diff --git a/src/changes/changes.xml b/src/changes/changes.xml index a3e1ceb66..e81b7eb44 100644 --- a/src/changes/changes.xml +++ b/src/changes/changes.xml @@ -54,6 +54,9 @@ If the output is not quite correct, check for invisible trailing spaces! + + Add "Calinski-Harabsz" clustering evaluator. + Abstract class "ClusterEvaluator" replaced by an interface. diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabasz.java b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabasz.java new file mode 100644 index 000000000..0a0918cfe --- /dev/null +++ b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabasz.java @@ -0,0 +1,172 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math4.ml.clustering.evaluation; + +import org.apache.commons.math4.exception.InsufficientDataException; +import org.apache.commons.math4.ml.clustering.Cluster; +import org.apache.commons.math4.ml.clustering.ClusterEvaluator; +import org.apache.commons.math4.ml.clustering.Clusterable; +import org.apache.commons.math4.util.MathArrays; + +import java.util.Collection; +import java.util.List; + +/** + * Compute the Calinski and Harabasz score. + *

+ * It is also known as the Variance Ratio Criterion. + *

+ * The score is defined as ratio between the within-cluster dispersion and + * the between-cluster dispersion. + * + * @param the type of the clustered points + * @see A dendrite method for cluster + * analysis + */ +public class CalinskiHarabasz implements ClusterEvaluator { + /** {@inheritDoc} */ + @Override + public double score(List> clusters) { + final int dimension = dimensionOfClusters(clusters); + final double[] centroid = meanOfClusters(clusters, dimension); + + double intraDistanceProduct = 0.0; + double extraDistanceProduct = 0.0; + for (Cluster cluster : clusters) { + // Calculate the center of the cluster. + double[] clusterCentroid = mean(cluster.getPoints(), dimension); + for (T p : cluster.getPoints()) { + // Increase the intra distance sum + intraDistanceProduct += covariance(clusterCentroid, p.getPoint()); + } + // Increase the extra distance sum + extraDistanceProduct += cluster.getPoints().size() * covariance(centroid, clusterCentroid); + } + + final int pointCount = countAllPoints(clusters); + final int clusterCount = clusters.size(); + // Return the ratio of the intraDistranceProduct to extraDistanceProduct + return intraDistanceProduct == 0.0 ? 1.0 : + (extraDistanceProduct * (pointCount - clusterCount) / + (intraDistanceProduct * (clusterCount - 1))); + } + + /** {@inheritDoc} */ + @Override + public boolean isBetterScore(double a, + double b) { + return a > b; + } + + /** + * Calculate covariance of two double array. + *

+     *   covariance = sum((p1[i]-p2[i])^2)
+     * 
+ * + * @param p1 Double array + * @param p2 Double array + * @return covariance of two double array + */ + private double covariance(double[] p1, double[] p2) { + MathArrays.checkEqualLength(p1, p2); + double sum = 0; + for (int i = 0; i < p1.length; i++) { + final double dp = p1[i] - p2[i]; + sum += dp * dp; + } + return sum; + } + + /** + * Calculate the mean of all the points. + * + * @param points A collection of points + * @param dimension The dimension of each point + * @return The mean value. + */ + private double[] mean(final Collection points, final int dimension) { + final double[] centroid = new double[dimension]; + for (final T p : points) { + final double[] point = p.getPoint(); + for (int i = 0; i < centroid.length; i++) { + centroid[i] += point[i]; + } + } + for (int i = 0; i < centroid.length; i++) { + centroid[i] /= points.size(); + } + return centroid; + } + + /** + * Calculate the mean of all the points in the clusters. + * + * @param clusters A collection of clusters. + * @param dimension The dimension of each point. + * @return The mean value. + */ + private double[] meanOfClusters(final Collection> clusters, final int dimension) { + final double[] centroid = new double[dimension]; + int allPointsCount = 0; + for (Cluster cluster : clusters) { + for (T p : cluster.getPoints()) { + double[] point = p.getPoint(); + for (int i = 0; i < centroid.length; i++) { + centroid[i] += point[i]; + } + allPointsCount++; + } + } + for (int i = 0; i < centroid.length; i++) { + centroid[i] /= allPointsCount; + } + return centroid; + } + + /** + * Count all the points in collection of cluster. + * + * @param clusters collection of cluster + * @return points count + */ + private int countAllPoints(final Collection> clusters) { + int pointCount = 0; + for (Cluster cluster : clusters) { + pointCount += cluster.getPoints().size(); + } + return pointCount; + } + + /** + * Detect the dimension of points in the clusters + * + * @param clusters collection of cluster + * @return The dimension of the first point in clusters + */ + private int dimensionOfClusters(final Collection> clusters) { + // Iteration and find out the first point. + for (Cluster cluster : clusters) { + for (T p : cluster.getPoints()) { + return p.getPoint().length; + } + } + // Throw exception if there is no point. + throw new InsufficientDataException(); + } +} diff --git a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/package-info.java b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/package-info.java index 2d02358cb..0631115d0 100644 --- a/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/package-info.java +++ b/src/main/java/org/apache/commons/math4/ml/clustering/evaluation/package-info.java @@ -16,5 +16,9 @@ */ /** * Cluster evaluation methods. + * + * All evaluators should implement the + * {@link org.apache.commons.math4.ml.clustering.ClusterEvaluator} + * interface. */ package org.apache.commons.math4.ml.clustering.evaluation; diff --git a/src/test/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabaszTest.java b/src/test/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabaszTest.java new file mode 100644 index 000000000..2ee5b0609 --- /dev/null +++ b/src/test/java/org/apache/commons/math4/ml/clustering/evaluation/CalinskiHarabaszTest.java @@ -0,0 +1,165 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.commons.math4.ml.clustering.evaluation; + +import org.apache.commons.math4.ml.clustering.CentroidCluster; +import org.apache.commons.math4.ml.clustering.ClusterEvaluator; +import org.apache.commons.math4.ml.clustering.DoublePoint; +import org.apache.commons.math4.ml.clustering.KMeansPlusPlusClusterer; +import org.apache.commons.math4.ml.distance.DistanceMeasure; +import org.apache.commons.math4.ml.distance.EuclideanDistance; +import org.apache.commons.rng.UniformRandomProvider; +import org.apache.commons.rng.simple.RandomSource; +import org.junit.Assert; +import org.junit.Before; +import org.junit.Test; + +import java.util.ArrayList; +import java.util.List; + +public class CalinskiHarabaszTest { + private ClusterEvaluator evaluator; + private DistanceMeasure distanceMeasure; + + @Before + public void setUp() { + evaluator = new CalinskiHarabasz<>(); + distanceMeasure = new EuclideanDistance(); + } + + @Test + public void test_k_equals_4_is_best_for_a_4_center_points() { + final int dimension = 2; + final double[][] centers = {{-1, -1}, {0, 0}, {1, 1}, {2, 2}}; + final UniformRandomProvider rnd = RandomSource.create(RandomSource.MT_64, 0); + final List points = new ArrayList<>(); + // Generate 1000 points around 4 centers for test. + for (int i = 0; i < 1000; i++) { + double[] center = centers[i % centers.length]; + double[] point = new double[dimension]; + for (int j = 0; j < dimension; j++) { + double offset = (rnd.nextDouble() - 0.5) / 2; + Assert.assertTrue(offset < 0.25 && offset > -0.25); + point[j] = offset + center[j]; + } + points.add(new DoublePoint(point)); + } + double expectBestScore = 0.0; + double actualBestScore = 0.0; + for (int i = 0; i < 5; i++) { + final int k = i + 2; + KMeansPlusPlusClusterer kMeans = new KMeansPlusPlusClusterer<>(k, -1, distanceMeasure, rnd); + List> clusters = kMeans.cluster(points); + double score = evaluator.score(clusters); + if (score > expectBestScore) { + expectBestScore = score; + } + if (k == centers.length) { + actualBestScore = score; + } + } + + // k=4 get the highest score + Assert.assertEquals(expectBestScore, actualBestScore, 0.0); + } + + @Test + public void test_compare_to_skLearn() { + final UniformRandomProvider rnd = RandomSource.create(RandomSource.MT_64, 0); + final List points = new ArrayList<>(); + for (double[] p : dataFromSkLearn) { + points.add(new DoublePoint(p)); + } + double expectBestScore = 0.0; + double actualBestScore = 0.0; + for (int i = 0; i < 5; i++) { + final int k = i + 2; + KMeansPlusPlusClusterer kMeans = new KMeansPlusPlusClusterer<>(k, -1, distanceMeasure, rnd); + List> clusters = kMeans.cluster(points); + double score = evaluator.score(clusters); + if (score > expectBestScore) { + expectBestScore = score; + } + + // The score is approximately equals sklearn's score when k is smaller or equals to best k. + if (k <= kFromSkLearn) { + actualBestScore = score; + Assert.assertEquals(scoreFromSkLearn[i], score, 0.001); + } + } + + // k=4 get the highest score + Assert.assertEquals(expectBestScore, actualBestScore, 0.0); + } + + final static int kFromSkLearn = 4; + final static double[] scoreFromSkLearn = {622.487247165719, 597.7763150683217, 1157.7901325495295, + 1136.8201767857847, 1092.708039201163}; + final static double[][] dataFromSkLearn = { + {1.403414, 1.148639}, {0.203959, 0.172137}, {2.132351, 1.883029}, {0.176704, -0.106040}, + {-0.729892, -0.987217}, {2.073591, 1.891133}, {-0.632742, -0.847796}, {-0.080353, 0.388064}, + {1.293772, 0.999236}, {-0.478476, -0.444240}, {1.154994, 0.922124}, {0.213056, 0.247446}, + {1.246047, 1.329821}, {2.010432, 1.939522}, {-0.249074, 0.060909}, {1.960038, 1.883771}, + {0.068528, -0.119460}, {1.035851, 0.992598}, {2.206471, 2.040334}, {2.114869, 2.186366}, + {0.192118, 0.042242}, {0.194172, 0.230945}, {1.969581, 2.118761}, {1.211497, 0.803267}, + {0.852534, 1.171513}, {2.032709, 2.068391}, {0.862354, 1.096274}, {-1.151345, -1.192454}, + {2.642026, 1.905175}, {-1.009092, -1.383999}, {1.123967, 0.799541}, {2.452222, 2.079981}, + {0.665412, 0.829890}, {2.145178, 1.991171}, {-1.186327, -1.110976}, {2.009537, 1.683832}, + {1.900143, 2.059320}, {1.217072, 1.073173}, {-0.011930, 0.182649}, {-1.255492, -0.670092}, + {0.221479, -0.239351}, {-0.155211, -0.129519}, {0.076976, 0.070879}, {2.340748, 1.728946}, + {-0.785182, -1.003191}, {-0.048162, 0.054161}, {-0.590787, -1.261207}, {-0.322545, -1.678934}, + {1.721805, 2.019360}, {-0.055982, 0.406160}, {1.786591, 2.030543}, {2.319241, 1.662943}, + {-0.037710, 0.140065}, {1.255095, 1.042194}, {1.111086, 1.165950}, {-0.218115, -0.034970}, + {2.187137, 1.692329}, {1.316916, 1.077612}, {0.112255, 0.047945}, {0.739778, 0.945151}, + {-0.452803, -0.989958}, {2.105973, 2.005392}, {-1.090926, -0.892274}, {-0.016388, -0.243725}, + {1.069622, 0.746740}, {2.071495, 1.707953}, {-0.734458, -0.700208}, {-0.793453, -1.142096}, + {0.279182, 0.216376}, {-1.280766, -1.789708}, {-0.547815, -0.583041}, {1.320526, 1.312906}, + {-0.881327, -0.716999}, {0.779240, 0.887246}, {1.925328, 1.547436}, {-0.024202, -0.206561}, + {2.320019, 2.209286}, {-0.265125, 0.187406}, {-0.841028, -0.336119}, {-1.158193, -0.486245}, + {2.107928, 2.027572}, {-0.203312, -0.058400}, {1.746752, 1.692956}, {-0.943192, -1.661465}, + {-0.692261, -1.359602}, {1.189437, 1.239394}, {2.122793, 1.946352}, {0.808161, 1.145078}, + {-0.214102, -0.254642}, {1.964497, 1.659230}, {0.162827, -0.203977}, {-1.197499, -1.150439}, + {0.893478, 1.187206}, {2.268571, 1.937285}, {1.874589, 1.792590}, {2.115534, 2.148600}, + {0.971884, 0.741704}, {-2.068844, -1.365312}, {1.923238, 2.135497}, {0.943657, 1.303986}, + {2.059181, 1.866467}, {-1.150325, -1.369225}, {-0.090138, 0.186226}, {-0.361086, 0.086080}, + {0.781402, 0.552706}, {1.788317, 2.180373}, {0.798725, 1.200775}, {-1.054850, -0.480968}, + {-0.161374, 0.263608}, {1.261640, 0.869688}, {0.924957, 1.192590}, {1.094182, 1.031706}, + {1.622207, 1.731404}, {-2.117348, -1.090460}, {1.005802, 1.040883}, {2.015137, 1.958903}, + {-0.248881, 0.187862}, {1.890444, 2.059389}, {1.074242, 0.875771}, {2.004657, 1.895254}, + {0.854140, 0.811218}, {-0.798992, -1.633529}, {0.311872, -0.109260}, {-0.219108, 0.480269}, + {1.138654, 1.324903}, {-2.062293, -1.023073}, {0.141443, -0.087330}, {-0.745644, -0.303953}, + {0.763012, 0.793850}, {0.975160, 0.969506}, {-1.262475, -1.264683}, {-0.934801, -0.516551}, + {-1.342065, -0.999911}, {-0.113459, 0.213991}, {2.359609, 1.856216}, {0.408595, 0.377997}, + {-0.382908, -1.360288}, {1.873100, 1.984283}, {-0.158167, 0.128779}, {1.001959, 0.842014}, + {2.073056, 1.993139}, {-0.916489, -0.868636}, {1.350903, 1.159256}, {-0.999557, -1.115818}, + {1.699934, 2.255168}, {-0.451647, 0.135991}, {1.761330, 2.091668}, {0.158764, -0.052111}, + {0.948387, 0.928156}, {-1.723536, -0.864100}, {1.791458, 2.053596}, {0.765689, 1.028344}, + {2.232360, 1.956492}, {-0.270874, -0.827692}, {0.702813, 0.784622}, {-0.205446, -0.314226}, + {0.817023, 0.835158}, {-1.484335, -1.201362}, {1.875541, 1.974222}, {1.096270, 0.543190}, + {-1.096272, -1.259179}, {-0.985800, -0.660712}, {0.095980, 0.012351}, {0.905097, 0.998787}, + {2.087597, 1.879789}, {-0.146487, 0.088045}, {-1.606932, -1.196349}, {1.168532, 0.837345}, + {2.119787, 2.128731}, {-0.115728, 0.016410}, {1.049650, 1.258826}, {-0.207201, -0.026785}, + {-0.119676, 0.024613}, {-0.167932, -0.295941}, {-0.233100, -1.060121}, {1.379617, 1.104958}, + {-0.097467, 0.075053}, {-1.153246, -0.956188}, {-0.159732, -0.364957}, {0.184015, 0.210984}, + {-1.446427, -1.005153}, {1.970006, 2.084909}, {1.443284, 1.450596}, {1.133778, 1.024311}, + {2.236527, 2.063874}, {0.167056, -0.170384}, {0.108058, 0.061813}, {-0.630086, -0.981357}, + {-1.262581, -1.022503}, {0.993000, 1.033955}, {1.939089, 2.116008}, {0.888129, 1.150939}, + {-1.033035, -0.017927}, {-1.067896, -0.033157}, {2.082978, 2.321452}, {0.975302, 0.964340}, + {-1.199290, -1.836711}, {-1.199961, -0.825432}, {0.084522, 0.199842}, {0.129213, 0.052383} + }; +}