From 0a5cd11327d50e5906fb4dc08bce5baea6b2d247 Mon Sep 17 00:00:00 2001
From: Thomas Neidhart
- * The function should be continuous but not necessarily smooth. Calling this method is equivalent to call
- * {@code addObservedPoint(1.0, x, y)}.
- * Usage example:
- * The algorithm used to guess the coefficients is as follows: We know f (t) at some sampling points ti and want to find a,
- * ω and φ such that f (t) = a cos (ω t + φ).
- * From the analytical expression, we can compute two primitives :
- *
- *
- * where the subscripts indicate the partial derivative with respect to
- * the corresponding variable(s).
- *
- * @param beta List of function values and function partial derivatives
- * values.
- * @return the spline coefficients.
- */
- private double[] computeSplineCoefficients(double[] beta) {
- final double[] a = new double[NUM_COEFF];
-
- for (int i = 0; i < NUM_COEFF; i++) {
- double result = 0;
- final double[] row = AINV[i];
- for (int j = 0; j < NUM_COEFF; j++) {
- result += row[j] * beta[j];
- }
- a[i] = result;
- }
-
- return a;
- }
-}
-
-/**
- * 2D-spline function.
- *
- */
-class BicubicSplineFunction implements BivariateFunction {
- /** Number of points. */
- private static final short N = 4;
- /** Coefficients */
- private final double[][] a;
- /** First partial derivative along x. */
- private final BivariateFunction partialDerivativeX;
- /** First partial derivative along y. */
- private final BivariateFunction partialDerivativeY;
- /** Second partial derivative along x. */
- private final BivariateFunction partialDerivativeXX;
- /** Second partial derivative along y. */
- private final BivariateFunction partialDerivativeYY;
- /** Second crossed partial derivative. */
- private final BivariateFunction partialDerivativeXY;
-
- /**
- * Simple constructor.
- *
- * @param coeff Spline coefficients.
- */
- public BicubicSplineFunction(double[] coeff) {
- this(coeff, false);
- }
-
- /**
- * Simple constructor.
- *
- * @param coeff Spline coefficients.
- * @param initializeDerivatives Whether to initialize the internal data
- * needed for calling any of the methods that compute the partial derivatives
- * this function.
- */
- public BicubicSplineFunction(double[] coeff,
- boolean initializeDerivatives) {
- a = new double[N][N];
- for (int i = 0; i < N; i++) {
- for (int j = 0; j < N; j++) {
- a[i][j] = coeff[i * N + j];
- }
- }
-
- if (initializeDerivatives) {
- // Compute all partial derivatives functions.
- final double[][] aX = new double[N][N];
- final double[][] aY = new double[N][N];
- final double[][] aXX = new double[N][N];
- final double[][] aYY = new double[N][N];
- final double[][] aXY = new double[N][N];
-
- for (int i = 0; i < N; i++) {
- for (int j = 0; j < N; j++) {
- final double c = a[i][j];
- aX[i][j] = i * c;
- aY[i][j] = j * c;
- aXX[i][j] = (i - 1) * aX[i][j];
- aYY[i][j] = (j - 1) * aY[i][j];
- aXY[i][j] = j * aX[i][j];
- }
- }
-
- partialDerivativeX = new BivariateFunction() {
- public double value(double x, double y) {
- final double x2 = x * x;
- final double[] pX = {0, 1, x, x2};
-
- final double y2 = y * y;
- final double y3 = y2 * y;
- final double[] pY = {1, y, y2, y3};
-
- return apply(pX, pY, aX);
- }
- };
- partialDerivativeY = new BivariateFunction() {
- public double value(double x, double y) {
- final double x2 = x * x;
- final double x3 = x2 * x;
- final double[] pX = {1, x, x2, x3};
-
- final double y2 = y * y;
- final double[] pY = {0, 1, y, y2};
-
- return apply(pX, pY, aY);
- }
- };
- partialDerivativeXX = new BivariateFunction() {
- public double value(double x, double y) {
- final double[] pX = {0, 0, 1, x};
-
- final double y2 = y * y;
- final double y3 = y2 * y;
- final double[] pY = {1, y, y2, y3};
-
- return apply(pX, pY, aXX);
- }
- };
- partialDerivativeYY = new BivariateFunction() {
- public double value(double x, double y) {
- final double x2 = x * x;
- final double x3 = x2 * x;
- final double[] pX = {1, x, x2, x3};
-
- final double[] pY = {0, 0, 1, y};
-
- return apply(pX, pY, aYY);
- }
- };
- partialDerivativeXY = new BivariateFunction() {
- public double value(double x, double y) {
- final double x2 = x * x;
- final double[] pX = {0, 1, x, x2};
-
- final double y2 = y * y;
- final double[] pY = {0, 1, y, y2};
-
- return apply(pX, pY, aXY);
- }
- };
- } else {
- partialDerivativeX = null;
- partialDerivativeY = null;
- partialDerivativeXX = null;
- partialDerivativeYY = null;
- partialDerivativeXY = null;
- }
- }
-
- /**
- * {@inheritDoc}
- */
- public double value(double x, double y) {
- if (x < 0 || x > 1) {
- throw new OutOfRangeException(x, 0, 1);
- }
- if (y < 0 || y > 1) {
- throw new OutOfRangeException(y, 0, 1);
- }
-
- final double x2 = x * x;
- final double x3 = x2 * x;
- final double[] pX = {1, x, x2, x3};
-
- final double y2 = y * y;
- final double y3 = y2 * y;
- final double[] pY = {1, y, y2, y3};
-
- return apply(pX, pY, a);
- }
-
- /**
- * Compute the value of the bicubic polynomial.
- *
- * @param pX Powers of the x-coordinate.
- * @param pY Powers of the y-coordinate.
- * @param coeff Spline coefficients.
- * @return the interpolated value.
- */
- private double apply(double[] pX, double[] pY, double[][] coeff) {
- double result = 0;
- for (int i = 0; i < N; i++) {
- for (int j = 0; j < N; j++) {
- result += coeff[i][j] * pX[i] * pY[j];
- }
- }
-
- return result;
- }
-
- /**
- * @return the partial derivative wrt {@code x}.
- */
- public BivariateFunction partialDerivativeX() {
- return partialDerivativeX;
- }
- /**
- * @return the partial derivative wrt {@code y}.
- */
- public BivariateFunction partialDerivativeY() {
- return partialDerivativeY;
- }
- /**
- * @return the second partial derivative wrt {@code x}.
- */
- public BivariateFunction partialDerivativeXX() {
- return partialDerivativeXX;
- }
- /**
- * @return the second partial derivative wrt {@code y}.
- */
- public BivariateFunction partialDerivativeYY() {
- return partialDerivativeYY;
- }
- /**
- * @return the second partial cross-derivative.
- */
- public BivariateFunction partialDerivativeXY() {
- return partialDerivativeXY;
- }
-}
diff --git a/src/main/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolator.java b/src/main/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolator.java
deleted file mode 100644
index 53e726f18..000000000
--- a/src/main/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolator.java
+++ /dev/null
@@ -1,176 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.interpolation;
-
-import org.apache.commons.math4.analysis.UnivariateFunction;
-import org.apache.commons.math4.analysis.polynomials.PolynomialSplineFunction;
-import org.apache.commons.math4.exception.DimensionMismatchException;
-import org.apache.commons.math4.exception.NoDataException;
-import org.apache.commons.math4.exception.NonMonotonicSequenceException;
-import org.apache.commons.math4.exception.NumberIsTooSmallException;
-import org.apache.commons.math4.util.MathArrays;
-
-/**
- * Generates a bicubic interpolating function. Due to numerical accuracy issues this should not
- * be used.
- *
- * @since 2.2
- * @deprecated as of 3.4 replaced by {@link org.apache.commons.math4.analysis.interpolation.PiecewiseBicubicSplineInterpolator}
- */
-@Deprecated
-public class BicubicSplineInterpolator
- implements BivariateGridInterpolator {
- /** Whether to initialize internal data used to compute the analytical
- derivatives of the splines. */
- private final boolean initializeDerivatives;
-
- /**
- * Default constructor.
- * The argument {@link #BicubicSplineInterpolator(boolean) initializeDerivatives}
- * is set to {@code false}.
- */
- public BicubicSplineInterpolator() {
- this(false);
- }
-
- /**
- * Creates an interpolator.
- *
- * @param initializeDerivatives Whether to initialize the internal data
- * needed for calling any of the methods that compute the partial derivatives
- * of the {@link BicubicSplineInterpolatingFunction function} returned from
- * the call to {@link #interpolate(double[],double[],double[][]) interpolate}.
- */
- public BicubicSplineInterpolator(boolean initializeDerivatives) {
- this.initializeDerivatives = initializeDerivatives;
- }
-
- /**
- * {@inheritDoc}
- */
- public BicubicSplineInterpolatingFunction interpolate(final double[] xval,
- final double[] yval,
- final double[][] fval)
- throws NoDataException, DimensionMismatchException,
- NonMonotonicSequenceException, NumberIsTooSmallException {
- if (xval.length == 0 || yval.length == 0 || fval.length == 0) {
- throw new NoDataException();
- }
- if (xval.length != fval.length) {
- throw new DimensionMismatchException(xval.length, fval.length);
- }
-
- MathArrays.checkOrder(xval);
- MathArrays.checkOrder(yval);
-
- final int xLen = xval.length;
- final int yLen = yval.length;
-
- // Samples (first index is y-coordinate, i.e. subarray variable is x)
- // 0 <= i < xval.length
- // 0 <= j < yval.length
- // fX[j][i] = f(xval[i], yval[j])
- final double[][] fX = new double[yLen][xLen];
- for (int i = 0; i < xLen; i++) {
- if (fval[i].length != yLen) {
- throw new DimensionMismatchException(fval[i].length, yLen);
- }
-
- for (int j = 0; j < yLen; j++) {
- fX[j][i] = fval[i][j];
- }
- }
-
- final SplineInterpolator spInterpolator = new SplineInterpolator();
-
- // For each line y[j] (0 <= j < yLen), construct a 1D spline with
- // respect to variable x
- final PolynomialSplineFunction[] ySplineX = new PolynomialSplineFunction[yLen];
- for (int j = 0; j < yLen; j++) {
- ySplineX[j] = spInterpolator.interpolate(xval, fX[j]);
- }
-
- // For each line x[i] (0 <= i < xLen), construct a 1D spline with
- // respect to variable y generated by array fY_1[i]
- final PolynomialSplineFunction[] xSplineY = new PolynomialSplineFunction[xLen];
- for (int i = 0; i < xLen; i++) {
- xSplineY[i] = spInterpolator.interpolate(yval, fval[i]);
- }
-
- // Partial derivatives with respect to x at the grid knots
- final double[][] dFdX = new double[xLen][yLen];
- for (int j = 0; j < yLen; j++) {
- final UnivariateFunction f = ySplineX[j].derivative();
- for (int i = 0; i < xLen; i++) {
- dFdX[i][j] = f.value(xval[i]);
- }
- }
-
- // Partial derivatives with respect to y at the grid knots
- final double[][] dFdY = new double[xLen][yLen];
- for (int i = 0; i < xLen; i++) {
- final UnivariateFunction f = xSplineY[i].derivative();
- for (int j = 0; j < yLen; j++) {
- dFdY[i][j] = f.value(yval[j]);
- }
- }
-
- // Cross partial derivatives
- final double[][] d2FdXdY = new double[xLen][yLen];
- for (int i = 0; i < xLen ; i++) {
- final int nI = nextIndex(i, xLen);
- final int pI = previousIndex(i);
- for (int j = 0; j < yLen; j++) {
- final int nJ = nextIndex(j, yLen);
- final int pJ = previousIndex(j);
- d2FdXdY[i][j] = (fval[nI][nJ] - fval[nI][pJ] -
- fval[pI][nJ] + fval[pI][pJ]) /
- ((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ]));
- }
- }
-
- // Create the interpolating splines
- return new BicubicSplineInterpolatingFunction(xval, yval, fval,
- dFdX, dFdY, d2FdXdY,
- initializeDerivatives);
- }
-
- /**
- * Computes the next index of an array, clipping if necessary.
- * It is assumed (but not checked) that {@code i >= 0}.
- *
- * @param i Index.
- * @param max Upper limit of the array.
- * @return the next index.
- */
- private int nextIndex(int i, int max) {
- final int index = i + 1;
- return index < max ? index : index - 1;
- }
- /**
- * Computes the previous index of an array, clipping if necessary.
- * It is assumed (but not checked) that {@code i} is smaller than the size
- * of the array.
- *
- * @param i Index.
- * @return the previous index.
- */
- private int previousIndex(int i) {
- final int index = i - 1;
- return index >= 0 ? index : 0;
- }
-}
diff --git a/src/main/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolator.java b/src/main/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolator.java
deleted file mode 100644
index 243da0c25..000000000
--- a/src/main/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolator.java
+++ /dev/null
@@ -1,171 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.interpolation;
-
-import org.apache.commons.math4.analysis.polynomials.PolynomialFunction;
-import org.apache.commons.math4.exception.DimensionMismatchException;
-import org.apache.commons.math4.exception.NoDataException;
-import org.apache.commons.math4.exception.NonMonotonicSequenceException;
-import org.apache.commons.math4.exception.NotPositiveException;
-import org.apache.commons.math4.exception.NullArgumentException;
-import org.apache.commons.math4.fitting.PolynomialFitter;
-import org.apache.commons.math4.optim.SimpleVectorValueChecker;
-import org.apache.commons.math4.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer;
-import org.apache.commons.math4.util.MathArrays;
-import org.apache.commons.math4.util.Precision;
-
-/**
- * Generates a bicubic interpolation function.
