MATH-1333

Unit test showing the problem.  Thanks to Connor Petty for the report.

Assumption made in the code is wrong.
This commit is contained in:
Gilles 2016-03-09 16:47:09 +01:00
parent 12c9a04414
commit 160696e7fa
2 changed files with 38 additions and 2 deletions

View File

@ -29,8 +29,6 @@ import org.apache.commons.math4.util.FastMath;
* <p>
* Muller's method applies to both real and complex functions, but here we
* restrict ourselves to real functions.
* This class differs from {@link MullerSolver} in the way it avoids complex
* operations.</p><p>
* Muller's original method would have function evaluation at complex point.
* Since our f(x) is real, we have to find ways to avoid that. Bracketing
* condition is one way to go: by requiring bracketing in every iteration,
@ -161,6 +159,13 @@ public class MullerSolver extends AbstractUnivariateSolver {
// xplus and xminus are two roots of parabola and at least
// one of them should lie in (x0, x2)
final double x = isSequence(x0, xplus, x2) ? xplus : xminus;
// XXX debug
if (!isSequence(x0, x, x2)) {
System.out.println("x=" + x + " x0=" + x0 + " x2=" + x2);
throw new org.apache.commons.math4.exception.MathInternalError();
}
final double y = computeObjectiveValue(x);
// check for convergence

View File

@ -147,4 +147,35 @@ public final class MullerSolverTest {
// expected
}
}
@Test
public void testMath1333() {
final UnivariateFunction logFunction = new UnivariateFunction() {
private double log1pe(double x) {
if (x > 0) {
return x + FastMath.log1p(FastMath.exp(-x));
} else {
return FastMath.log1p(FastMath.exp(x));
}
}
@Override
public double value(double x) {
final double a = 0.15076136473214652;
final double b = 4.880819340168248;
final double c = -2330.4196672490493;
final double d = 1.1871451743330544E-16;
//aa*log(1+e^(bbx+c))+d - 0.01 * x - 20 * 0.01
return a * a * log1pe(b * b * x + c) + d - 0.01 * x - 20 * 0.01;
}
};
final UnivariateSolver solver = new MullerSolver(0.25);
final double min = 20;
final double max = 100.04173804515072;
final double result = solver.solve(1000, logFunction, min, max, 100 / (double) 3);
Assert.assertTrue(result + " < " + min, result >= min);
Assert.assertTrue(result + " > " + max, result <= max);
}
}