * of the convergent Lanczos complex Gamma approximation + * * @since 3.1 */ public static double lanczos(final double x) { @@ -540,14 +547,17 @@ public class Gamma { } /** - * Returns the value of \( 1 / \Gamma(1 + x) - 1 \) for \( -0.5 \leq x \leq 1.5 \). + * Computes the function \( \frac{1}{\Gamma(1 + x)} - 1 \) for \( -0.5 \leq x \leq 1.5 \). + *

* This implementation is based on the double precision implementation in * the NSWC Library of Mathematics Subroutines, {@code DGAM1}. + *

* * @param x Argument. - * @return The value of {@code 1.0 / Gamma(1.0 + x) - 1.0}. + * @return \( \frac{1}{\Gamma(1 + x)} - 1 \) * @throws NumberIsTooSmallException if {@code x < -0.5} * @throws NumberIsTooLargeException if {@code x > 1.5} + * * @since 3.1 */ public static double invGamma1pm1(final double x) { @@ -633,12 +643,14 @@ public class Gamma { } /** - * Returns the value of \( \log \Gamma(1 + x) \) for \( -0.5 \leq x \leq 1.5 \). + * Computes the function \( \ln \Gamma(1 + x) \) for \( -0.5 \leq x \leq 1.5 \). + *

* This implementation is based on the double precision implementation in * the NSWC Library of Mathematics Subroutines, {@code DGMLN1}. + *

* * @param x Argument. - * @return The value of {@code log(Gamma(1 + x))}. + * @return \( \ln \Gamma(1 + x) \) * @throws NumberIsTooSmallException if {@code x < -0.5}. * @throws NumberIsTooLargeException if {@code x > 1.5}. * @since 3.1 @@ -658,12 +670,15 @@ public class Gamma { /** - * Returns the value of \( \Gamma(x) \). + * Computes the value of \( \Gamma(x) \). + *

* Based on the NSWC Library of Mathematics Subroutines double * precision implementation, {@code DGAMMA}. + *

* * @param x Argument. - * @return the value of {@code Gamma(x)}. + * @return \( \Gamma(x) \) + * * @since 3.1 */ public static double gamma(final double x) {