Refactoring following the promotion of embedded class o.a.c.m.transform.FastFourierTransformer.RootsOfUnity to standalone class o.a.c.m.complex.RootsOfUnity
- computeOmega(int n) now computes exp(2 * pi * i * k / n), k = 0, ..., n - 1, instead of exp(-2 * pi * i * k / n) (which was more natural for FFT). - isForward() does not mean anything outside the FFT context. It has been renamed isCounterClockwise(), which refers to the way the roots of unity are ordered. See MATH-677. git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1238179 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
74813500be
commit
08ca1e7a0a
|
@ -26,8 +26,8 @@ import org.apache.commons.math.exception.util.LocalizedFormats;
|
||||||
import org.apache.commons.math.util.FastMath;
|
import org.apache.commons.math.util.FastMath;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* A helper class for the computation and caching of the {@code n}<sup>th</sup>
|
* A helper class for the computation and caching of the {@code n}-th roots of
|
||||||
* roots of unity.
|
* unity.
|
||||||
*
|
*
|
||||||
* @version $Id$
|
* @version $Id$
|
||||||
* @since 3.0
|
* @since 3.0
|
||||||
|
@ -43,59 +43,75 @@ public class RootsOfUnity implements Serializable {
|
||||||
/** Real part of the roots. */
|
/** Real part of the roots. */
|
||||||
private double[] omegaReal;
|
private double[] omegaReal;
|
||||||
|
|
||||||
/** Imaginary part of the roots for forward transform. */
|
/**
|
||||||
private double[] omegaImaginaryForward;
|
* Imaginary part of the {@code n}-th roots of unity, for positive values
|
||||||
|
* of {@code n}. In this array, the roots are stored in counter-clockwise
|
||||||
/** Imaginary part of the roots for reverse transform. */
|
* order.
|
||||||
private double[] omegaImaginaryInverse;
|
*/
|
||||||
|
private double[] omegaImaginaryCounterClockwise;
|
||||||
/** Forward/reverse indicator. */
|
|
||||||
private boolean isForward;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Build an engine for computing the {@code n}<sup>th</sup> roots of
|
* Imaginary part of the {@code n}-th roots of unity, for negative values
|
||||||
* unity.
|
* of {@code n}. In this array, the roots are stored in clockwise order.
|
||||||
|
*/
|
||||||
|
private double[] omegaImaginaryClockwise;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* {@code true} if {@link #computeOmega(int)} was called with a positive
|
||||||
|
* value of its argument {@code n}. In this case, counter-clockwise ordering
|
||||||
|
* of the roots of unity should be used.
|
||||||
|
*/
|
||||||
|
private boolean isCounterClockWise;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Build an engine for computing the {@code n}-th roots of unity.
|
||||||
*/
|
*/
|
||||||
public RootsOfUnity() {
|
public RootsOfUnity() {
|
||||||
|
|
||||||
omegaCount = 0;
|
omegaCount = 0;
|
||||||
omegaReal = null;
|
omegaReal = null;
|
||||||
omegaImaginaryForward = null;
|
omegaImaginaryCounterClockwise = null;
|
||||||
omegaImaginaryInverse = null;
|
omegaImaginaryClockwise = null;
|
||||||
isForward = true;
|
isCounterClockWise = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Check if computation has been done for forward or reverse transform.
|
* Returns {@code true} if {@link #computeOmega(int)} was called with a
|
||||||
|
* positive value of its argument {@code n}. If {@code true}, then
|
||||||
|
* counter-clockwise ordering of the roots of unity should be used.
