diff --git a/src/java/org/apache/commons/math/analysis/PolynomialSplineFunction.java b/src/java/org/apache/commons/math/analysis/PolynomialSplineFunction.java index 412cf4d2f..70a437248 100644 --- a/src/java/org/apache/commons/math/analysis/PolynomialSplineFunction.java +++ b/src/java/org/apache/commons/math/analysis/PolynomialSplineFunction.java @@ -24,7 +24,7 @@ import org.apache.commons.math.FunctionEvaluationException; * Represents a polynomial spline function. *
* A polynomial spline function consists of a set of
- * interpolating polynomials and an ascending array of domain
+ * interpolating polynomials and an ascending array of domain
* knot points, determining the intervals over which the spline function
* is defined by the constituent polynomials. The polynomials are assumed to
* have been computed to match the values of another function at the knot
@@ -50,7 +50,7 @@ import org.apache.commons.math.FunctionEvaluationException;
* than or equal to x
. The value returned is
* polynomials[j](x - knot[j])
*
- * @version $Revision: 1.8 $ $Date: 2004/07/20 12:55:01 $
+ * @version $Revision: 1.9 $ $Date: 2004/07/22 02:34:25 $
*/
public class PolynomialSplineFunction implements UnivariateRealFunction, Serializable {
diff --git a/src/java/org/apache/commons/math/random/EmpiricalDistribution.java b/src/java/org/apache/commons/math/random/EmpiricalDistribution.java
index 70b53ae78..8509ff83c 100644
--- a/src/java/org/apache/commons/math/random/EmpiricalDistribution.java
+++ b/src/java/org/apache/commons/math/random/EmpiricalDistribution.java
@@ -43,7 +43,7 @@ import org.apache.commons.math.stat.univariate.StatisticalSummary;
* generate random values "like" those in the input file -- i.e., the values
* generated will follow the distribution of the values in the file.
*
- * @version $Revision: 1.21 $ $Date: 2004/07/18 23:57:11 $
+ * @version $Revision: 1.22 $ $Date: 2004/07/22 02:34:25 $
*/
public interface EmpiricalDistribution {
@@ -83,7 +83,9 @@ public interface EmpiricalDistribution {
/**
- * Returns a {@link StatisticalSummary} describing this distribution.
+ * Returns a
+ * {@link org.apache.commons.math.stat.univariate.StatisticalSummary}
+ * describing this distribution.
* Preconditions:
RandomData
interface using
- * java.util.Random
and
- * java.util.Random.SecureRandom
instances to generate data.
+ * Implements the {@link RandomData} interface using
+ * {@link java.util.Random} and {@link java.util.Random.SecureRandom} instances
+ * to generate data.
*
- * Supports reseeding the underlying
- *
- * PRNG. The SecurityProvider
and Algorithm
+ * Supports reseeding the underlying pseudo-random number generator (PRNG).
+ * The SecurityProvider
and Algorithm
* used by the SecureRandom
instance can also be reset.
*
- * For details on the PRNGs, see the JDK documentation for
- * java.util.Random
and
- * java.util.Random.SecureRandom
+ * For details on the PRNGs, see {@link java.util.Random} and
+ * {@link java.util.Random.SecureRandom}.
*
* Usage Notes:
RandomDataImpl
instance repeatedly.RandomDataImpl
is created, the underlying random
* number generators are not intialized. The first call to a
@@ -64,9 +66,12 @@ import java.util.Collection;
* results in the same subsequent random sequence); whereas reSeedSecure(long)
* does not reinitialize the secure random number generator
* (so secure sequences started with calls to reseedSecure(long) won't be
- * identical).lower
and upper
, inclusive.
+ *
* @param lower the lower bound.
* @param upper the upper bound.
* @return the random integer.
@@ -149,6 +155,7 @@ public class RandomDataImpl implements RandomData, Serializable {
/**
* Generate a random long value uniformly distributed between
* lower
and upper
, inclusive.
+ *
* @param lower the lower bound.
* @param upper the upper bound.
* @return the random integer.
@@ -171,12 +178,10 @@ public class RandomDataImpl implements RandomData, Serializable {
*
- * TODO: find external reference or provide justification for the claim
- * that this yields a cryptographically secure sequence of hex strings.
- * @param len the desired string length.
- * @return the random string.
+ * Each byte of the binary digest is converted to 2 hex digits.
+ *
+ * @param len the length of the generated string
+ * @return the random string
*/
public String nextSecureHexString(int len) {
if (len <= 0) {
@@ -229,7 +234,8 @@ public class RandomDataImpl implements RandomData, Serializable {
/**
* Generate a random int value uniformly distributed between
* lower
and upper
, inclusive. This algorithm
- * using a secure random number generator for its engine.
+ * uses a secure random number generator.
+ *
* @param lower the lower bound.
* @param upper the upper bound.
* @return the random integer.
@@ -246,7 +252,8 @@ public class RandomDataImpl implements RandomData, Serializable {
/**
* Generate a random long value uniformly distributed between
* lower
and upper
, inclusive. This algorithm
- * using a secure random number generator for its engine.
+ * uses a secure random number generator.
+ *
* @param lower the lower bound.
* @param upper the upper bound.
* @return the random integer.
@@ -261,7 +268,8 @@ public class RandomDataImpl implements RandomData, Serializable {
}
/**
- * Generates a random long value from the Poisson distribution with the given mean.
+ * Generates a random long value from the Poisson distribution with the
+ * given mean.
*
* Algorithm Description: * Uses simulation of a Poisson process using Uniform deviates, as @@ -269,7 +277,9 @@ public class RandomDataImpl implements RandomData, Serializable { * * here. *
- * The Poisson process (and hence value returned) is bounded by 1000 * mean.
+ * The Poisson process (and hence value returned) is bounded by
+ * 1000 * mean.
+ *
* @param mean mean of the Poisson distribution.
* @return the random Poisson value.
*/
@@ -295,13 +305,13 @@ public class RandomDataImpl implements RandomData, Serializable {
}
/**
- * Generate a random value from a Normal distribution. This algorithm
- * generates random values for the general Normal distribution with the
- * given mean, mu
and the given standard deviation,
+ * Generate a random value from a Normal (a.k.a. Gaussian) distribution
+ * with the given mean, mu
and the given standard deviation,
* sigma
.
- * @param mu the mean of the distribution.
- * @param sigma the standard deviation of the distribution.
- * @return the random Normal value.
+ *
+ * @param mu the mean of the distribution
+ * @param sigma the standard deviation of the distribution
+ * @return the random Normal value
*/
public double nextGaussian(double mu, double sigma) {
if (sigma <= 0) {
@@ -312,11 +322,16 @@ public class RandomDataImpl implements RandomData, Serializable {
}
/**
+ * Returns a random value from an Exponential distribution with the given
+ * mean.
+ *
* Algorithm Description: Uses the * - * Inversion Method to generate exponential from uniform deviates. - * @param mean the mean of the distribution. - * @return the random Exponential value. + * Inversion Method to generate exponentially distributed random values + * from uniform deviates. + * + * @param mean the mean of the distribution + * @return the random Exponential value */ public double nextExponential(double mean) { if (mean < 0.0) {