MATH-1333
Unit test showing the problem. Thanks to Connor Petty for the report. Assumption made in the code is wrong.
This commit is contained in:
parent
12c9a04414
commit
160696e7fa
|
@ -29,8 +29,6 @@ import org.apache.commons.math4.util.FastMath;
|
||||||
* <p>
|
* <p>
|
||||||
* Muller's method applies to both real and complex functions, but here we
|
* Muller's method applies to both real and complex functions, but here we
|
||||||
* restrict ourselves to real functions.
|
* restrict ourselves to real functions.
|
||||||
* This class differs from {@link MullerSolver} in the way it avoids complex
|
|
||||||
* operations.</p><p>
|
|
||||||
* Muller's original method would have function evaluation at complex point.
|
* Muller's original method would have function evaluation at complex point.
|
||||||
* Since our f(x) is real, we have to find ways to avoid that. Bracketing
|
* Since our f(x) is real, we have to find ways to avoid that. Bracketing
|
||||||
* condition is one way to go: by requiring bracketing in every iteration,
|
* condition is one way to go: by requiring bracketing in every iteration,
|
||||||
|
@ -161,6 +159,13 @@ public class MullerSolver extends AbstractUnivariateSolver {
|
||||||
// xplus and xminus are two roots of parabola and at least
|
// xplus and xminus are two roots of parabola and at least
|
||||||
// one of them should lie in (x0, x2)
|
// one of them should lie in (x0, x2)
|
||||||
final double x = isSequence(x0, xplus, x2) ? xplus : xminus;
|
final double x = isSequence(x0, xplus, x2) ? xplus : xminus;
|
||||||
|
|
||||||
|
// XXX debug
|
||||||
|
if (!isSequence(x0, x, x2)) {
|
||||||
|
System.out.println("x=" + x + " x0=" + x0 + " x2=" + x2);
|
||||||
|
throw new org.apache.commons.math4.exception.MathInternalError();
|
||||||
|
}
|
||||||
|
|
||||||
final double y = computeObjectiveValue(x);
|
final double y = computeObjectiveValue(x);
|
||||||
|
|
||||||
// check for convergence
|
// check for convergence
|
||||||
|
|
|
@ -147,4 +147,35 @@ public final class MullerSolverTest {
|
||||||
// expected
|
// expected
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testMath1333() {
|
||||||
|
final UnivariateFunction logFunction = new UnivariateFunction() {
|
||||||
|
private double log1pe(double x) {
|
||||||
|
if (x > 0) {
|
||||||
|
return x + FastMath.log1p(FastMath.exp(-x));
|
||||||
|
} else {
|
||||||
|
return FastMath.log1p(FastMath.exp(x));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public double value(double x) {
|
||||||
|
final double a = 0.15076136473214652;
|
||||||
|
final double b = 4.880819340168248;
|
||||||
|
final double c = -2330.4196672490493;
|
||||||
|
final double d = 1.1871451743330544E-16;
|
||||||
|
//aa*log(1+e^(bbx+c))+d - 0.01 * x - 20 * 0.01
|
||||||
|
return a * a * log1pe(b * b * x + c) + d - 0.01 * x - 20 * 0.01;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
final UnivariateSolver solver = new MullerSolver(0.25);
|
||||||
|
final double min = 20;
|
||||||
|
final double max = 100.04173804515072;
|
||||||
|
final double result = solver.solve(1000, logFunction, min, max, 100 / (double) 3);
|
||||||
|
|
||||||
|
Assert.assertTrue(result + " < " + min, result >= min);
|
||||||
|
Assert.assertTrue(result + " > " + max, result <= max);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue