Refactoring following the promotion of embedded class o.a.c.m.transform.FastFourierTransformer.RootsOfUnity to standalone class o.a.c.m.complex.RootsOfUnity

- computeOmega(int n) now computes exp(2 * pi * i * k / n), k = 0, ..., n - 1, instead of exp(-2 * pi * i * k / n) (which was more natural for FFT).
- isForward() does not mean anything outside the FFT context. It has been renamed isCounterClockwise(), which refers to the way the roots of unity are ordered.
See MATH-677.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1238179 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Sebastien Brisard 2012-01-31 07:01:03 +00:00
parent 74813500be
commit 08ca1e7a0a
1 changed files with 62 additions and 51 deletions

View File

@ -26,8 +26,8 @@ import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.FastMath;
/**
* A helper class for the computation and caching of the {@code n}<sup>th</sup>
* roots of unity.
* A helper class for the computation and caching of the {@code n}-th roots of
* unity.
*
* @version $Id$
* @since 3.0
@ -43,59 +43,75 @@ public class RootsOfUnity implements Serializable {
/** Real part of the roots. */
private double[] omegaReal;
/** Imaginary part of the roots for forward transform. */
private double[] omegaImaginaryForward;
/** Imaginary part of the roots for reverse transform. */
private double[] omegaImaginaryInverse;
/** Forward/reverse indicator. */
private boolean isForward;
/**
* Imaginary part of the {@code n}-th roots of unity, for positive values
* of {@code n}. In this array, the roots are stored in counter-clockwise
* order.
*/
private double[] omegaImaginaryCounterClockwise;
/**
* Build an engine for computing the {@code n}<sup>th</sup> roots of
* unity.
* Imaginary part of the {@code n}-th roots of unity, for negative values
* of {@code n}. In this array, the roots are stored in clockwise order.
*/
private double[] omegaImaginaryClockwise;
/**
* {@code true} if {@link #computeOmega(int)} was called with a positive
* value of its argument {@code n}. In this case, counter-clockwise ordering
* of the roots of unity should be used.
*/
private boolean isCounterClockWise;
/**
* Build an engine for computing the {@code n}-th roots of unity.
*/
public RootsOfUnity() {
omegaCount = 0;
omegaReal = null;
omegaImaginaryForward = null;
omegaImaginaryInverse = null;
isForward = true;
omegaImaginaryCounterClockwise = null;
omegaImaginaryClockwise = null;
isCounterClockWise = true;
}
/**
* Check if computation has been done for forward or reverse transform.
* Returns {@code true} if {@link #computeOmega(int)} was called with a
* positive value of its argument {@code n}. If {@code true}, then
* counter-clockwise ordering of the roots of unity should be used.
*
* @return {@code true} if computation has been done for forward transform
* @return {@code true} if the roots of unity are stored in
* counter-clockwise order
* @throws MathIllegalStateException if no roots of unity have been computed
* yet
*/
public synchronized boolean isForward()
public synchronized boolean isCounterClockWise()
throws MathIllegalStateException {
if (omegaCount == 0) {
throw new MathIllegalStateException(
LocalizedFormats.ROOTS_OF_UNITY_NOT_COMPUTED_YET);
}
return isForward;
return isCounterClockWise;
}
/**
* <p>
* Computes the {@code n}<sup>th</sup> roots of unity. The roots are
* stored in {@code omega[]}, such that {@code omega[k] = w ^ k}, where
* {@code k = 0, ..., n - 1}, {@code w = exp(-2 &pi; i / n)} and
* Computes the {@code n}-th roots of unity. The roots are stored in
* {@code omega[]}, such that {@code omega[k] = w ^ k}, where
* {@code k = 0, ..., n - 1}, {@code w = exp(2 * pi * i / n)} and
* {@code i = sqrt(-1)}.
