Added support for population standard deviation.

git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141470 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2004-10-11 06:54:05 +00:00
parent 85b1fc5f51
commit 0d564ce2f1
2 changed files with 87 additions and 7 deletions

View File

@ -21,16 +21,20 @@ import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStati
/** /**
* Computes the sample standard deviation. The standard deviation * Computes the sample standard deviation. The standard deviation
* is the positive square root of the variance. See {@link Variance} for * is the positive square root of the variance. This implementation wraps a
* more information. This implementation wraps a {@link Variance} * {@link Variance} instance. The <code>isBiasCorrected</code> property of the
* instance. * wrapped Variance instance is exposed, so that this class can be used to
* compute both the "sample standard deviation" (the square root of the
* bias-corrected "sample variance") or the "population standard deviation"
* (the square root of the non-bias-corrected "population variance"). See
* {@link Variance} for more information.
* <p> * <p>
* <strong>Note that this implementation is not synchronized.</strong> If * <strong>Note that this implementation is not synchronized.</strong> If
* multiple threads access an instance of this class concurrently, and at least * multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the <code>increment()</code> or * one of the threads invokes the <code>increment()</code> or
* <code>clear()</code> method, it must be synchronized externally. * <code>clear()</code> method, it must be synchronized externally.
* *
* @version $Revision: 1.1 $ $Date: 2004/10/08 05:08:17 $ * @version $Revision: 1.2 $ $Date: 2004/10/11 06:54:05 $
*/ */
public class StandardDeviation extends AbstractStorelessUnivariateStatistic public class StandardDeviation extends AbstractStorelessUnivariateStatistic
implements Serializable { implements Serializable {
@ -42,7 +46,8 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
private Variance variance = null; private Variance variance = null;
/** /**
* Constructs a StandardDeviation * Constructs a StandardDeviation. Sets the underlying {@link Variance}
* instance's <code>isBiasCorrected</code> property to true.
*/ */
public StandardDeviation() { public StandardDeviation() {
variance = new Variance(); variance = new Variance();
@ -57,6 +62,35 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
variance = new Variance(m2); variance = new Variance(m2);
} }
/**
* Contructs a StandardDeviation with the specified value for the
* <code>isBiasCorrected</code> property. If this property is set to
* <code>true</code>, the {@link Variance} used in computing results will
* use the bias-corrected, or "sample" formula. See {@link Variance} for
* details.
*
* @param isBiasCorrected whether or not the variance computation will use
* the bias-corrected formula
*/
public StandardDeviation(boolean isBiasCorrected) {
variance = new Variance(isBiasCorrected);
}
/**
* Contructs a StandardDeviation with the specified value for the
* <code>isBiasCorrected</code> property and the supplied external moment.
* If <code>isBiasCorrected</code> is set to <code>true</code>, the
* {@link Variance} used in computing results will use the bias-corrected,
* or "sample" formula. See {@link Variance} for details.
*
* @param isBiasCorrected whether or not the variance computation will use
* the bias-corrected formula
* @param m2 the external moment
*/
public StandardDeviation(boolean isBiasCorrected, SecondMoment m2) {
variance = new Variance(isBiasCorrected, m2);
}
/** /**
* @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#increment(double) * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#increment(double)
*/ */
@ -103,7 +137,6 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
return Math.sqrt(variance.evaluate(values)); return Math.sqrt(variance.evaluate(values));
} }
/** /**
* Returns the Standard Deviation of the entries in the specified portion of * Returns the Standard Deviation of the entries in the specified portion of
* the input array, or <code>Double.NaN</code> if the designated subarray * the input array, or <code>Double.NaN</code> if the designated subarray
@ -179,4 +212,18 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
public double evaluate(final double[] values, final double mean) { public double evaluate(final double[] values, final double mean) {
return Math.sqrt(variance.evaluate(values, mean)); return Math.sqrt(variance.evaluate(values, mean));
} }
/**
* @return Returns the isBiasCorrected.
*/
public boolean isBiasCorrected() {
return variance.isBiasCorrected();
}
/**
* @param isBiasCorrected The isBiasCorrected to set.
*/
public void setBiasCorrected(boolean isBiasCorrected) {
variance.setBiasCorrected(isBiasCorrected);
}
} }

View File

@ -24,7 +24,7 @@ import org.apache.commons.math.stat.descriptive.UnivariateStatistic;
/** /**
* Test cases for the {@link UnivariateStatistic} class. * Test cases for the {@link UnivariateStatistic} class.
* *
* @version $Revision: 1.1 $ $Date: 2004/10/08 05:08:20 $ * @version $Revision: 1.2 $ $Date: 2004/10/11 06:54:05 $
*/ */
public class StandardDeviationTest extends StorelessUnivariateStatisticAbstractTest{ public class StandardDeviationTest extends StorelessUnivariateStatisticAbstractTest{
@ -68,4 +68,37 @@ public class StandardDeviationTest extends StorelessUnivariateStatisticAbstractT
assertEquals(0d, std.getResult(), 0); assertEquals(0d, std.getResult(), 0);
} }
/**
* Test population version of variance
*/
public void testPopulation() {
double[] values = {-1.0d, 3.1d, 4.0d, -2.1d, 22d, 11.7d, 3d, 14d};
double sigma = populationStandardDeviation(values);
SecondMoment m = new SecondMoment();
m.evaluate(values); // side effect is to add values
StandardDeviation s1 = new StandardDeviation();
s1.setBiasCorrected(false);
assertEquals(sigma, s1.evaluate(values), 1E-14);
s1.incrementAll(values);
assertEquals(sigma, s1.getResult(), 1E-14);
s1 = new StandardDeviation(false, m);
assertEquals(sigma, s1.getResult(), 1E-14);
s1 = new StandardDeviation(false);
assertEquals(sigma, s1.evaluate(values), 1E-14);
s1.incrementAll(values);
assertEquals(sigma, s1.getResult(), 1E-14);
}
/**
* Definitional formula for population standard deviation
*/
protected double populationStandardDeviation(double[] v) {
double mean = new Mean().evaluate(v);
double sum = 0;
for (int i = 0; i < v.length; i++) {
sum += (v[i] - mean) * (v[i] - mean);
}
return Math.sqrt(sum / (double) v.length);
}
} }