|
||||||
*
|
*
|
||||||
* @return {@code true} if computation has been done for forward transform
|
* @return {@code true} if the roots of unity are stored in
|
||||||
|
* counter-clockwise order
|
||||||
* @throws MathIllegalStateException if no roots of unity have been computed
|
* @throws MathIllegalStateException if no roots of unity have been computed
|
||||||
* yet
|
* yet
|
||||||
*/
|
*/
|
||||||
public synchronized boolean isForward()
|
public synchronized boolean isCounterClockWise()
|
||||||
throws MathIllegalStateException {
|
throws MathIllegalStateException {
|
||||||
|
|
||||||
if (omegaCount == 0) {
|
if (omegaCount == 0) {
|
||||||
throw new MathIllegalStateException(
|
throw new MathIllegalStateException(
|
||||||
LocalizedFormats.ROOTS_OF_UNITY_NOT_COMPUTED_YET);
|
LocalizedFormats.ROOTS_OF_UNITY_NOT_COMPUTED_YET);
|
||||||
}
|
}
|
||||||
return isForward;
|
return isCounterClockWise;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* <p>
|
* <p>
|
||||||
* Computes the {@code n}<sup>th</sup> roots of unity. The roots are
|
* Computes the {@code n}-th roots of unity. The roots are stored in
|
||||||
* stored in {@code omega[]}, such that {@code omega[k] = w ^ k}, where
|
* {@code omega[]}, such that {@code omega[k] = w ^ k}, where
|
||||||
* {@code k = 0, ..., n - 1}, {@code w = exp(-2 π i / n)} and
|
* {@code k = 0, ..., n - 1}, {@code w = exp(2 * pi * i / n)} and
|
||||||
* {@code i = sqrt(-1)}.
|
* {@code i = sqrt(-1)}.
|
||||||
* </p>
|
* </p>
|
||||||
* <p>
|
* <p>
|
||||||
* Note that {@code n} is positive for forward transform and negative
|
* Note that {@code n} can be positive of negative
|
||||||
* for inverse transform.
|
|
||||||
* </p>
|
* </p>
|
||||||
|
* <ul>
|
||||||
|
* <li>{@code abs(n)} is always the number of roots of unity.</li>
|
||||||
|
* <li>If {@code n > 0}, then the roots are stored in counter-clockwise order.</li>
|
||||||
|
* <li>If {@code n < 0}, then the roots are stored in clockwise order.</p>
|
||||||
|
* </ul>
|
||||||
*
|
*
|
||||||
* @param n number of roots of unity to compute, positive for forward
|
* @param n the (signed) number of roots of unity to be computed
|
||||||
* transform, negative for inverse transform
|
|
||||||
* @throws ZeroException if {@code n = 0}
|
* @throws ZeroException if {@code n = 0}
|
||||||
*/
|
*/
|
||||||
public synchronized void computeOmega(int n) throws ZeroException {
|
public synchronized void computeOmega(int n) throws ZeroException {
|
||||||
|
@ -105,7 +121,7 @@ public class RootsOfUnity implements Serializable {
|
||||||
LocalizedFormats.CANNOT_COMPUTE_0TH_ROOT_OF_UNITY);
|
LocalizedFormats.CANNOT_COMPUTE_0TH_ROOT_OF_UNITY);
|
||||||
}
|
}
|
||||||
|
|
||||||
isForward = n > 0;
|
isCounterClockWise = n > 0;
|
||||||
|
|
||||||
// avoid repetitive calculations
|
// avoid repetitive calculations
|
||||||
final int absN = FastMath.abs(n);
|
final int absN = FastMath.abs(n);
|
||||||
|
@ -114,34 +130,31 @@ public class RootsOfUnity implements Serializable {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// calculate everything from scratch, for both forward and inverse
|
// calculate everything from scratch
|
||||||
// versions
|
|
||||||
final double t = 2.0 * FastMath.PI / absN;
|
final double t = 2.0 * FastMath.PI / absN;
|
||||||
final double cosT = FastMath.cos(t);
|
final double cosT = FastMath.cos(t);
|
||||||
final double sinT = FastMath.sin(t);
|