* </p>
* <p>
* Note that {@code n} is positive for forward transform and negative
* for inverse transform.
* Note that {@code n} can be positive of negative
* </p>
* <ul>
* <li>{@code abs(n)} is always the number of roots of unity.</li>
* <li>If {@code n > 0}, then the roots are stored in counter-clockwise order.</li>
* <li>If {@code n < 0}, then the roots are stored in clockwise order.</p>
* </ul>
*
* @param n number of roots of unity to compute, positive for forward
* transform, negative for inverse transform
* @param n the (signed) number of roots of unity to be computed
* @throws ZeroException if {@code n = 0}
*/
public synchronized void computeOmega(int n) throws ZeroException {
@ -105,7 +121,7 @@ public class RootsOfUnity implements Serializable {
LocalizedFormats.CANNOT_COMPUTE_0TH_ROOT_OF_UNITY);
}
isForward = n > 0;
isCounterClockWise = n > 0;
// avoid repetitive calculations
final int absN = FastMath.abs(n);
@ -114,34 +130,31 @@ public class RootsOfUnity implements Serializable {
return;
}
// calculate everything from scratch, for both forward and inverse
// versions
// calculate everything from scratch
final double t = 2.0 * FastMath.PI / absN;
final double cosT = FastMath.cos(t);
final double sinT = FastMath.sin(t);
omegaReal = new double[absN];
omegaImaginaryForward = new double[absN];
omegaImaginaryInverse = new double[absN];
omegaImaginaryCounterClockwise = new double[absN];
omegaImaginaryClockwise = new double[absN];
omegaReal[0] = 1.0;
omegaImaginaryForward[0] = 0.0;
omegaImaginaryInverse[0] = 0.0;
omegaImaginaryCounterClockwise[0] = 0.0;
omegaImaginaryClockwise[0] = 0.0;
for (int i = 1; i < absN; i++) {
omegaReal[i] = omegaReal[i - 1] * cosT +
omegaImaginaryForward[i - 1] * sinT;
omegaImaginaryForward[i] = omegaImaginaryForward[i - 1] * cosT -
omegaReal[i - 1] * sinT;
omegaImaginaryInverse[i] = -omegaImaginaryForward[i];
omegaReal[i] = omegaReal[i - 1] * cosT -
omegaImaginaryCounterClockwise[i - 1] * sinT;
omegaImaginaryCounterClockwise[i] = omegaReal[i - 1] * sinT +
omegaImaginaryCounterClockwise[i - 1] * cosT;
omegaImaginaryClockwise[i] = -omegaImaginaryCounterClockwise[i];
}
omegaCount = absN;
}
/**
* Get the real part of the {@code k}<sup>th</sup>
* {@code n}<sup>th</sup> root of unity.
* Get the real part of the {@code k}-th {@code n}-th root of unity.
*
* @param k index of the {@code n}<sup>th</sup> root of unity
* @return real part of the {@code k}<sup>th</sup>
* {@code n}<sup>th</sup> root of unity
* @param k index of the {@code n}-th root of unity
* @return real part of the {@code k}-th {@code n}-th root of unity
* @throws MathIllegalStateException if no roots of unity have been
* computed yet
* @throws MathIllegalArgumentException if {@code k} is out of range
@ -165,12 +178,10 @@ public class RootsOfUnity implements Serializable {
}
/**
* Get the imaginary part of the {@code k}<sup>th</sup>
* {@code n}<sup>th</sup> root of unity.
* Get the imaginary part of the {@code k}-th {@code n}-th root of unity.
*
* @param k index of the {@code n}<sup>th</sup> root of unity
* @return imaginary part of the {@code k}<sup>th</sup>
* {@code n}<sup>th</sup> root of unity
* @param k index of the {@code n}-th root of unity
* @return imaginary part of the {@code k}-th {@code n}-th root of unity
* @throws MathIllegalStateException if no roots of unity have been
* computed yet
* @throws OutOfRangeException if {@code k} is out of range
@ -190,7 +201,7 @@ public class RootsOfUnity implements Serializable {
Integer.valueOf(omegaCount - 1));
}
return isForward ? omegaImaginaryForward[k] :
omegaImaginaryInverse[k];
return isCounterClockWise ? omegaImaginaryCounterClockwise[k] :
omegaImaginaryClockwise[k];
}
}