- * Prior to generating the interpolating function, the input is smoothed using
- * polynomial fitting.
- *
- * @since 2.2
- * @deprecated To be removed in 4.0 (see MATH-1166).
- */
-@Deprecated
-public class SmoothingPolynomialBicubicSplineInterpolator
- extends BicubicSplineInterpolator {
- /** Fitter for x. */
- private final PolynomialFitter xFitter;
- /** Degree of the fitting polynomial. */
- private final int xDegree;
- /** Fitter for y. */
- private final PolynomialFitter yFitter;
- /** Degree of the fitting polynomial. */
- private final int yDegree;
-
- /**
- * Default constructor. The degree of the fitting polynomials is set to 3.
- */
- public SmoothingPolynomialBicubicSplineInterpolator() {
- this(3);
- }
-
- /**
- * @param degree Degree of the polynomial fitting functions.
- * @exception NotPositiveException if degree is not positive
- */
- public SmoothingPolynomialBicubicSplineInterpolator(int degree)
- throws NotPositiveException {
- this(degree, degree);
- }
-
- /**
- * @param xDegree Degree of the polynomial fitting functions along the
- * x-dimension.
- * @param yDegree Degree of the polynomial fitting functions along the
- * y-dimension.
- * @exception NotPositiveException if degrees are not positive
- */
- public SmoothingPolynomialBicubicSplineInterpolator(int xDegree, int yDegree)
- throws NotPositiveException {
- if (xDegree < 0) {
- throw new NotPositiveException(xDegree);
- }
- if (yDegree < 0) {
- throw new NotPositiveException(yDegree);
- }
- this.xDegree = xDegree;
- this.yDegree = yDegree;
-
- final double safeFactor = 1e2;
- final SimpleVectorValueChecker checker
- = new SimpleVectorValueChecker(safeFactor * Precision.EPSILON,
- safeFactor * Precision.SAFE_MIN);
- xFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
- yFitter = new PolynomialFitter(new GaussNewtonOptimizer(false, checker));
- }
-
- /**
- * {@inheritDoc}
- */
- @Override
- public BicubicSplineInterpolatingFunction interpolate(final double[] xval,
- final double[] yval,
- final double[][] fval)
- throws NoDataException, NullArgumentException,
- DimensionMismatchException, NonMonotonicSequenceException {
- if (xval.length == 0 || yval.length == 0 || fval.length == 0) {
- throw new NoDataException();
- }
- if (xval.length != fval.length) {
- throw new DimensionMismatchException(xval.length, fval.length);
- }
-
- final int xLen = xval.length;
- final int yLen = yval.length;
-
- for (int i = 0; i < xLen; i++) {
- if (fval[i].length != yLen) {
- throw new DimensionMismatchException(fval[i].length, yLen);
- }
- }
-
- MathArrays.checkOrder(xval);
- MathArrays.checkOrder(yval);
-
- // For each line y[j] (0 <= j < yLen), construct a polynomial, with
- // respect to variable x, fitting array fval[][j]
- final PolynomialFunction[] yPolyX = new PolynomialFunction[yLen];
- for (int j = 0; j < yLen; j++) {
- xFitter.clearObservations();
- for (int i = 0; i < xLen; i++) {
- xFitter.addObservedPoint(1, xval[i], fval[i][j]);
- }
-
- // Initial guess for the fit is zero for each coefficients (of which
- // there are "xDegree" + 1).
- yPolyX[j] = new PolynomialFunction(xFitter.fit(new double[xDegree + 1]));
- }
-
- // For every knot (xval[i], yval[j]) of the grid, calculate corrected
- // values fval_1
- final double[][] fval_1 = new double[xLen][yLen];
- for (int j = 0; j < yLen; j++) {
- final PolynomialFunction f = yPolyX[j];
- for (int i = 0; i < xLen; i++) {
- fval_1[i][j] = f.value(xval[i]);
- }
- }
-
- // For each line x[i] (0 <= i < xLen), construct a polynomial, with
- // respect to variable y, fitting array fval_1[i][]
- final PolynomialFunction[] xPolyY = new PolynomialFunction[xLen];
- for (int i = 0; i < xLen; i++) {
- yFitter.clearObservations();
- for (int j = 0; j < yLen; j++) {
- yFitter.addObservedPoint(1, yval[j], fval_1[i][j]);
- }
-
- // Initial guess for the fit is zero for each coefficients (of which
- // there are "yDegree" + 1).
- xPolyY[i] = new PolynomialFunction(yFitter.fit(new double[yDegree + 1]));
- }
-
- // For every knot (xval[i], yval[j]) of the grid, calculate corrected
- // values fval_2
- final double[][] fval_2 = new double[xLen][yLen];
- for (int i = 0; i < xLen; i++) {
- final PolynomialFunction f = xPolyY[i];
- for (int j = 0; j < yLen; j++) {
- fval_2[i][j] = f.value(yval[j]);
- }
- }
-
- return super.interpolate(xval, yval, fval_2);
- }
-}
diff --git a/src/main/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatingFunction.java b/src/main/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatingFunction.java
deleted file mode 100644
index fa5f76ce1..000000000
--- a/src/main/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatingFunction.java
+++ /dev/null
@@ -1,482 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.interpolation;
-
-import org.apache.commons.math4.analysis.TrivariateFunction;
-import org.apache.commons.math4.exception.DimensionMismatchException;
-import org.apache.commons.math4.exception.NoDataException;
-import org.apache.commons.math4.exception.NonMonotonicSequenceException;
-import org.apache.commons.math4.exception.OutOfRangeException;
-import org.apache.commons.math4.util.MathArrays;
-
-/**
- * Function that implements the
- *
- * tricubic spline interpolation, as proposed in
- *
- * Tricubic interpolation in three dimensions
- *
- * @since 2.2
- * @deprecated To be removed in 4.0 (see MATH-1166).
- */
-@Deprecated
-public class TricubicSplineInterpolatingFunction
- implements TrivariateFunction {
- /**
- * Matrix to compute the spline coefficients from the function values
- * and function derivatives values
- */
- private static final double[][] AINV = {
- { 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { -3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { -3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 9,-9,-9,9,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,4,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { -6,6,6,-6,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { -6,6,6,-6,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 4,-4,-4,4,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,4,2,2,1,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,-2,-2,-1,-1,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,-2,-1,-2,-1,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,1,1,1,1,0,0,0,0 },
- {-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 9,-9,0,0,-9,9,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,0,0,0,0,0,0,0,0,4,2,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { -6,6,0,0,6,-6,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,0,0,-9,9,0,0,0,0,0,0,0,0,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,4,2,0,0,2,1,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,-2,-2,0,0,-1,-1,0,0 },
- { 9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0 },
- { -27,27,27,-27,27,-27,-27,27,-18,-9,18,9,18,9,-18,-9,-18,18,-9,9,18,-18,9,-9,-18,18,18,-18,-9,9,9,-9,-12,-6,-6,-3,12,6,6,3,-12,-6,12,6,-6,-3,6,3,-12,12,-6,6,-6,6,-3,3,-8,-4,-4,-2,-4,-2,-2,-1 },
- { 18,-18,-18,18,-18,18,18,-18,9,9,-9,-9,-9,-9,9,9,12,-12,6,-6,-12,12,-6,6,12,-12,-12,12,6,-6,-6,6,6,6,3,3,-6,-6,-3,-3,6,6,-6,-6,3,3,-3,-3,8,-8,4,-4,4,-4,2,-2,4,4,2,2,2,2,1,1 },
- { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0 },
- { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,9,-9,9,-9,-9,9,-9,9,12,-12,-12,12,6,-6,-6,6,6,3,6,3,-6,-3,-6,-3,8,4,-8,-4,4,2,-4,-2,6,-6,6,-6,3,-3,3,-3,4,2,4,2,2,1,2,1 },
- { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-6,6,-6,6,6,-6,6,-6,-8,8,8,-8,-4,4,4,-4,-3,-3,-3,-3,3,3,3,3,-4,-4,4,4,-2,-2,2,2,-4,4,-4,4,-2,2,-2,2,-2,-2,-2,-2,-1,-1,-1,-1 },
- { 2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { -6,6,0,0,6,-6,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 4,-4,0,0,-4,4,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,-2,-1,0,0,-2,-1,0,0 },
- { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,0,0,-4,4,0,0,0,0,0,0,0,0,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,1,1,0,0,1,1,0,0 },
- { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0 },
- { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,12,-12,6,-6,-12,12,-6,6,9,-9,-9,9,9,-9,-9,9,8,4,4,2,-8,-4,-4,-2,6,3,-6,-3,6,3,-6,-3,6,-6,3,-3,6,-6,3,-3,4,2,2,1,4,2,2,1 },
- { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-8,8,-4,4,8,-8,4,-4,-6,6,6,-6,-6,6,6,-6,-4,-4,-2,-2,4,4,2,2,-3,-3,3,3,-3,-3,3,3,-4,4,-2,2,-4,4,-2,2,-2,-2,-1,-1,-2,-2,-1,-1 },
- { 4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0 },
- { 0,0,0,0,0,0,0,0,4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0 },
- { -12,12,12,-12,12,-12,-12,12,-8,-4,8,4,8,4,-8,-4,-6,6,-6,6,6,-6,6,-6,-6,6,6,-6,-6,6,6,-6,-4,-2,-4,-2,4,2,4,2,-4,-2,4,2,-4,-2,4,2,-3,3,-3,3,-3,3,-3,3,-2,-1,-2,-1,-2,-1,-2,-1 },
- { 8,-8,-8,8,-8,8,8,-8,4,4,-4,-4,-4,-4,4,4,4,-4,4,-4,-4,4,-4,4,4,-4,-4,4,4,-4,-4,4,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,1,1,1,1,1,1,1,1 }
- };
-
- /** Samples x-coordinates */
- private final double[] xval;
- /** Samples y-coordinates */
- private final double[] yval;
- /** Samples z-coordinates */
- private final double[] zval;
- /** Set of cubic splines pacthing the whole data grid */
- private final TricubicSplineFunction[][][] splines;
-
- /**
- * @param x Sample values of the x-coordinate, in increasing order.
- * @param y Sample values of the y-coordinate, in increasing order.
- * @param z Sample values of the y-coordinate, in increasing order.
- * @param f Values of the function on every grid point.
- * @param dFdX Values of the partial derivative of function with respect to x on every grid point.
- * @param dFdY Values of the partial derivative of function with respect to y on every grid point.
- * @param dFdZ Values of the partial derivative of function with respect to z on every grid point.
- * @param d2FdXdY Values of the cross partial derivative of function on every grid point.
- * @param d2FdXdZ Values of the cross partial derivative of function on every grid point.
- * @param d2FdYdZ Values of the cross partial derivative of function on every grid point.
- * @param d3FdXdYdZ Values of the cross partial derivative of function on every grid point.
- * @throws NoDataException if any of the arrays has zero length.
- * @throws DimensionMismatchException if the various arrays do not contain the expected number of elements.
- * @throws NonMonotonicSequenceException if {@code x}, {@code y} or {@code z} are not strictly increasing.