final double sinT = FastMath.sin(t);
|
||||||
omegaReal = new double[absN];
|
omegaReal = new double[absN];
|
||||||
omegaImaginaryForward = new double[absN];
|
omegaImaginaryCounterClockwise = new double[absN];
|
||||||
omegaImaginaryInverse = new double[absN];
|
omegaImaginaryClockwise = new double[absN];
|
||||||
omegaReal[0] = 1.0;
|
omegaReal[0] = 1.0;
|
||||||
omegaImaginaryForward[0] = 0.0;
|
omegaImaginaryCounterClockwise[0] = 0.0;
|
||||||
omegaImaginaryInverse[0] = 0.0;
|
omegaImaginaryClockwise[0] = 0.0;
|
||||||
for (int i = 1; i < absN; i++) {
|
for (int i = 1; i < absN; i++) {
|
||||||
omegaReal[i] = omegaReal[i - 1] * cosT +
|
omegaReal[i] = omegaReal[i - 1] * cosT -
|
||||||
omegaImaginaryForward[i - 1] * sinT;
|
omegaImaginaryCounterClockwise[i - 1] * sinT;
|
||||||
omegaImaginaryForward[i] = omegaImaginaryForward[i - 1] * cosT -
|
omegaImaginaryCounterClockwise[i] = omegaReal[i - 1] * sinT +
|
||||||
omegaReal[i - 1] * sinT;
|
omegaImaginaryCounterClockwise[i - 1] * cosT;
|
||||||
omegaImaginaryInverse[i] = -omegaImaginaryForward[i];
|
omegaImaginaryClockwise[i] = -omegaImaginaryCounterClockwise[i];
|
||||||
}
|
}
|
||||||
omegaCount = absN;
|
omegaCount = absN;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Get the real part of the {@code k}<sup>th</sup>
|
* Get the real part of the {@code k}-th {@code n}-th root of unity.
|
||||||
* {@code n}<sup>th</sup> root of unity.
|
|
||||||
*
|
*
|
||||||
* @param k index of the {@code n}<sup>th</sup> root of unity
|
* @param k index of the {@code n}-th root of unity
|
||||||
* @return real part of the {@code k}<sup>th</sup>
|
* @return real part of the {@code k}-th {@code n}-th root of unity
|
||||||
* {@code n}<sup>th</sup> root of unity
|
|
||||||
* @throws MathIllegalStateException if no roots of unity have been
|
* @throws MathIllegalStateException if no roots of unity have been
|
||||||
* computed yet
|
* computed yet
|
||||||
* @throws MathIllegalArgumentException if {@code k} is out of range
|
* @throws MathIllegalArgumentException if {@code k} is out of range
|
||||||
|
@ -165,12 +178,10 @@ public class RootsOfUnity implements Serializable {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Get the imaginary part of the {@code k}<sup>th</sup>
|
* Get the imaginary part of the {@code k}-th {@code n}-th root of unity.
|
||||||
* {@code n}<sup>th</sup> root of unity.
|
|
||||||
*
|
*
|
||||||
* @param k index of the {@code n}<sup>th</sup> root of unity
|
* @param k index of the {@code n}-th root of unity
|
||||||
* @return imaginary part of the {@code k}<sup>th</sup>
|
* @return imaginary part of the {@code k}-th {@code n}-th root of unity
|
||||||
* {@code n}<sup>th</sup> root of unity
|
|
||||||
* @throws MathIllegalStateException if no roots of unity have been
|
* @throws MathIllegalStateException if no roots of unity have been
|
||||||
* computed yet
|
* computed yet
|
||||||
* @throws OutOfRangeException if {@code k} is out of range
|
* @throws OutOfRangeException if {@code k} is out of range
|
||||||
|
@ -190,7 +201,7 @@ public class RootsOfUnity implements Serializable {
|
||||||
Integer.valueOf(omegaCount - 1));
|
Integer.valueOf(omegaCount - 1));
|
||||||
}
|
}
|
||||||
|
|
||||||
return isForward ? omegaImaginaryForward[k] :
|
return isCounterClockWise ? omegaImaginaryCounterClockwise[k] :
|
||||||
omegaImaginaryInverse[k];
|
omegaImaginaryClockwise[k];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue