Optimise bicubic polynomial
Remove computation of products and sums where one factor is zero. Avoid computation of products where one factor is one. Use static functions where applicable.
This commit is contained in:
parent
8b3496720f
commit
1119bdbdef
|
@ -295,7 +295,7 @@ public class BicubicInterpolatingFunction
|
|||
* @throws OutOfRangeException if {@code c} is out of the
|
||||
* range defined by the boundary values of {@code val}.
|
||||
*/
|
||||
private int searchIndex(double c, double[] val) {
|
||||
private static int searchIndex(double c, double[] val) {
|
||||
final int r = Arrays.binarySearch(val, c);
|
||||
|
||||
if (r == -1 ||
|
||||
|
@ -348,7 +348,7 @@ public class BicubicInterpolatingFunction
|
|||
* values.
|
||||
* @return the spline coefficients.
|
||||
*/
|
||||
private double[] computeSplineCoefficients(double[] beta) {
|
||||
private static double[] computeSplineCoefficients(double[] beta) {
|
||||
final double[] a = new double[NUM_COEFF];
|
||||
|
||||
for (int i = 0; i < NUM_COEFF; i++) {
|
||||
|
@ -433,7 +433,7 @@ class BicubicFunction implements BivariateFunction {
|
|||
final double y3 = y2 * y;
|
||||
final double[] pY = {1, y, y2, y3};
|
||||
|
||||
return apply(pX, pY, aX) / xR;
|
||||
return apply(pX, 1, pY, 0, aX) / xR;
|
||||
};
|
||||
partialDerivativeY = (double x, double y) -> {
|
||||
final double x2 = x * x;
|
||||
|
@ -443,7 +443,7 @@ class BicubicFunction implements BivariateFunction {
|
|||
final double y2 = y * y;
|
||||
final double[] pY = {0, 1, y, y2};
|
||||
|
||||
return apply(pX, pY, aY) / yR;
|
||||
return apply(pX, 0, pY, 1, aY) / yR;
|
||||
};
|
||||
partialDerivativeXX = (double x, double y) -> {
|
||||
final double[] pX = {0, 0, 1, x};
|
||||
|
@ -452,7 +452,7 @@ class BicubicFunction implements BivariateFunction {
|
|||
final double y3 = y2 * y;
|
||||
final double[] pY = {1, y, y2, y3};
|
||||
|
||||
return apply(pX, pY, aXX) / (xR * xR);
|
||||
return apply(pX, 2, pY, 0, aXX) / (xR * xR);
|
||||
};
|
||||
partialDerivativeYY = (double x, double y) -> {
|
||||
final double x2 = x * x;
|
||||
|
@ -461,7 +461,7 @@ class BicubicFunction implements BivariateFunction {
|
|||
|
||||
final double[] pY = {0, 0, 1, y};
|
||||
|
||||
return apply(pX, pY, aYY) / (yR * yR);
|
||||
return apply(pX, 0, pY, 2, aYY) / (yR * yR);
|
||||
};
|
||||
partialDerivativeXY = (double x, double y) -> {
|
||||
final double x2 = x * x;
|
||||
|
@ -470,7 +470,7 @@ class BicubicFunction implements BivariateFunction {
|
|||
final double y2 = y * y;
|
||||
final double[] pY = {0, 1, y, y2};
|
||||
|
||||
return apply(pX, pY, aXY) / (xR * yR);
|
||||
return apply(pX, 1, pY, 1, aXY) / (xR * yR);
|
||||
};
|
||||
} else {
|
||||
partialDerivativeX = null;
|
||||
|
@ -501,27 +501,51 @@ class BicubicFunction implements BivariateFunction {
|
|||
final double y3 = y2 * y;
|
||||
final double[] pY = {1, y, y2, y3};
|
||||
|
||||
return apply(pX, pY, a);
|
||||
return apply(pX, 0, pY, 0, a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the value of the bicubic polynomial.
|
||||
*
|
||||
* <p>Assumes the powers are zero below the provided index, and 1 at the provided
|
||||
* index. This allows skipping some zero products and optimising multiplication
|
||||
* by one.
|
||||
*
|
||||
* @param pX Powers of the x-coordinate.
|
||||
* @param i Index of pX[i] == 1
|
||||
* @param pY Powers of the y-coordinate.
|
||||
* @param j Index of pX[j] == 1
|
||||
* @param coeff Spline coefficients.
|
||||
* @return the interpolated value.
|
||||
*/
|
||||
private double apply(double[] pX, double[] pY, double[][] coeff) {
|
||||
double result = 0;
|
||||
for (int i = 0; i < N; i++) {
|
||||
final double r = Sum.ofProducts(coeff[i], pY).getAsDouble();
|
||||
private static double apply(double[] pX, int i, double[] pY, int j, double[][] coeff) {
|
||||
// assert pX[i] == 1
|
||||
double result = sumOfProducts(coeff[i], pY, j);
|
||||
while (++i < N) {
|
||||
final double r = sumOfProducts(coeff[i], pY, j);
|
||||
result += r * pX[i];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the sum of products starting from the provided index.
|
||||
* Assumes that factor {@code b[j] == 1}.
|
||||
*
|
||||
* @param a Factors.
|
||||
* @param b Factors.
|
||||
* @param j Index to initialise the sum.
|
||||
* @return the double
|
||||
*/
|
||||
private static double sumOfProducts(double[] a, double[] b, int j) {
|
||||
// assert b[j] == 1
|
||||
final Sum sum = Sum.of(a[j]);
|
||||
while (++j < N) {
|
||||
sum.addProduct(a[j], b[j]);
|
||||
}
|
||||
return sum.getAsDouble();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return the partial derivative wrt {@code x}.
|
||||
*/
|
||||
|
|
Loading…
Reference in New Issue