- */
- public TricubicSplineInterpolatingFunction(double[] x,
- double[] y,
- double[] z,
- double[][][] f,
- double[][][] dFdX,
- double[][][] dFdY,
- double[][][] dFdZ,
- double[][][] d2FdXdY,
- double[][][] d2FdXdZ,
- double[][][] d2FdYdZ,
- double[][][] d3FdXdYdZ)
- throws NoDataException,
- DimensionMismatchException,
- NonMonotonicSequenceException {
- final int xLen = x.length;
- final int yLen = y.length;
- final int zLen = z.length;
-
- if (xLen == 0 || yLen == 0 || z.length == 0 || f.length == 0 || f[0].length == 0) {
- throw new NoDataException();
- }
- if (xLen != f.length) {
- throw new DimensionMismatchException(xLen, f.length);
- }
- if (xLen != dFdX.length) {
- throw new DimensionMismatchException(xLen, dFdX.length);
- }
- if (xLen != dFdY.length) {
- throw new DimensionMismatchException(xLen, dFdY.length);
- }
- if (xLen != dFdZ.length) {
- throw new DimensionMismatchException(xLen, dFdZ.length);
- }
- if (xLen != d2FdXdY.length) {
- throw new DimensionMismatchException(xLen, d2FdXdY.length);
- }
- if (xLen != d2FdXdZ.length) {
- throw new DimensionMismatchException(xLen, d2FdXdZ.length);
- }
- if (xLen != d2FdYdZ.length) {
- throw new DimensionMismatchException(xLen, d2FdYdZ.length);
- }
- if (xLen != d3FdXdYdZ.length) {
- throw new DimensionMismatchException(xLen, d3FdXdYdZ.length);
- }
-
- MathArrays.checkOrder(x);
- MathArrays.checkOrder(y);
- MathArrays.checkOrder(z);
-
- xval = x.clone();
- yval = y.clone();
- zval = z.clone();
-
- final int lastI = xLen - 1;
- final int lastJ = yLen - 1;
- final int lastK = zLen - 1;
- splines = new TricubicSplineFunction[lastI][lastJ][lastK];
-
- for (int i = 0; i < lastI; i++) {
- if (f[i].length != yLen) {
- throw new DimensionMismatchException(f[i].length, yLen);
- }
- if (dFdX[i].length != yLen) {
- throw new DimensionMismatchException(dFdX[i].length, yLen);
- }
- if (dFdY[i].length != yLen) {
- throw new DimensionMismatchException(dFdY[i].length, yLen);
- }
- if (dFdZ[i].length != yLen) {
- throw new DimensionMismatchException(dFdZ[i].length, yLen);
- }
- if (d2FdXdY[i].length != yLen) {
- throw new DimensionMismatchException(d2FdXdY[i].length, yLen);
- }
- if (d2FdXdZ[i].length != yLen) {
- throw new DimensionMismatchException(d2FdXdZ[i].length, yLen);
- }
- if (d2FdYdZ[i].length != yLen) {
- throw new DimensionMismatchException(d2FdYdZ[i].length, yLen);
- }
- if (d3FdXdYdZ[i].length != yLen) {
- throw new DimensionMismatchException(d3FdXdYdZ[i].length, yLen);
- }
-
- final int ip1 = i + 1;
- for (int j = 0; j < lastJ; j++) {
- if (f[i][j].length != zLen) {
- throw new DimensionMismatchException(f[i][j].length, zLen);
- }
- if (dFdX[i][j].length != zLen) {
- throw new DimensionMismatchException(dFdX[i][j].length, zLen);
- }
- if (dFdY[i][j].length != zLen) {
- throw new DimensionMismatchException(dFdY[i][j].length, zLen);
- }
- if (dFdZ[i][j].length != zLen) {
- throw new DimensionMismatchException(dFdZ[i][j].length, zLen);
- }
- if (d2FdXdY[i][j].length != zLen) {
- throw new DimensionMismatchException(d2FdXdY[i][j].length, zLen);
- }
- if (d2FdXdZ[i][j].length != zLen) {
- throw new DimensionMismatchException(d2FdXdZ[i][j].length, zLen);
- }
- if (d2FdYdZ[i][j].length != zLen) {
- throw new DimensionMismatchException(d2FdYdZ[i][j].length, zLen);
- }
- if (d3FdXdYdZ[i][j].length != zLen) {
- throw new DimensionMismatchException(d3FdXdYdZ[i][j].length, zLen);
- }
-
- final int jp1 = j + 1;
- for (int k = 0; k < lastK; k++) {
- final int kp1 = k + 1;
-
- final double[] beta = new double[] {
- f[i][j][k], f[ip1][j][k],
- f[i][jp1][k], f[ip1][jp1][k],
- f[i][j][kp1], f[ip1][j][kp1],
- f[i][jp1][kp1], f[ip1][jp1][kp1],
-
- dFdX[i][j][k], dFdX[ip1][j][k],
- dFdX[i][jp1][k], dFdX[ip1][jp1][k],
- dFdX[i][j][kp1], dFdX[ip1][j][kp1],
- dFdX[i][jp1][kp1], dFdX[ip1][jp1][kp1],
-
- dFdY[i][j][k], dFdY[ip1][j][k],
- dFdY[i][jp1][k], dFdY[ip1][jp1][k],
- dFdY[i][j][kp1], dFdY[ip1][j][kp1],
- dFdY[i][jp1][kp1], dFdY[ip1][jp1][kp1],
-
- dFdZ[i][j][k], dFdZ[ip1][j][k],
- dFdZ[i][jp1][k], dFdZ[ip1][jp1][k],
- dFdZ[i][j][kp1], dFdZ[ip1][j][kp1],
- dFdZ[i][jp1][kp1], dFdZ[ip1][jp1][kp1],
-
- d2FdXdY[i][j][k], d2FdXdY[ip1][j][k],
- d2FdXdY[i][jp1][k], d2FdXdY[ip1][jp1][k],
- d2FdXdY[i][j][kp1], d2FdXdY[ip1][j][kp1],
- d2FdXdY[i][jp1][kp1], d2FdXdY[ip1][jp1][kp1],
-
- d2FdXdZ[i][j][k], d2FdXdZ[ip1][j][k],
- d2FdXdZ[i][jp1][k], d2FdXdZ[ip1][jp1][k],
- d2FdXdZ[i][j][kp1], d2FdXdZ[ip1][j][kp1],
- d2FdXdZ[i][jp1][kp1], d2FdXdZ[ip1][jp1][kp1],
-
- d2FdYdZ[i][j][k], d2FdYdZ[ip1][j][k],
- d2FdYdZ[i][jp1][k], d2FdYdZ[ip1][jp1][k],
- d2FdYdZ[i][j][kp1], d2FdYdZ[ip1][j][kp1],
- d2FdYdZ[i][jp1][kp1], d2FdYdZ[ip1][jp1][kp1],
-
- d3FdXdYdZ[i][j][k], d3FdXdYdZ[ip1][j][k],
- d3FdXdYdZ[i][jp1][k], d3FdXdYdZ[ip1][jp1][k],
- d3FdXdYdZ[i][j][kp1], d3FdXdYdZ[ip1][j][kp1],
- d3FdXdYdZ[i][jp1][kp1], d3FdXdYdZ[ip1][jp1][kp1],
- };
-
- splines[i][j][k] = new TricubicSplineFunction(computeSplineCoefficients(beta));
- }
- }
- }
- }
-
- /**
- * {@inheritDoc}
- *
- * @throws OutOfRangeException if any of the variables is outside its interpolation range.
- */
- public double value(double x, double y, double z)
- throws OutOfRangeException {
- final int i = searchIndex(x, xval);
- if (i == -1) {
- throw new OutOfRangeException(x, xval[0], xval[xval.length - 1]);
- }
- final int j = searchIndex(y, yval);
- if (j == -1) {
- throw new OutOfRangeException(y, yval[0], yval[yval.length - 1]);
- }
- final int k = searchIndex(z, zval);
- if (k == -1) {
- throw new OutOfRangeException(z, zval[0], zval[zval.length - 1]);
- }
-
- final double xN = (x - xval[i]) / (xval[i + 1] - xval[i]);
- final double yN = (y - yval[j]) / (yval[j + 1] - yval[j]);
- final double zN = (z - zval[k]) / (zval[k + 1] - zval[k]);
-
- return splines[i][j][k].value(xN, yN, zN);
- }
-
- /**
- * @param c Coordinate.
- * @param val Coordinate samples.
- * @return the index in {@code val} corresponding to the interval containing {@code c}, or {@code -1}
- * if {@code c} is out of the range defined by the end values of {@code val}.
- */
- private int searchIndex(double c, double[] val) {
- if (c < val[0]) {
- return -1;
- }
-
- final int max = val.length;
- for (int i = 1; i < max; i++) {
- if (c <= val[i]) {
- return i - 1;
- }
- }
-
- return -1;
- }
-
- /**
- * Compute the spline coefficients from the list of function values and
- * function partial derivatives values at the four corners of a grid
- * element. They must be specified in the following order:
- *
- * F. Lekien and J. Marsden
- * Int. J. Numer. Meth. Engng 2005; 63:455-471
- *
- *
- * where the subscripts indicate the partial derivative with respect to
- * the corresponding variable(s).
- *
- * @param beta List of function values and function partial derivatives values.
- * @return the spline coefficients.
- */
- private double[] computeSplineCoefficients(double[] beta) {
- final int sz = 64;
- final double[] a = new double[sz];
-
- for (int i = 0; i < sz; i++) {
- double result = 0;
- final double[] row = AINV[i];
- for (int j = 0; j < sz; j++) {
- result += row[j] * beta[j];
- }
- a[i] = result;
- }
-
- return a;
- }
-}
-
-/**
- * 3D-spline function.
- *
- */
-class TricubicSplineFunction
- implements TrivariateFunction {
- /** Number of points. */
- private static final short N = 4;
- /** Coefficients */
- private final double[][][] a = new double[N][N][N];
-
- /**
- * @param aV List of spline coefficients.
- */
- public TricubicSplineFunction(double[] aV) {
- for (int i = 0; i < N; i++) {
- for (int j = 0; j < N; j++) {
- for (int k = 0; k < N; k++) {
- a[i][j][k] = aV[i + N * (j + N * k)];
- }
- }
- }
- }
-
- /**
- * @param x x-coordinate of the interpolation point.
- * @param y y-coordinate of the interpolation point.
- * @param z z-coordinate of the interpolation point.
- * @return the interpolated value.
- * @throws OutOfRangeException if {@code x}, {@code y} or
- * {@code z} are not in the interval {@code [0, 1]}.
- */
- public double value(double x, double y, double z)
- throws OutOfRangeException {
- if (x < 0 || x > 1) {
- throw new OutOfRangeException(x, 0, 1);
- }
- if (y < 0 || y > 1) {
- throw new OutOfRangeException(y, 0, 1);
- }
- if (z < 0 || z > 1) {
- throw new OutOfRangeException(z, 0, 1);
- }
-
- final double x2 = x * x;
- final double x3 = x2 * x;
- final double[] pX = { 1, x, x2, x3 };
-
- final double y2 = y * y;
- final double y3 = y2 * y;
- final double[] pY = { 1, y, y2, y3 };
-
- final double z2 = z * z;
- final double z3 = z2 * z;
- final double[] pZ = { 1, z, z2, z3 };
-
- double result = 0;
- for (int i = 0; i < N; i++) {
- for (int j = 0; j < N; j++) {
- for (int k = 0; k < N; k++) {
- result += a[i][j][k] * pX[i] * pY[j] * pZ[k];
- }
- }
- }
-
- return result;
- }
-}
diff --git a/src/main/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolator.java b/src/main/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolator.java
deleted file mode 100644
index c068f74a3..000000000
--- a/src/main/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolator.java
+++ /dev/null
@@ -1,201 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.interpolation;
-
-import org.apache.commons.math4.exception.DimensionMismatchException;
-import org.apache.commons.math4.exception.NoDataException;
-import org.apache.commons.math4.exception.NonMonotonicSequenceException;
-import org.apache.commons.math4.exception.NumberIsTooSmallException;
-import org.apache.commons.math4.util.MathArrays;
-
-/**
- * Generates a tricubic interpolating function.
- *
- * @since 2.2
- * @deprecated To be removed in 4.0 (see MATH-1166).
- */
-@Deprecated
-public class TricubicSplineInterpolator
- implements TrivariateGridInterpolator {
- /**
- * {@inheritDoc}
- */
- public TricubicSplineInterpolatingFunction interpolate(final double[] xval,
- final double[] yval,
- final double[] zval,
- final double[][][] fval)
- throws NoDataException, NumberIsTooSmallException,
- DimensionMismatchException, NonMonotonicSequenceException {
- if (xval.length == 0 || yval.length == 0 || zval.length == 0 || fval.length == 0) {
- throw new NoDataException();
- }
- if (xval.length != fval.length) {
- throw new DimensionMismatchException(xval.length, fval.length);
- }
-
- MathArrays.checkOrder(xval);
- MathArrays.checkOrder(yval);
- MathArrays.checkOrder(zval);
-
- final int xLen = xval.length;
- final int yLen = yval.length;
- final int zLen = zval.length;
-
- // Samples, re-ordered as (z, x, y) and (y, z, x) tuplets
- // fvalXY[k][i][j] = f(xval[i], yval[j], zval[k])
- // fvalZX[j][k][i] = f(xval[i], yval[j], zval[k])
- final double[][][] fvalXY = new double[zLen][xLen][yLen];
- final double[][][] fvalZX = new double[yLen][zLen][xLen];
- for (int i = 0; i < xLen; i++) {
- if (fval[i].length != yLen) {
- throw new DimensionMismatchException(fval[i].length, yLen);
- }
-
- for (int j = 0; j < yLen; j++) {
- if (fval[i][j].length != zLen) {
- throw new DimensionMismatchException(fval[i][j].length, zLen);
- }
-
- for (int k = 0; k < zLen; k++) {
- final double v = fval[i][j][k];
- fvalXY[k][i][j] = v;
- fvalZX[j][k][i] = v;
- }
- }
- }
-
- final BicubicSplineInterpolator bsi = new BicubicSplineInterpolator(true);
-
- // For each line x[i] (0 <= i < xLen), construct a 2D spline in y and z
- final BicubicSplineInterpolatingFunction[] xSplineYZ
- = new BicubicSplineInterpolatingFunction[xLen];
- for (int i = 0; i < xLen; i++) {
- xSplineYZ[i] = bsi.interpolate(yval, zval, fval[i]);
- }
-
- // For each line y[j] (0 <= j < yLen), construct a 2D spline in z and x
- final BicubicSplineInterpolatingFunction[] ySplineZX
- = new BicubicSplineInterpolatingFunction[yLen];
- for (int j = 0; j < yLen; j++) {
- ySplineZX[j] = bsi.interpolate(zval, xval, fvalZX[j]);
- }
-
- // For each line z[k] (0 <= k < zLen), construct a 2D spline in x and y
- final BicubicSplineInterpolatingFunction[] zSplineXY
- = new BicubicSplineInterpolatingFunction[zLen];
- for (int k = 0; k < zLen; k++) {
- zSplineXY[k] = bsi.interpolate(xval, yval, fvalXY[k]);
- }
-
- // Partial derivatives wrt x and wrt y
- final double[][][] dFdX = new double[xLen][yLen][zLen];
- final double[][][] dFdY = new double[xLen][yLen][zLen];
- final double[][][] d2FdXdY = new double[xLen][yLen][zLen];
- for (int k = 0; k < zLen; k++) {
- final BicubicSplineInterpolatingFunction f = zSplineXY[k];
- for (int i = 0; i < xLen; i++) {
- final double x = xval[i];
- for (int j = 0; j < yLen; j++) {
- final double y = yval[j];
- dFdX[i][j][k] = f.partialDerivativeX(x, y);
- dFdY[i][j][k] = f.partialDerivativeY(x, y);
- d2FdXdY[i][j][k] = f.partialDerivativeXY(x, y);
- }
- }
- }
-
- // Partial derivatives wrt y and wrt z
- final double[][][] dFdZ = new double[xLen][yLen][zLen];
- final double[][][] d2FdYdZ = new double[xLen][yLen][zLen];
- for (int i = 0; i < xLen; i++) {
- final BicubicSplineInterpolatingFunction f = xSplineYZ[i];
- for (int j = 0; j < yLen; j++) {
- final double y = yval[j];
- for (int k = 0; k < zLen; k++) {
- final double z = zval[k];
- dFdZ[i][j][k] = f.partialDerivativeY(y, z);
- d2FdYdZ[i][j][k] = f.partialDerivativeXY(y, z);
- }
- }
- }
-
- // Partial derivatives wrt x and wrt z
- final double[][][] d2FdZdX = new double[xLen][yLen][zLen];
- for (int j = 0; j < yLen; j++) {
- final BicubicSplineInterpolatingFunction f = ySplineZX[j];
- for (int k = 0; k < zLen; k++) {
- final double z = zval[k];
- for (int i = 0; i < xLen; i++) {
- final double x = xval[i];
- d2FdZdX[i][j][k] = f.partialDerivativeXY(z, x);
- }
- }
- }
-
- // Third partial cross-derivatives
- final double[][][] d3FdXdYdZ = new double[xLen][yLen][zLen];
- for (int i = 0; i < xLen ; i++) {
- final int nI = nextIndex(i, xLen);
- final int pI = previousIndex(i);
- for (int j = 0; j < yLen; j++) {
- final int nJ = nextIndex(j, yLen);
- final int pJ = previousIndex(j);
- for (int k = 0; k < zLen; k++) {
- final int nK = nextIndex(k, zLen);
- final int pK = previousIndex(k);
-
- // XXX Not sure about this formula
- d3FdXdYdZ[i][j][k] = (fval[nI][nJ][nK] - fval[nI][pJ][nK] -
- fval[pI][nJ][nK] + fval[pI][pJ][nK] -
- fval[nI][nJ][pK] + fval[nI][pJ][pK] +
- fval[pI][nJ][pK] - fval[pI][pJ][pK]) /
- ((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ]) * (zval[nK] - zval[pK])) ;
- }
- }
- }
-
- // Create the interpolating splines
- return new TricubicSplineInterpolatingFunction(xval, yval, zval, fval,
- dFdX, dFdY, dFdZ,
- d2FdXdY, d2FdZdX, d2FdYdZ,
- d3FdXdYdZ);
- }
-
- /**
- * Compute the next index of an array, clipping if necessary.
- * It is assumed (but not checked) that {@code i} is larger than or equal to 0}.
- *
- * @param i Index
- * @param max Upper limit of the array
- * @return the next index
- */
- private int nextIndex(int i, int max) {
- final int index = i + 1;
- return index < max ? index : index - 1;
- }
- /**
- * Compute the previous index of an array, clipping if necessary.
- * It is assumed (but not checked) that {@code i} is smaller than the size of the array.
- *
- * @param i Index
- * @return the previous index
- */
- private int previousIndex(int i) {
- final int index = i - 1;
- return index >= 0 ? index : 0;
- }
-}
diff --git a/src/main/java/org/apache/commons/math4/analysis/solvers/NewtonSolver.java b/src/main/java/org/apache/commons/math4/analysis/solvers/NewtonSolver.java
deleted file mode 100644
index f3770308e..000000000
--- a/src/main/java/org/apache/commons/math4/analysis/solvers/NewtonSolver.java
+++ /dev/null
@@ -1,92 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.commons.math4.analysis.solvers;
-
-import org.apache.commons.math4.analysis.DifferentiableUnivariateFunction;
-import org.apache.commons.math4.exception.TooManyEvaluationsException;
-import org.apache.commons.math4.util.FastMath;
-
-/**
- * Implements
- * Newton's Method for finding zeros of real univariate functions.
- *
- * When a univariate real function y = f(x) does depend on some
- * unknown parameters p0, p1 ... pn-1,
- * this class can be used to find these parameters. It does this
- * by fitting the curve so it remains very close to a set of
- * observed points (x0, y0), (x1,
- * y1) ... (xk-1, yk-1). This fitting
- * is done by finding the parameters values that minimizes the objective
- * function ∑(yi-f(xi))2. This is
- * really a least squares problem.
- *
- * @param
- * GaussianFitter fitter = new GaussianFitter(
- * new LevenbergMarquardtOptimizer());
- * fitter.addObservedPoint(4.0254623, 531026.0);
- * fitter.addObservedPoint(4.03128248, 984167.0);
- * fitter.addObservedPoint(4.03839603, 1887233.0);
- * fitter.addObservedPoint(4.04421621, 2687152.0);
- * fitter.addObservedPoint(4.05132976, 3461228.0);
- * fitter.addObservedPoint(4.05326982, 3580526.0);
- * fitter.addObservedPoint(4.05779662, 3439750.0);
- * fitter.addObservedPoint(4.0636168, 2877648.0);
- * fitter.addObservedPoint(4.06943698, 2175960.0);
- * fitter.addObservedPoint(4.07525716, 1447024.0);
- * fitter.addObservedPoint(4.08237071, 717104.0);
- * fitter.addObservedPoint(4.08366408, 620014.0);
- * double[] parameters = fitter.fit();
- *
- *
- * @since 2.2
- * @deprecated As of 3.3. Please use {@link GaussianCurveFitter} and
- * {@link WeightedObservedPoints} instead.
- */
-@Deprecated
-public class GaussianFitter extends CurveFitter
- *
- * @return the parameters of the Gaussian function that best fits the
- * observed points (in the same order as above).
- * @since 3.0
- */
- public double[] fit(double[] initialGuess) {
- final Gaussian.Parametric f = new Gaussian.Parametric() {
- @Override
- public double value(double x, double ... p) {
- double v = Double.POSITIVE_INFINITY;
- try {
- v = super.value(x, p);
- } catch (NotStrictlyPositiveException e) { // NOPMD
- // Do nothing.
- }
- return v;
- }
-
- @Override
- public double[] gradient(double x, double ... p) {
- double[] v = { Double.POSITIVE_INFINITY,
- Double.POSITIVE_INFINITY,
- Double.POSITIVE_INFINITY };
- try {
- v = super.gradient(x, p);
- } catch (NotStrictlyPositiveException e) { // NOPMD
- // Do nothing.
- }
- return v;
- }
- };
-
- return fit(f, initialGuess);
- }
-
- /**
- * Fits a Gaussian function to the observed points.
- *
- * @return the parameters of the Gaussian function that best fits the
- * observed points (in the same order as above).
- */
- public double[] fit() {
- final double[] guess = (new ParameterGuesser(getObservations())).guess();
- return fit(guess);
- }
-
- /**
- * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
- * of a {@link org.apache.commons.math4.analysis.function.Gaussian.Parametric}
- * based on the specified observed points.
- */
- public static class ParameterGuesser {
- /** Normalization factor. */
- private final double norm;
- /** Mean. */
- private final double mean;
- /** Standard deviation. */
- private final double sigma;
-
- /**
- * Constructs instance with the specified observed points.
- *
- * @param observations Observed points from which to guess the
- * parameters of the Gaussian.
- * @throws NullArgumentException if {@code observations} is
- * {@code null}.
- * @throws NumberIsTooSmallException if there are less than 3
- * observations.
- */
- public ParameterGuesser(WeightedObservedPoint[] observations) {
- if (observations == null) {
- throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
- }
- if (observations.length < 3) {
- throw new NumberIsTooSmallException(observations.length, 3, true);
- }
-
- final WeightedObservedPoint[] sorted = sortObservations(observations);
- final double[] params = basicGuess(sorted);
-
- norm = params[0];
- mean = params[1];
- sigma = params[2];
- }
-
- /**
- * Gets an estimation of the parameters.
- *
- * @return the guessed parameters, in the following order:
- *
- *
- */
- public double[] guess() {
- return new double[] { norm, mean, sigma };
- }
-
- /**
- * Sort the observations.
- *
- * @param unsorted Input observations.
- * @return the input observations, sorted.
- */
- private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
- final WeightedObservedPoint[] observations = unsorted.clone();
- final Comparatorf (t) = a cos (ω t + φ)
. They are
- * searched by a least square estimator initialized with a rough guess
- * based on integrals.
- *
- * @since 2.0
- * @deprecated As of 3.3. Please use {@link HarmonicCurveFitter} and
- * {@link WeightedObservedPoints} instead.
- */
-@Deprecated
-public class HarmonicFitter extends CurveFitter
- *
- * @return the parameters of the harmonic function that best fits the
- * observed points (in the same order as above).
- */
- public double[] fit(double[] initialGuess) {
- return fit(new HarmonicOscillator.Parametric(), initialGuess);
- }
-
- /**
- * Fit an harmonic function to the observed points.
- * An initial guess will be automatically computed.
- *
- * @return the parameters of the harmonic function that best fits the
- * observed points (see the other {@link #fit(double[]) fit} method.
- * @throws NumberIsTooSmallException if the sample is too short for the
- * the first guess to be computed.
- * @throws ZeroException if the first guess cannot be computed because
- * the abscissa range is zero.
- */
- public double[] fit() {
- return fit((new ParameterGuesser(getObservations())).guess());
- }
-
- /**
- * This class guesses harmonic coefficients from a sample.
- *
- * If2 (t) = ∫ f2 = a2 × [t + S (t)] / 2
- * If'2 (t) = ∫ f'2 = a2 ω2 × [t - S (t)] / 2
- * where S (t) = sin (2 (ω t + φ)) / (2 ω)
- *
- *
We can remove S between these expressions : - *
- * If'2 (t) = a2 ω2 t - ω2 If2 (t) - *- * - * - *
The preceding expression shows that If'2 (t) is a linear - * combination of both t and If2 (t): If'2 (t) = A × t + B × If2 (t) - *
- * - *From the primitive, we can deduce the same form for definite - * integrals between t1 and ti for each ti : - *
- * If2 (ti) - If2 (t1) = A × (ti - t1) + B × (If2 (ti) - If2 (t1)) - *- * - * - *
We can find the coefficients A and B that best fit the sample - * to this linear expression by computing the definite integrals for - * each sample points. - *
- * - *For a bilinear expression z (xi, yi) = A × xi + B × yi, the - * coefficients A and B that minimize a least square criterion - * ∑ (zi - z (xi, yi))2 are given by these expressions:
- *- * - * ∑yiyi ∑xizi - ∑xiyi ∑yizi - * A = ------------------------ - * ∑xixi ∑yiyi - ∑xiyi ∑xiyi - * - * ∑xixi ∑yizi - ∑xiyi ∑xizi - * B = ------------------------ - * ∑xixi ∑yiyi - ∑xiyi ∑xiyi - *- * - * - * - *
In fact, we can assume both a and ω are positive and - * compute them directly, knowing that A = a2 ω2 and that - * B = - ω2. The complete algorithm is therefore:
- *- * - * for each ti from t1 to tn-1, compute: - * f (ti) - * f' (ti) = (f (ti+1) - f(ti-1)) / (ti+1 - ti-1) - * xi = ti - t1 - * yi = ∫ f2 from t1 to ti - * zi = ∫ f'2 from t1 to ti - * update the sums ∑xixi, ∑yiyi, ∑xiyi, ∑xizi and ∑yizi - * end for - * - * |-------------------------- - * \ | ∑yiyi ∑xizi - ∑xiyi ∑yizi - * a = \ | ------------------------ - * \| ∑xiyi ∑xizi - ∑xixi ∑yizi - * - * - * |-------------------------- - * \ | ∑xiyi ∑xizi - ∑xixi ∑yizi - * ω = \ | ------------------------ - * \| ∑xixi ∑yiyi - ∑xiyi ∑xiyi - * - *- * - * - *
Once we know ω, we can compute: - *
- * fc = ω f (t) cos (ω t) - f' (t) sin (ω t) - * fs = ω f (t) sin (ω t) + f' (t) cos (ω t) - *- * - * - *
It appears that fc = a ω cos (φ)
and
- * fs = -a ω sin (φ)
, so we can use these
- * expressions to compute φ. The best estimate over the sample is
- * given by averaging these expressions.
- *
Since integrals and means are involved in the preceding - * estimations, these operations run in O(n) time, where n is the - * number of measurements.
- */ - public static class ParameterGuesser { - /** Amplitude. */ - private final double a; - /** Angular frequency. */ - private final double omega; - /** Phase. */ - private final double phi; - - /** - * Simple constructor. - * - * @param observations Sampled observations. - * @throws NumberIsTooSmallException if the sample is too short. - * @throws ZeroException if the abscissa range is zero. - * @throws MathIllegalStateException when the guessing procedure cannot - * produce sensible results. - */ - public ParameterGuesser(WeightedObservedPoint[] observations) { - if (observations.length < 4) { - throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, - observations.length, 4, true); - } - - final WeightedObservedPoint[] sorted = sortObservations(observations); - - final double aOmega[] = guessAOmega(sorted); - a = aOmega[0]; - omega = aOmega[1]; - - phi = guessPhi(sorted); - } - - /** - * Gets an estimation of the parameters. - * - * @return the guessed parameters, in the following order: - *- * z = 2 x - 3 y + 5 - */ - @Ignore@Test - public void testPlane() { - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2, 2.5}; - // Function values - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - return 2 * x - 3 * y + 5; - } - }; - double[][] zval = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - zval[i][j] = f.value(xval[i], yval[j]); - } - } - // Partial derivatives with respect to x - double[][] dZdX = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdX[i][j] = 2; - } - } - // Partial derivatives with respect to y - double[][] dZdY = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdY[i][j] = -3; - } - } - // Partial cross-derivatives - double[][] dZdXdY = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdXdY[i][j] = 0; - } - } - - BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, - dZdX, dZdY, dZdXdY); - double x, y; - double expected, result; - - x = 4; - y = -3; - expected = f.value(x, y); - result = bcf.value(x, y); - Assert.assertEquals("On sample point", - expected, result, 1e-15); - - x = 4.5; - y = -1.5; - expected = f.value(x, y); - result = bcf.value(x, y); - Assert.assertEquals("Half-way between sample points (middle of the patch)", - expected, result, 0.3); - - x = 3.5; - y = -3.5; - expected = f.value(x, y); - result = bcf.value(x, y); - Assert.assertEquals("Half-way between sample points (border of the patch)", - expected, result, 0.3); - } - - /** - * Test for a paraboloid. - *
- * z = 2 x2 - 3 y2 + 4 x y - 5 - */ - @Ignore@Test - public void testParaboloid() { - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2, 2.5}; - // Function values - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - return 2 * x * x - 3 * y * y + 4 * x * y - 5; - } - }; - double[][] zval = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - zval[i][j] = f.value(xval[i], yval[j]); - } - } - // Partial derivatives with respect to x - double[][] dZdX = new double[xval.length][yval.length]; - BivariateFunction dfdX = new BivariateFunction() { - public double value(double x, double y) { - return 4 * (x + y); - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdX[i][j] = dfdX.value(xval[i], yval[j]); - } - } - // Partial derivatives with respect to y - double[][] dZdY = new double[xval.length][yval.length]; - BivariateFunction dfdY = new BivariateFunction() { - public double value(double x, double y) { - return 4 * x - 6 * y; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdY[i][j] = dfdY.value(xval[i], yval[j]); - } - } - // Partial cross-derivatives - double[][] dZdXdY = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdXdY[i][j] = 4; - } - } - - BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, - dZdX, dZdY, dZdXdY); - double x, y; - double expected, result; - - x = 4; - y = -3; - expected = f.value(x, y); - result = bcf.value(x, y); - Assert.assertEquals("On sample point", - expected, result, 1e-15); - - x = 4.5; - y = -1.5; - expected = f.value(x, y); - result = bcf.value(x, y); - Assert.assertEquals("Half-way between sample points (middle of the patch)", - expected, result, 2); - - x = 3.5; - y = -3.5; - expected = f.value(x, y); - result = bcf.value(x, y); - Assert.assertEquals("Half-way between sample points (border of the patch)", - expected, result, 2); - } - - /** - * Test for partial derivatives of {@link BicubicSplineFunction}. - *
- * f(x, y) = ΣiΣj (i+1) (j+2) xi yj - */ - @Ignore@Test - public void testSplinePartialDerivatives() { - final int N = 4; - final double[] coeff = new double[16]; - - for (int i = 0; i < N; i++) { - for (int j = 0; j < N; j++) { - coeff[i + N * j] = (i + 1) * (j + 2); - } - } - - final BicubicSplineFunction f = new BicubicSplineFunction(coeff); - BivariateFunction derivative; - final double x = 0.435; - final double y = 0.776; - final double tol = 1e-13; - - derivative = new BivariateFunction() { - public double value(double x, double y) { - final double x2 = x * x; - final double y2 = y * y; - final double y3 = y2 * y; - final double yFactor = 2 + 3 * y + 4 * y2 + 5 * y3; - return yFactor * (2 + 6 * x + 12 * x2); - } - }; - Assert.assertEquals("dFdX", derivative.value(x, y), - f.partialDerivativeX().value(x, y), tol); - - derivative = new BivariateFunction() { - public double value(double x, double y) { - final double x2 = x * x; - final double x3 = x2 * x; - final double y2 = y * y; - final double xFactor = 1 + 2 * x + 3 * x2 + 4 * x3; - return xFactor * (3 + 8 * y + 15 * y2); - } - }; - Assert.assertEquals("dFdY", derivative.value(x, y), - f.partialDerivativeY().value(x, y), tol); - - derivative = new BivariateFunction() { - public double value(double x, double y) { - final double y2 = y * y; - final double y3 = y2 * y; - final double yFactor = 2 + 3 * y + 4 * y2 + 5 * y3; - return yFactor * (6 + 24 * x); - } - }; - Assert.assertEquals("d2FdX2", derivative.value(x, y), - f.partialDerivativeXX().value(x, y), tol); - - derivative = new BivariateFunction() { - public double value(double x, double y) { - final double x2 = x * x; - final double x3 = x2 * x; - final double xFactor = 1 + 2 * x + 3 * x2 + 4 * x3; - return xFactor * (8 + 30 * y); - } - }; - Assert.assertEquals("d2FdY2", derivative.value(x, y), - f.partialDerivativeYY().value(x, y), tol); - - derivative = new BivariateFunction() { - public double value(double x, double y) { - final double x2 = x * x; - final double y2 = y * y; - final double yFactor = 3 + 8 * y + 15 * y2; - return yFactor * (2 + 6 * x + 12 * x2); - } - }; - Assert.assertEquals("d2FdXdY", derivative.value(x, y), - f.partialDerivativeXY().value(x, y), tol); - } - - /** - * Test that the partial derivatives computed from a - * {@link BicubicSplineInterpolatingFunction} match the input data. - *
- * f(x, y) = 5 - * - 3 x + 2 y - * - x y + 2 x2 - 3 y2 - * + 4 x2 y - x y2 - 3 x3 + y3 - */ - @Ignore@Test - public void testMatchingPartialDerivatives() { - final int sz = 21; - double[] val = new double[sz]; - // Coordinate values - final double delta = 1d / (sz - 1); - for (int i = 0; i < sz; i++) { - val[i] = i * delta; - } - // Function values - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - final double x2 = x * x; - final double x3 = x2 * x; - final double y2 = y * y; - final double y3 = y2 * y; - - return 5 - - 3 * x + 2 * y - - x * y + 2 * x2 - 3 * y2 - + 4 * x2 * y - x * y2 - 3 * x3 + y3; - } - }; - double[][] fval = new double[sz][sz]; - for (int i = 0; i < sz; i++) { - for (int j = 0; j < sz; j++) { - fval[i][j] = f.value(val[i], val[j]); - } - } - // Partial derivatives with respect to x - double[][] dFdX = new double[sz][sz]; - BivariateFunction dfdX = new BivariateFunction() { - public double value(double x, double y) { - final double x2 = x * x; - final double y2 = y * y; - return - 3 - y + 4 * x + 8 * x * y - y2 - 9 * x2; - } - }; - for (int i = 0; i < sz; i++) { - for (int j = 0; j < sz; j++) { - dFdX[i][j] = dfdX.value(val[i], val[j]); - } - } - // Partial derivatives with respect to y - double[][] dFdY = new double[sz][sz]; - BivariateFunction dfdY = new BivariateFunction() { - public double value(double x, double y) { - final double x2 = x * x; - final double y2 = y * y; - return 2 - x - 6 * y + 4 * x2 - 2 * x * y + 3 * y2; - } - }; - for (int i = 0; i < sz; i++) { - for (int j = 0; j < sz; j++) { - dFdY[i][j] = dfdY.value(val[i], val[j]); - } - } - // Partial cross-derivatives - double[][] d2FdXdY = new double[sz][sz]; - BivariateFunction d2fdXdY = new BivariateFunction() { - public double value(double x, double y) { - return -1 + 8 * x - 2 * y; - } - }; - for (int i = 0; i < sz; i++) { - for (int j = 0; j < sz; j++) { - d2FdXdY[i][j] = d2fdXdY.value(val[i], val[j]); - } - } - - BicubicSplineInterpolatingFunction bcf - = new BicubicSplineInterpolatingFunction(val, val, fval, dFdX, dFdY, d2FdXdY); - - double x, y; - double expected, result; - - final double tol = 1e-12; - for (int i = 0; i < sz; i++) { - x = val[i]; - for (int j = 0; j < sz; j++) { - y = val[j]; - - expected = dfdX.value(x, y); - result = bcf.partialDerivativeX(x, y); - Assert.assertEquals(x + " " + y + " dFdX", expected, result, tol); - - expected = dfdY.value(x, y); - result = bcf.partialDerivativeY(x, y); - Assert.assertEquals(x + " " + y + " dFdY", expected, result, tol); - - expected = d2fdXdY.value(x, y); - result = bcf.partialDerivativeXY(x, y); - Assert.assertEquals(x + " " + y + " d2FdXdY", expected, result, tol); - } - } - } - - /** - * Interpolating a plane. - *
- * z = 2 x - 3 y + 5 - */ - @Test - public void testInterpolation1() { - final int sz = 21; - double[] xval = new double[sz]; - double[] yval = new double[sz]; - // Coordinate values - final double delta = 1d / (sz - 1); - for (int i = 0; i < sz; i++) { - xval[i] = -1 + 15 * i * delta; - yval[i] = -20 + 30 * i * delta; - } - - // Function values - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - return 2 * x - 3 * y + 5; - } - }; - double[][] zval = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - zval[i][j] = f.value(xval[i], yval[j]); - } - } - // Partial derivatives with respect to x - double[][] dZdX = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdX[i][j] = 2; - } - } - // Partial derivatives with respect to y - double[][] dZdY = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdY[i][j] = -3; - } - } - // Partial cross-derivatives - double[][] dZdXdY = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdXdY[i][j] = 0; - } - } - - final BivariateFunction bcf - = new BicubicSplineInterpolatingFunction(xval, yval, zval, - dZdX, dZdY, dZdXdY); - double x, y; - - final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed. - final UniformRealDistribution distX - = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]); - final UniformRealDistribution distY - = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]); - - final int numSamples = 50; - final double tol = 6; - for (int i = 0; i < numSamples; i++) { - x = distX.sample(); - for (int j = 0; j < numSamples; j++) { - y = distY.sample(); -// System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y)); - Assert.assertEquals(f.value(x, y), bcf.value(x, y), tol); - } -// System.out.println(); - } - } - - /** - * Interpolating a paraboloid. - *
- * z = 2 x2 - 3 y2 + 4 x y - 5 - */ - @Test - public void testInterpolation2() { - final int sz = 21; - double[] xval = new double[sz]; - double[] yval = new double[sz]; - // Coordinate values - final double delta = 1d / (sz - 1); - for (int i = 0; i < sz; i++) { - xval[i] = -1 + 15 * i * delta; - yval[i] = -20 + 30 * i * delta; - } - - // Function values - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - return 2 * x * x - 3 * y * y + 4 * x * y - 5; - } - }; - double[][] zval = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - zval[i][j] = f.value(xval[i], yval[j]); - } - } - // Partial derivatives with respect to x - double[][] dZdX = new double[xval.length][yval.length]; - BivariateFunction dfdX = new BivariateFunction() { - public double value(double x, double y) { - return 4 * (x + y); - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdX[i][j] = dfdX.value(xval[i], yval[j]); - } - } - // Partial derivatives with respect to y - double[][] dZdY = new double[xval.length][yval.length]; - BivariateFunction dfdY = new BivariateFunction() { - public double value(double x, double y) { - return 4 * x - 6 * y; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdY[i][j] = dfdY.value(xval[i], yval[j]); - } - } - // Partial cross-derivatives - double[][] dZdXdY = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - dZdXdY[i][j] = 4; - } - } - - BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, - dZdX, dZdY, dZdXdY); - double x, y; - - final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed. - final UniformRealDistribution distX - = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]); - final UniformRealDistribution distY - = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]); - - final double tol = 224; - for (int i = 0; i < sz; i++) { - x = distX.sample(); - for (int j = 0; j < sz; j++) { - y = distY.sample(); -// System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y)); - Assert.assertEquals(f.value(x, y), bcf.value(x, y), tol); - } -// System.out.println(); - } - } - - @Test - public void testIsValidPoint() { - final double xMin = -12; - final double xMax = 34; - final double yMin = 5; - final double yMax = 67; - final double[] xval = new double[] { xMin, xMax }; - final double[] yval = new double[] { yMin, yMax }; - final double[][] f = new double[][] { { 1, 2 }, - { 3, 4 } }; - final double[][] dFdX = f; - final double[][] dFdY = f; - final double[][] dFdXdY = f; - - final BicubicSplineInterpolatingFunction bcf - = new BicubicSplineInterpolatingFunction(xval, yval, f, - dFdX, dFdY, dFdXdY); - - double x, y; - - x = xMin; - y = yMin; - Assert.assertTrue(bcf.isValidPoint(x, y)); - // Ensure that no exception is thrown. - bcf.value(x, y); - - x = xMax; - y = yMax; - Assert.assertTrue(bcf.isValidPoint(x, y)); - // Ensure that no exception is thrown. - bcf.value(x, y); - - final double xRange = xMax - xMin; - final double yRange = yMax - yMin; - x = xMin + xRange / 3.4; - y = yMin + yRange / 1.2; - Assert.assertTrue(bcf.isValidPoint(x, y)); - // Ensure that no exception is thrown. - bcf.value(x, y); - - final double small = 1e-8; - x = xMin - small; - y = yMax; - Assert.assertFalse(bcf.isValidPoint(x, y)); - // Ensure that an exception would have been thrown. - try { - bcf.value(x, y); - Assert.fail("OutOfRangeException expected"); - } catch (OutOfRangeException expected) {} - - x = xMin; - y = yMax + small; - Assert.assertFalse(bcf.isValidPoint(x, y)); - // Ensure that an exception would have been thrown. - try { - bcf.value(x, y); - Assert.fail("OutOfRangeException expected"); - } catch (OutOfRangeException expected) {} - } -} diff --git a/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatorTest.java b/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatorTest.java deleted file mode 100644 index 91f1f664b..000000000 --- a/src/test/java/org/apache/commons/math4/analysis/interpolation/BicubicSplineInterpolatorTest.java +++ /dev/null @@ -1,186 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.analysis.interpolation; - -import org.apache.commons.math4.analysis.BivariateFunction; -import org.apache.commons.math4.analysis.interpolation.BicubicSplineInterpolator; -import org.apache.commons.math4.analysis.interpolation.BivariateGridInterpolator; -import org.apache.commons.math4.distribution.UniformRealDistribution; -import org.apache.commons.math4.exception.DimensionMismatchException; -import org.apache.commons.math4.exception.MathIllegalArgumentException; -import org.apache.commons.math4.random.RandomGenerator; -import org.apache.commons.math4.random.Well19937c; -import org.junit.Assert; -import org.junit.Test; - -/** - * Test case for the bicubic interpolator. - * - */ -public final class BicubicSplineInterpolatorTest { - /** - * Test preconditions. - */ - @Test - public void testPreconditions() { - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2.5}; - double[][] zval = new double[xval.length][yval.length]; - - BivariateGridInterpolator interpolator = new BicubicSplineInterpolator(); - - @SuppressWarnings("unused") - BivariateFunction p = interpolator.interpolate(xval, yval, zval); - - double[] wxval = new double[] {3, 2, 5, 6.5}; - try { - p = interpolator.interpolate(wxval, yval, zval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - - double[] wyval = new double[] {-4, -3, -1, -1}; - try { - p = interpolator.interpolate(xval, wyval, zval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - - double[][] wzval = new double[xval.length][yval.length + 1]; - try { - p = interpolator.interpolate(xval, yval, wzval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - wzval = new double[xval.length - 1][yval.length]; - try { - p = interpolator.interpolate(xval, yval, wzval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - } - - /** - * Interpolating a plane. - *
- * z = 2 x - 3 y + 5 - */ - @Test - public void testInterpolation1() { - final int sz = 21; - double[] xval = new double[sz]; - double[] yval = new double[sz]; - // Coordinate values - final double delta = 1d / (sz - 1); - for (int i = 0; i < sz; i++) { - xval[i] = -1 + 15 * i * delta; - yval[i] = -20 + 30 * i * delta; - } - - // Function values - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - return 2 * x - 3 * y + 5; - } - }; - double[][] zval = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - zval[i][j] = f.value(xval[i], yval[j]); - } - } - - BivariateGridInterpolator interpolator = new BicubicSplineInterpolator(); - BivariateFunction p = interpolator.interpolate(xval, yval, zval); - double x, y; - - final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed. - final UniformRealDistribution distX - = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]); - final UniformRealDistribution distY - = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]); - - final int numSamples = 50; - final double tol = 6; - for (int i = 0; i < numSamples; i++) { - x = distX.sample(); - for (int j = 0; j < numSamples; j++) { - y = distY.sample(); -// System.out.println(x + " " + y + " " + f.value(x, y) + " " + p.value(x, y)); - Assert.assertEquals(f.value(x, y), p.value(x, y), tol); - } -// System.out.println(); - } - } - - /** - * Interpolating a paraboloid. - *
- * z = 2 x2 - 3 y2 + 4 x y - 5 - */ - @Test - public void testInterpolation2() { - final int sz = 21; - double[] xval = new double[sz]; - double[] yval = new double[sz]; - // Coordinate values - final double delta = 1d / (sz - 1); - for (int i = 0; i < sz; i++) { - xval[i] = -1 + 15 * i * delta; - yval[i] = -20 + 30 * i * delta; - } - - // Function values - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - return 2 * x * x - 3 * y * y + 4 * x * y - 5; - } - }; - double[][] zval = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - zval[i][j] = f.value(xval[i], yval[j]); - } - } - - BivariateGridInterpolator interpolator = new BicubicSplineInterpolator(); - BivariateFunction p = interpolator.interpolate(xval, yval, zval); - double x, y; - - final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed. - final UniformRealDistribution distX - = new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]); - final UniformRealDistribution distY - = new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]); - - final int numSamples = 50; - final double tol = 251; - for (int i = 0; i < numSamples; i++) { - x = distX.sample(); - for (int j = 0; j < numSamples; j++) { - y = distY.sample(); -// System.out.println(x + " " + y + " " + f.value(x, y) + " " + p.value(x, y)); - Assert.assertEquals(f.value(x, y), p.value(x, y), tol); - } -// System.out.println(); - } - } -} diff --git a/src/test/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolatorTest.java b/src/test/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolatorTest.java deleted file mode 100644 index 9cdd88880..000000000 --- a/src/test/java/org/apache/commons/math4/analysis/interpolation/SmoothingPolynomialBicubicSplineInterpolatorTest.java +++ /dev/null @@ -1,181 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.analysis.interpolation; - -import org.apache.commons.math4.analysis.BivariateFunction; -import org.apache.commons.math4.analysis.interpolation.BivariateGridInterpolator; -import org.apache.commons.math4.analysis.interpolation.SmoothingPolynomialBicubicSplineInterpolator; -import org.apache.commons.math4.exception.DimensionMismatchException; -import org.apache.commons.math4.exception.MathIllegalArgumentException; -import org.apache.commons.math4.util.FastMath; -import org.junit.Assert; -import org.junit.Test; - -/** - * Test case for the smoothing bicubic interpolator. - * - */ -public final class SmoothingPolynomialBicubicSplineInterpolatorTest { - /** - * Test preconditions. - */ - @Test - public void testPreconditions() { - double[] xval = new double[] {3, 4, 5, 6.5, 7.5}; - double[] yval = new double[] {-4, -3, -1, 2.5, 3}; - double[][] zval = new double[xval.length][yval.length]; - - BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(0); - - @SuppressWarnings("unused") - BivariateFunction p = interpolator.interpolate(xval, yval, zval); - - double[] wxval = new double[] {3, 2, 5, 6.5}; - try { - p = interpolator.interpolate(wxval, yval, zval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - - double[] wyval = new double[] {-4, -3, -1, -1}; - try { - p = interpolator.interpolate(xval, wyval, zval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - - double[][] wzval = new double[xval.length][yval.length + 1]; - try { - p = interpolator.interpolate(xval, yval, wzval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - wzval = new double[xval.length - 1][yval.length]; - try { - p = interpolator.interpolate(xval, yval, wzval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - wzval = new double[xval.length][yval.length - 1]; - try { - p = interpolator.interpolate(xval, yval, wzval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - } - - /** - * Test of interpolator for a plane. - *
- * z = 2 x - 3 y + 5 - */ - @Test - public void testPlane() { - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - return 2 * x - 3 * y + 5 - + ((int) (FastMath.abs(5 * x + 3 * y)) % 2 == 0 ? 1 : -1); - } - }; - - BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(1); - - double[] xval = new double[] {3, 4, 5, 6.5, 7.5}; - double[] yval = new double[] {-4, -3, -1, 2, 2.5, 3.5}; - double[][] zval = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - zval[i][j] = f.value(xval[i], yval[j]); - } - } - - BivariateFunction p = interpolator.interpolate(xval, yval, zval); - double x, y; - double expected, result; - - x = 4; - y = -3; - expected = f.value(x, y); - result = p.value(x, y); - Assert.assertEquals("On sample point", expected, result, 2); - - x = 4.5; - y = -1.5; - expected = f.value(x, y); - result = p.value(x, y); - Assert.assertEquals("half-way between sample points (middle of the patch)", expected, result, 2); - - x = 3.5; - y = -3.5; - expected = f.value(x, y); - result = p.value(x, y); - Assert.assertEquals("half-way between sample points (border of the patch)", expected, result, 2); - } - - /** - * Test of interpolator for a paraboloid. - *
- * z = 2 x2 - 3 y2 + 4 x y - 5 - */ - @Test - public void testParaboloid() { - BivariateFunction f = new BivariateFunction() { - public double value(double x, double y) { - return 2 * x * x - 3 * y * y + 4 * x * y - 5 - + ((int) (FastMath.abs(5 * x + 3 * y)) % 2 == 0 ? 1 : -1); - } - }; - - BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(4); - - double[] xval = new double[] {3, 4, 5, 6.5, 7.5, 8}; - double[] yval = new double[] {-4, -3, -2, -1, 0.5, 2.5}; - double[][] zval = new double[xval.length][yval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - zval[i][j] = f.value(xval[i], yval[j]); - } - } - - BivariateFunction p = interpolator.interpolate(xval, yval, zval); - double x, y; - double expected, result; - - x = 5; - y = 0.5; - expected = f.value(x, y); - result = p.value(x, y); - Assert.assertEquals("On sample point", expected, result, 2); - - x = 4.5; - y = -1.5; - expected = f.value(x, y); - result = p.value(x, y); - Assert.assertEquals("half-way between sample points (middle of the patch)", expected, result, 2); - - x = 3.5; - y = -3.5; - expected = f.value(x, y); - result = p.value(x, y); - Assert.assertEquals("half-way between sample points (border of the patch)", expected, result, 2); - } -} diff --git a/src/test/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatingFunctionTest.java b/src/test/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatingFunctionTest.java deleted file mode 100644 index 945e9d510..000000000 --- a/src/test/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatingFunctionTest.java +++ /dev/null @@ -1,545 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.analysis.interpolation; - -import org.apache.commons.math4.analysis.TrivariateFunction; -import org.apache.commons.math4.analysis.interpolation.TricubicSplineInterpolatingFunction; -import org.apache.commons.math4.exception.DimensionMismatchException; -import org.apache.commons.math4.exception.MathIllegalArgumentException; -import org.apache.commons.math4.util.FastMath; -import org.junit.Assert; -import org.junit.Test; - -/** - * Test case for the bicubic function. - * - */ -public final class TricubicSplineInterpolatingFunctionTest { - /** - * Test preconditions. - */ - @Test - public void testPreconditions() { - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2.5}; - double[] zval = new double[] {-12, -8, -5.5, -3, 0, 2.5}; - double[][][] fval = new double[xval.length][yval.length][zval.length]; - - @SuppressWarnings("unused") - TrivariateFunction tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, fval, fval, fval); - - double[] wxval = new double[] {3, 2, 5, 6.5}; - try { - tcf = new TricubicSplineInterpolatingFunction(wxval, yval, zval, - fval, fval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - double[] wyval = new double[] {-4, -1, -1, 2.5}; - try { - tcf = new TricubicSplineInterpolatingFunction(xval, wyval, zval, - fval, fval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - double[] wzval = new double[] {-12, -8, -9, -3, 0, 2.5}; - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, wzval, - fval, fval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - double[][][] wfval = new double[xval.length - 1][yval.length - 1][zval.length]; - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - wfval, fval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, wfval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, wfval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, wfval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - wfval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, wfval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, fval, wfval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, fval, fval, wfval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - wfval = new double[xval.length][yval.length - 1][zval.length]; - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - wfval, fval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, wfval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, wfval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, wfval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - wfval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, wfval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, fval, wfval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, fval, fval, wfval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - wfval = new double[xval.length][yval.length][zval.length - 1]; - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - wfval, fval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, wfval, fval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, wfval, fval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, wfval, - fval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - wfval, fval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, wfval, fval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, fval, wfval, fval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - try { - tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, fval, fval, fval, - fval, fval, fval, wfval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - } - - /** - * Test for a plane. - *
- * f(x, y, z) = 2 x - 3 y - 4 z + 5 - *
- */ - @Test - public void testPlane() { - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2, 2.5}; - double[] zval = new double[] {-12, -8, -5.5, -3, 0, 2.5}; - - // Function values - TrivariateFunction f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return 2 * x - 3 * y - 4 * z + 5; - } - }; - - double[][][] fval = new double[xval.length][yval.length][zval.length]; - - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - fval[i][j][k] = f.value(xval[i], yval[j], zval[k]); - } - } - } - // Partial derivatives with respect to x - double[][][] dFdX = new double[xval.length][yval.length][zval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - dFdX[i][j][k] = 2; - } - } - } - // Partial derivatives with respect to y - double[][][] dFdY = new double[xval.length][yval.length][zval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - dFdY[i][j][k] = -3; - } - } - } - - // Partial derivatives with respect to z - double[][][] dFdZ = new double[xval.length][yval.length][zval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - dFdZ[i][j][k] = -4; - } - } - } - // Partial cross-derivatives - double[][][] d2FdXdY = new double[xval.length][yval.length][zval.length]; - double[][][] d2FdXdZ = new double[xval.length][yval.length][zval.length]; - double[][][] d2FdYdZ = new double[xval.length][yval.length][zval.length]; - double[][][] d3FdXdYdZ = new double[xval.length][yval.length][zval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - d2FdXdY[i][j][k] = 0; - d2FdXdZ[i][j][k] = 0; - d2FdYdZ[i][j][k] = 0; - d3FdXdYdZ[i][j][k] = 0; - } - } - } - - TrivariateFunction tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, dFdX, dFdY, dFdZ, - d2FdXdY, d2FdXdZ, d2FdYdZ, - d3FdXdYdZ); - double x, y, z; - double expected, result; - - x = 4; - y = -3; - z = 0; - expected = f.value(x, y, z); - result = tcf.value(x, y, z); - Assert.assertEquals("On sample point", - expected, result, 1e-15); - - x = 4.5; - y = -1.5; - z = -4.25; - expected = f.value(x, y, z); - result = tcf.value(x, y, z); - Assert.assertEquals("Half-way between sample points (middle of the patch)", - expected, result, 0.3); - - x = 3.5; - y = -3.5; - z = -10; - expected = f.value(x, y, z); - result = tcf.value(x, y, z); - Assert.assertEquals("Half-way between sample points (border of the patch)", - expected, result, 0.3); - } - - /** - * Sine wave. - *- * f(x, y, z) = a cos [ω z - ky x - ky y] - *
- * with A = 0.2, ω = 0.5, kx = 2, ky = 1. - */ - @Test - public void testWave() { - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2, 2.5}; - double[] zval = new double[] {-12, -8, -5.5, -3, 0, 4}; - - final double a = 0.2; - final double omega = 0.5; - final double kx = 2; - final double ky = 1; - - // Function values - TrivariateFunction f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return a * FastMath.cos(omega * z - kx * x - ky * y); - } - }; - - double[][][] fval = new double[xval.length][yval.length][zval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - fval[i][j][k] = f.value(xval[i], yval[j], zval[k]); - } - } - } - - // Partial derivatives with respect to x - double[][][] dFdX = new double[xval.length][yval.length][zval.length]; - TrivariateFunction dFdX_f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return a * FastMath.sin(omega * z - kx * x - ky * y) * kx; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - dFdX[i][j][k] = dFdX_f.value(xval[i], yval[j], zval[k]); - } - } - } - - // Partial derivatives with respect to y - double[][][] dFdY = new double[xval.length][yval.length][zval.length]; - TrivariateFunction dFdY_f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return a * FastMath.sin(omega * z - kx * x - ky * y) * ky; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - dFdY[i][j][k] = dFdY_f.value(xval[i], yval[j], zval[k]); - } - } - } - - // Partial derivatives with respect to z - double[][][] dFdZ = new double[xval.length][yval.length][zval.length]; - TrivariateFunction dFdZ_f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return -a * FastMath.sin(omega * z - kx * x - ky * y) * omega; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - dFdZ[i][j][k] = dFdZ_f.value(xval[i], yval[j], zval[k]); - } - } - } - - // Partial second derivatives w.r.t. (x, y) - double[][][] d2FdXdY = new double[xval.length][yval.length][zval.length]; - TrivariateFunction d2FdXdY_f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return -a * FastMath.cos(omega * z - kx * x - ky * y) * kx * ky; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - d2FdXdY[i][j][k] = d2FdXdY_f.value(xval[i], yval[j], zval[k]); - } - } - } - - // Partial second derivatives w.r.t. (x, z) - double[][][] d2FdXdZ = new double[xval.length][yval.length][zval.length]; - TrivariateFunction d2FdXdZ_f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return a * FastMath.cos(omega * z - kx * x - ky * y) * kx * omega; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - d2FdXdZ[i][j][k] = d2FdXdZ_f.value(xval[i], yval[j], zval[k]); - } - } - } - - // Partial second derivatives w.r.t. (y, z) - double[][][] d2FdYdZ = new double[xval.length][yval.length][zval.length]; - TrivariateFunction d2FdYdZ_f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return a * FastMath.cos(omega * z - kx * x - ky * y) * ky * omega; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - d2FdYdZ[i][j][k] = d2FdYdZ_f.value(xval[i], yval[j], zval[k]); - } - } - } - - // Partial third derivatives - double[][][] d3FdXdYdZ = new double[xval.length][yval.length][zval.length]; - TrivariateFunction d3FdXdYdZ_f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return a * FastMath.sin(omega * z - kx * x - ky * y) * kx * ky * omega; - } - }; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - d3FdXdYdZ[i][j][k] = d3FdXdYdZ_f.value(xval[i], yval[j], zval[k]); - } - } - } - - TrivariateFunction tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, - fval, dFdX, dFdY, dFdZ, - d2FdXdY, d2FdXdZ, d2FdYdZ, - d3FdXdYdZ); - double x, y, z; - double expected, result; - - x = 4; - y = -3; - z = 0; - expected = f.value(x, y, z); - result = tcf.value(x, y, z); - Assert.assertEquals("On sample point", - expected, result, 1e-14); - - x = 4.5; - y = -1.5; - z = -4.25; - expected = f.value(x, y, z); - result = tcf.value(x, y, z); - Assert.assertEquals("Half-way between sample points (middle of the patch)", - expected, result, 0.1); - - x = 3.5; - y = -3.5; - z = -10; - expected = f.value(x, y, z); - result = tcf.value(x, y, z); - Assert.assertEquals("Half-way between sample points (border of the patch)", - expected, result, 0.1); - } -} diff --git a/src/test/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatorTest.java b/src/test/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatorTest.java deleted file mode 100644 index 83023d3ef..000000000 --- a/src/test/java/org/apache/commons/math4/analysis/interpolation/TricubicSplineInterpolatorTest.java +++ /dev/null @@ -1,214 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.analysis.interpolation; - -import org.apache.commons.math4.analysis.TrivariateFunction; -import org.apache.commons.math4.analysis.interpolation.TricubicSplineInterpolator; -import org.apache.commons.math4.analysis.interpolation.TrivariateGridInterpolator; -import org.apache.commons.math4.exception.DimensionMismatchException; -import org.apache.commons.math4.exception.MathIllegalArgumentException; -import org.apache.commons.math4.util.FastMath; -import org.junit.Assert; -import org.junit.Test; -import org.junit.Ignore; - -/** - * Test case for the tricubic interpolator. - * - */ -public final class TricubicSplineInterpolatorTest { - /** - * Test preconditions. - */ - @Test - public void testPreconditions() { - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2.5}; - double[] zval = new double[] {-12, -8, -5.5, -3, 0, 2.5}; - double[][][] fval = new double[xval.length][yval.length][zval.length]; - - TrivariateGridInterpolator interpolator = new TricubicSplineInterpolator(); - - @SuppressWarnings("unused") - TrivariateFunction p = interpolator.interpolate(xval, yval, zval, fval); - - double[] wxval = new double[] {3, 2, 5, 6.5}; - try { - p = interpolator.interpolate(wxval, yval, zval, fval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - - double[] wyval = new double[] {-4, -3, -1, -1}; - try { - p = interpolator.interpolate(xval, wyval, zval, fval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - - double[] wzval = new double[] {-12, -8, -5.5, -3, -4, 2.5}; - try { - p = interpolator.interpolate(xval, yval, wzval, fval); - Assert.fail("an exception should have been thrown"); - } catch (MathIllegalArgumentException e) { - // Expected - } - - double[][][] wfval = new double[xval.length][yval.length + 1][zval.length]; - try { - p = interpolator.interpolate(xval, yval, zval, wfval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - wfval = new double[xval.length - 1][yval.length][zval.length]; - try { - p = interpolator.interpolate(xval, yval, zval, wfval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - wfval = new double[xval.length][yval.length][zval.length - 1]; - try { - p = interpolator.interpolate(xval, yval, zval, wfval); - Assert.fail("an exception should have been thrown"); - } catch (DimensionMismatchException e) { - // Expected - } - } - - /** - * Test of interpolator for a plane. - *- * f(x, y, z) = 2 x - 3 y - z + 5 - */ - @Ignore@Test - public void testPlane() { - TrivariateFunction f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return 2 * x - 3 * y - z + 5; - } - }; - - TrivariateGridInterpolator interpolator = new TricubicSplineInterpolator(); - - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2, 2.5}; - double[] zval = new double[] {-12, -8, -5.5, -3, 0, 2.5}; - double[][][] fval = new double[xval.length][yval.length][zval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - fval[i][j][k] = f.value(xval[i], yval[j], zval[k]); - } - } - } - - TrivariateFunction p = interpolator.interpolate(xval, yval, zval, fval); - double x, y, z; - double expected, result; - - x = 4; - y = -3; - z = 0; - expected = f.value(x, y, z); - result = p.value(x, y, z); - Assert.assertEquals("On sample point", expected, result, 1e-15); - - x = 4.5; - y = -1.5; - z = -4.25; - expected = f.value(x, y, z); - result = p.value(x, y, z); - Assert.assertEquals("half-way between sample points (middle of the patch)", expected, result, 0.3); - - x = 3.5; - y = -3.5; - z = -10; - expected = f.value(x, y, z); - result = p.value(x, y, z); - Assert.assertEquals("half-way between sample points (border of the patch)", expected, result, 0.3); - } - - /** - * Test of interpolator for a sine wave. - *
- *
- * f(x, y, z) = a cos [ω z - ky x - ky y] - *
- * with A = 0.2, ω = 0.5, kx = 2, ky = 1. - */ - @Ignore@Test - public void testWave() { - double[] xval = new double[] {3, 4, 5, 6.5}; - double[] yval = new double[] {-4, -3, -1, 2, 2.5}; - double[] zval = new double[] {-12, -8, -5.5, -3, 0, 4}; - - final double a = 0.2; - final double omega = 0.5; - final double kx = 2; - final double ky = 1; - - // Function values - TrivariateFunction f = new TrivariateFunction() { - public double value(double x, double y, double z) { - return a * FastMath.cos(omega * z - kx * x - ky * y); - } - }; - - double[][][] fval = new double[xval.length][yval.length][zval.length]; - for (int i = 0; i < xval.length; i++) { - for (int j = 0; j < yval.length; j++) { - for (int k = 0; k < zval.length; k++) { - fval[i][j][k] = f.value(xval[i], yval[j], zval[k]); - } - } - } - - TrivariateGridInterpolator interpolator = new TricubicSplineInterpolator(); - - TrivariateFunction p = interpolator.interpolate(xval, yval, zval, fval); - double x, y, z; - double expected, result; - - x = 4; - y = -3; - z = 0; - expected = f.value(x, y, z); - result = p.value(x, y, z); - Assert.assertEquals("On sample point", - expected, result, 1e-12); - - x = 4.5; - y = -1.5; - z = -4.25; - expected = f.value(x, y, z); - result = p.value(x, y, z); - Assert.assertEquals("Half-way between sample points (middle of the patch)", - expected, result, 0.1); - - x = 3.5; - y = -3.5; - z = -10; - expected = f.value(x, y, z); - result = p.value(x, y, z); - Assert.assertEquals("Half-way between sample points (border of the patch)", - expected, result, 0.1); - } -} diff --git a/src/test/java/org/apache/commons/math4/analysis/solvers/NewtonSolverTest.java b/src/test/java/org/apache/commons/math4/analysis/solvers/NewtonSolverTest.java deleted file mode 100644 index e9b0896ca..000000000 --- a/src/test/java/org/apache/commons/math4/analysis/solvers/NewtonSolverTest.java +++ /dev/null @@ -1,111 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.analysis.solvers; - -import org.apache.commons.math4.analysis.DifferentiableUnivariateFunction; -import org.apache.commons.math4.analysis.QuinticFunction; -import org.apache.commons.math4.analysis.UnivariateFunction; -import org.apache.commons.math4.analysis.differentiation.DerivativeStructure; -import org.apache.commons.math4.analysis.differentiation.UnivariateDifferentiableFunction; -import org.apache.commons.math4.analysis.function.Sin; -import org.apache.commons.math4.analysis.solvers.NewtonSolver; -import org.apache.commons.math4.util.FastMath; -import org.junit.Assert; -import org.junit.Test; - - -/** - * @deprecated - */ -@Deprecated -public final class NewtonSolverTest { - /** - * - */ - @Test - public void testSinZero() { - DifferentiableUnivariateFunction f = new Sin(); - double result; - - NewtonSolver solver = new NewtonSolver(); - result = solver.solve(100, f, 3, 4); - Assert.assertEquals(result, FastMath.PI, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 1, 4); - Assert.assertEquals(result, FastMath.PI, solver.getAbsoluteAccuracy()); - - Assert.assertTrue(solver.getEvaluations() > 0); - } - - /** - * - */ - @Test - public void testQuinticZero() { - final UnivariateDifferentiableFunction q = new QuinticFunction(); - DifferentiableUnivariateFunction f = new DifferentiableUnivariateFunction() { - - public double value(double x) { - return q.value(x); - } - - public UnivariateFunction derivative() { - return new UnivariateFunction() { - public double value(double x) { - return q.value(new DerivativeStructure(1, 1, 0, x)).getPartialDerivative(1); - } - }; - } - - }; - double result; - - NewtonSolver solver = new NewtonSolver(); - result = solver.solve(100, f, -0.2, 0.2); - Assert.assertEquals(result, 0, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, -0.1, 0.3); - Assert.assertEquals(result, 0, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, -0.3, 0.45); - Assert.assertEquals(result, 0, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 0.3, 0.7); - Assert.assertEquals(result, 0.5, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 0.2, 0.6); - Assert.assertEquals(result, 0.5, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 0.05, 0.95); - Assert.assertEquals(result, 0.5, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 0.85, 1.25); - Assert.assertEquals(result, 1.0, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 0.8, 1.2); - Assert.assertEquals(result, 1.0, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 0.85, 1.75); - Assert.assertEquals(result, 1.0, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 0.55, 1.45); - Assert.assertEquals(result, 1.0, solver.getAbsoluteAccuracy()); - - result = solver.solve(100, f, 0.85, 5); - Assert.assertEquals(result, 1.0, solver.getAbsoluteAccuracy()); - } -} diff --git a/src/test/java/org/apache/commons/math4/fitting/CurveFitterTest.java b/src/test/java/org/apache/commons/math4/fitting/CurveFitterTest.java deleted file mode 100644 index 18915e074..000000000 --- a/src/test/java/org/apache/commons/math4/fitting/CurveFitterTest.java +++ /dev/null @@ -1,143 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -package org.apache.commons.math4.fitting; - -import org.apache.commons.math4.analysis.ParametricUnivariateFunction; -import org.apache.commons.math4.fitting.CurveFitter; -import org.apache.commons.math4.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer; -import org.apache.commons.math4.util.FastMath; -import org.junit.Assert; -import org.junit.Test; - -@Deprecated -public class CurveFitterTest { - @Test - public void testMath303() { - LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(); - CurveFitterGaussianFitter
- * instance.
- *
- * @param points data points where first dimension is a point index and
- * second dimension is an array of length two representing the point
- * with the first value corresponding to X and the second value
- * corresponding to Y
- * @param fitter fitter to which the points in points
should be
- * added as observed points
- */
- protected static void addDatasetToGaussianFitter(double[][] points,
- GaussianFitter fitter) {
- for (int i = 0; i < points.length; i++) {
- fitter.addObservedPoint(points[i][0], points[i][1]);
- }
- }
-}
diff --git a/src/test/java/org/apache/commons/math4/fitting/HarmonicFitterTest.java b/src/test/java/org/apache/commons/math4/fitting/HarmonicFitterTest.java
deleted file mode 100644
index 328d060e5..000000000
--- a/src/test/java/org/apache/commons/math4/fitting/HarmonicFitterTest.java
+++ /dev/null
@@ -1,187 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.fitting;
-
-import java.util.Random;
-
-import org.apache.commons.math4.analysis.function.HarmonicOscillator;
-import org.apache.commons.math4.exception.MathIllegalStateException;
-import org.apache.commons.math4.exception.NumberIsTooSmallException;
-import org.apache.commons.math4.fitting.HarmonicFitter;
-import org.apache.commons.math4.fitting.WeightedObservedPoint;
-import org.apache.commons.math4.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer;
-import org.apache.commons.math4.util.FastMath;
-import org.apache.commons.math4.util.MathUtils;
-import org.junit.Test;
-import org.junit.Assert;
-
-@Deprecated
-public class HarmonicFitterTest {
- @Test(expected=NumberIsTooSmallException.class)
- public void testPreconditions1() {
- HarmonicFitter fitter =
- new HarmonicFitter(new LevenbergMarquardtOptimizer());
-
- fitter.fit();
- }
-
- @Test
- public void testNoError() {
- final double a = 0.2;
- final double w = 3.4;
- final double p = 4.1;
- HarmonicOscillator f = new HarmonicOscillator(a, w, p);
-
- HarmonicFitter fitter =
- new HarmonicFitter(new LevenbergMarquardtOptimizer());
- for (double x = 0.0; x < 1.3; x += 0.01) {
- fitter.addObservedPoint(1, x, f.value(x));
- }
-
- final double[] fitted = fitter.fit();
- Assert.assertEquals(a, fitted[0], 1.0e-13);
- Assert.assertEquals(w, fitted[1], 1.0e-13);
- Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1e-13);
-
- HarmonicOscillator ff = new HarmonicOscillator(fitted[0], fitted[1], fitted[2]);
-
- for (double x = -1.0; x < 1.0; x += 0.01) {
- Assert.assertTrue(FastMath.abs(f.value(x) - ff.value(x)) < 1e-13);
- }
- }
-
- @Test
- public void test1PercentError() {
- Random randomizer = new Random(64925784252l);
- final double a = 0.2;
- final double w = 3.4;
- final double p = 4.1;
- HarmonicOscillator f = new HarmonicOscillator(a, w, p);
-
- HarmonicFitter fitter =
- new HarmonicFitter(new LevenbergMarquardtOptimizer());
- for (double x = 0.0; x < 10.0; x += 0.1) {
- fitter.addObservedPoint(1, x,
- f.value(x) + 0.01 * randomizer.nextGaussian());
- }
-
- final double[] fitted = fitter.fit();
- Assert.assertEquals(a, fitted[0], 7.6e-4);
- Assert.assertEquals(w, fitted[1], 2.7e-3);
- Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.3e-2);
- }
-
- @Test
- public void testTinyVariationsData() {
- Random randomizer = new Random(64925784252l);
-
- HarmonicFitter fitter =
- new HarmonicFitter(new LevenbergMarquardtOptimizer());
- for (double x = 0.0; x < 10.0; x += 0.1) {
- fitter.addObservedPoint(1, x, 1e-7 * randomizer.nextGaussian());
- }
-
- fitter.fit();
- // This test serves to cover the part of the code of "guessAOmega"
- // when the algorithm using integrals fails.
- }
-
- @Test
- public void testInitialGuess() {
- Random randomizer = new Random(45314242l);
- final double a = 0.2;
- final double w = 3.4;
- final double p = 4.1;
- HarmonicOscillator f = new HarmonicOscillator(a, w, p);
-
- HarmonicFitter fitter =
- new HarmonicFitter(new LevenbergMarquardtOptimizer());
- for (double x = 0.0; x < 10.0; x += 0.1) {
- fitter.addObservedPoint(1, x,
- f.value(x) + 0.01 * randomizer.nextGaussian());
- }
-
- final double[] fitted = fitter.fit(new double[] { 0.15, 3.6, 4.5 });
- Assert.assertEquals(a, fitted[0], 1.2e-3);
- Assert.assertEquals(w, fitted[1], 3.3e-3);
- Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.7e-2);
- }
-
- @Test
- public void testUnsorted() {
- Random randomizer = new Random(64925784252l);
- final double a = 0.2;
- final double w = 3.4;
- final double p = 4.1;
- HarmonicOscillator f = new HarmonicOscillator(a, w, p);
-
- HarmonicFitter fitter =
- new HarmonicFitter(new LevenbergMarquardtOptimizer());
-
- // build a regularly spaced array of measurements
- int size = 100;
- double[] xTab = new double[size];
- double[] yTab = new double[size];
- for (int i = 0; i < size; ++i) {
- xTab[i] = 0.1 * i;
- yTab[i] = f.value(xTab[i]) + 0.01 * randomizer.nextGaussian();
- }
-
- // shake it
- for (int i = 0; i < size; ++i) {
- int i1 = randomizer.nextInt(size);
- int i2 = randomizer.nextInt(size);
- double xTmp = xTab[i1];
- double yTmp = yTab[i1];
- xTab[i1] = xTab[i2];
- yTab[i1] = yTab[i2];
- xTab[i2] = xTmp;
- yTab[i2] = yTmp;
- }
-
- // pass it to the fitter
- for (int i = 0; i < size; ++i) {
- fitter.addObservedPoint(1, xTab[i], yTab[i]);
- }
-
- final double[] fitted = fitter.fit();
- Assert.assertEquals(a, fitted[0], 7.6e-4);
- Assert.assertEquals(w, fitted[1], 3.5e-3);
- Assert.assertEquals(p, MathUtils.normalizeAngle(fitted[2], p), 1.5e-2);
- }
-
- @Test(expected=MathIllegalStateException.class)
- public void testMath844() {
- final double[] y = { 0, 1, 2, 3, 2, 1,
- 0, -1, -2, -3, -2, -1,
- 0, 1, 2, 3, 2, 1,
- 0, -1, -2, -3, -2, -1,
- 0, 1, 2, 3, 2, 1, 0 };
- final int len = y.length;
- final WeightedObservedPoint[] points = new WeightedObservedPoint[len];
- for (int i = 0; i < len; i++) {
- points[i] = new WeightedObservedPoint(1, i, y[i]);
- }
-
- // The guesser fails because the function is far from an harmonic
- // function: It is a triangular periodic function with amplitude 3
- // and period 12, and all sample points are taken at integer abscissae
- // so function values all belong to the integer subset {-3, -2, -1, 0,
- // 1, 2, 3}.
- new HarmonicFitter.ParameterGuesser(points);
- }
-}
diff --git a/src/test/java/org/apache/commons/math4/fitting/PolynomialFitterTest.java b/src/test/java/org/apache/commons/math4/fitting/PolynomialFitterTest.java
deleted file mode 100644
index ff543ab7b..000000000
--- a/src/test/java/org/apache/commons/math4/fitting/PolynomialFitterTest.java
+++ /dev/null
@@ -1,288 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.fitting;
-
-import java.util.Random;
-
-import org.apache.commons.math4.TestUtils;
-import org.apache.commons.math4.analysis.polynomials.PolynomialFunction;
-import org.apache.commons.math4.analysis.polynomials.PolynomialFunction.Parametric;
-import org.apache.commons.math4.distribution.RealDistribution;
-import org.apache.commons.math4.distribution.UniformRealDistribution;
-import org.apache.commons.math4.exception.ConvergenceException;
-import org.apache.commons.math4.exception.TooManyEvaluationsException;
-import org.apache.commons.math4.fitting.CurveFitter;
-import org.apache.commons.math4.fitting.PolynomialFitter;
-import org.apache.commons.math4.optim.SimpleVectorValueChecker;
-import org.apache.commons.math4.optim.nonlinear.vector.MultivariateVectorOptimizer;
-import org.apache.commons.math4.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer;
-import org.apache.commons.math4.optim.nonlinear.vector.jacobian.LevenbergMarquardtOptimizer;
-import org.apache.commons.math4.util.FastMath;
-import org.junit.Test;
-import org.junit.Assert;
-
-/**
- * Test for class {@link CurveFitter} where the function to fit is a
- * polynomial.
- */
-@Deprecated
-public class PolynomialFitterTest {
- @Test
- public void testFit() {
- final RealDistribution rng = new UniformRealDistribution(-100, 100);
- rng.reseedRandomGenerator(64925784252L);
-
- final LevenbergMarquardtOptimizer optim = new LevenbergMarquardtOptimizer();
- final PolynomialFitter fitter = new PolynomialFitter(optim);
- final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2
- final PolynomialFunction f = new PolynomialFunction(coeff);
-
- // Collect data from a known polynomial.
- for (int i = 0; i < 100; i++) {
- final double x = rng.sample();
- fitter.addObservedPoint(x, f.value(x));
- }
-
- // Start fit from initial guesses that are far from the optimal values.
- final double[] best = fitter.fit(new double[] { -1e-20, 3e15, -5e25 });
-
- TestUtils.assertEquals("best != coeff", coeff, best, 1e-12);
- }
-
- @Test
- public void testNoError() {
- Random randomizer = new Random(64925784252l);
- for (int degree = 1; degree < 10; ++degree) {
- PolynomialFunction p = buildRandomPolynomial(degree, randomizer);
-
- PolynomialFitter fitter = new PolynomialFitter(new LevenbergMarquardtOptimizer());
- for (int i = 0; i <= degree; ++i) {
- fitter.addObservedPoint(1.0, i, p.value(i));
- }
-
- final double[] init = new double[degree + 1];
- PolynomialFunction fitted = new PolynomialFunction(fitter.fit(init));
-
- for (double x = -1.0; x < 1.0; x += 0.01) {
- double error = FastMath.abs(p.value(x) - fitted.value(x)) /
- (1.0 + FastMath.abs(p.value(x)));
- Assert.assertEquals(0.0, error, 1.0e-6);
- }
- }
- }
-
- @Test
- public void testSmallError() {
- Random randomizer = new Random(53882150042l);
- double maxError = 0;
- for (int degree = 0; degree < 10; ++degree) {
- PolynomialFunction p = buildRandomPolynomial(degree, randomizer);
-
- PolynomialFitter fitter = new PolynomialFitter(new LevenbergMarquardtOptimizer());
- for (double x = -1.0; x < 1.0; x += 0.01) {
- fitter.addObservedPoint(1.0, x,
- p.value(x) + 0.1 * randomizer.nextGaussian());
- }
-
- final double[] init = new double[degree + 1];
- PolynomialFunction fitted = new PolynomialFunction(fitter.fit(init));
-
- for (double x = -1.0; x < 1.0; x += 0.01) {
- double error = FastMath.abs(p.value(x) - fitted.value(x)) /
- (1.0 + FastMath.abs(p.value(x)));
- maxError = FastMath.max(maxError, error);
- Assert.assertTrue(FastMath.abs(error) < 0.1);
- }
- }
- Assert.assertTrue(maxError > 0.01);
- }
-
- @Test
- public void testMath798() {
- final double tol = 1e-14;
- final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol);
- final double[] init = new double[] { 0, 0 };
- final int maxEval = 3;
-
- final double[] lm = doMath798(new LevenbergMarquardtOptimizer(checker), maxEval, init);
- final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init);
-
- for (int i = 0; i <= 1; i++) {
- Assert.assertEquals(lm[i], gn[i], tol);
- }
- }
-
- /**
- * This test shows that the user can set the maximum number of iterations
- * to avoid running for too long.
- * But in the test case, the real problem is that the tolerance is way too
- * stringent.
- */
- @Test(expected=TooManyEvaluationsException.class)
- public void testMath798WithToleranceTooLow() {
- final double tol = 1e-100;
- final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol);
- final double[] init = new double[] { 0, 0 };
- final int maxEval = 10000; // Trying hard to fit.
-
- @SuppressWarnings("unused")
- final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init);
- }
-
- /**
- * This test shows that the user can set the maximum number of iterations
- * to avoid running for too long.
- * Even if the real problem is that the tolerance is way too stringent, it
- * is possible to get the best solution so far, i.e. a checker will return
- * the point when the maximum iteration count has been reached.
- */
- @Test
- public void testMath798WithToleranceTooLowButNoException() {
- final double tol = 1e-100;
- final double[] init = new double[] { 0, 0 };
- final int maxEval = 10000; // Trying hard to fit.
- final SimpleVectorValueChecker checker = new SimpleVectorValueChecker(tol, tol, maxEval);
-
- final double[] lm = doMath798(new LevenbergMarquardtOptimizer(checker), maxEval, init);
- final double[] gn = doMath798(new GaussNewtonOptimizer(checker), maxEval, init);
-
- for (int i = 0; i <= 1; i++) {
- Assert.assertEquals(lm[i], gn[i], 1e-15);
- }
- }
-
- /**
- * @param optimizer Optimizer.
- * @param maxEval Maximum number of function evaluations.
- * @param init First guess.
- * @return the solution found by the given optimizer.
- */
- private double[] doMath798(MultivariateVectorOptimizer optimizer,
- int maxEval,
- double[] init) {
- final CurveFitter