added cauchy distribution
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@155159 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
0bc811fa7f
commit
19ddf2957e
|
@ -0,0 +1,59 @@
|
|||
/*
|
||||
* Copyright 2005 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.distribution;
|
||||
|
||||
/**
|
||||
* Cauchy Distribution.
|
||||
* Instances of CauchyDistribution objects should be created using
|
||||
* {@link DistributionFactory#createCauchyDistribution(double, double)}.<p>
|
||||
*
|
||||
* <p>
|
||||
* References:<p>
|
||||
* <ul>
|
||||
* <li><a href="http://mathworld.wolfram.com/CauchyDistribution.html">
|
||||
* Cauchy Distribution</a></li>
|
||||
* </ul>
|
||||
* </p>
|
||||
*
|
||||
* @version $Revision: 1.8 $ $Date: 2004-06-23 11:26:18 -0500 (Wed, 23 Jun 2004) $
|
||||
*/
|
||||
public interface CauchyDistribution extends ContinuousDistribution {
|
||||
|
||||
/**
|
||||
* Access the median.
|
||||
* @return median for this distribution
|
||||
*/
|
||||
double getMedian();
|
||||
|
||||
/**
|
||||
* Access the scale parameter.
|
||||
* @return scale parameter for this distribution
|
||||
*/
|
||||
double getScale();
|
||||
|
||||
/**
|
||||
* Modify the median.
|
||||
* @param median for this distribution
|
||||
*/
|
||||
void setMedian(double median);
|
||||
|
||||
/**
|
||||
* Modify the scale parameter.
|
||||
* @param s scale parameter for this distribution
|
||||
*/
|
||||
void setScale(double s);
|
||||
}
|
|
@ -0,0 +1,194 @@
|
|||
/*
|
||||
* Copyright 2005 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.distribution;
|
||||
|
||||
import java.io.Serializable;
|
||||
|
||||
/**
|
||||
* Default implementation of
|
||||
* {@link org.apache.commons.math.distribution.CauchyDistribution}.
|
||||
*
|
||||
* @version $Revision: 1.13 $ $Date: 2004-07-24 16:41:37 -0500 (Sat, 24 Jul 2004) $
|
||||
*/
|
||||
public class CauchyDistributionImpl extends AbstractContinuousDistribution
|
||||
implements CauchyDistribution, Serializable {
|
||||
|
||||
/** Serializable version identifier */
|
||||
static final long serialVersionUID = 8589540077390120676L;
|
||||
|
||||
/** The median of this distribution. */
|
||||
private double median = 0;
|
||||
|
||||
/** The scale of this distribution. */
|
||||
private double scale = 1;
|
||||
|
||||
/**
|
||||
* Creates normal distribution with the mean equal to zero and standard
|
||||
* deviation equal to one.
|
||||
*/
|
||||
public CauchyDistributionImpl(){
|
||||
this(0.0, 1.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a cauchy distribution using the given median and scale.
|
||||
* @param median median for this distribution
|
||||
* @param s scale parameter for this distribution
|
||||
*/
|
||||
public CauchyDistributionImpl(double median, double s){
|
||||
super();
|
||||
setMedian(median);
|
||||
setScale(s);
|
||||
}
|
||||
|
||||
/**
|
||||
* For this disbution, X, this method returns P(X < <code>x</code>).
|
||||
* @param x the value at which the CDF is evaluated.
|
||||
* @return CDF evaluted at <code>x</code>.
|
||||
*/
|
||||
public double cumulativeProbability(double x) {
|
||||
return 0.5 + (Math.atan((x - median) / scale) / Math.PI);
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the median.
|
||||
* @return median for this distribution
|
||||
*/
|
||||
public double getMedian() {
|
||||
return median;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the scale parameter.
|
||||
* @return scale parameter for this distribution
|
||||
*/
|
||||
public double getScale() {
|
||||
return scale;
|
||||
}
|
||||
|
||||
/**
|
||||
* For this distribution, X, this method returns the critical point x, such
|
||||
* that P(X < x) = <code>p</code>.
|
||||
* <p>
|
||||
* Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and
|
||||
* <code>Double.POSITIVE_INFINITY</code> for p=1.
|
||||
*
|
||||
* @param p the desired probability
|
||||
* @return x, such that P(X < x) = <code>p</code>
|
||||
* @throws IllegalArgumentException if <code>p</code> is not a valid
|
||||
* probability.
|
||||
*/
|
||||
public double inverseCumulativeProbability(double p) {
|
||||
double ret;
|
||||
if (p < 0.0 || p > 1.0) {
|
||||
throw new IllegalArgumentException
|
||||
("probability argument must be between 0 and 1 (inclusive)");
|
||||
} else if (p == 0) {
|
||||
ret = Double.NEGATIVE_INFINITY;
|
||||
} else if (p == 1) {
|
||||
ret = Double.POSITIVE_INFINITY;
|
||||
} else {
|
||||
ret = median + scale * Math.tan(Math.PI * (p - .5));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Modify the median.
|
||||
* @param median for this distribution
|
||||
*/
|
||||
public void setMedian(double median) {
|
||||
this.median = median;
|
||||
}
|
||||
|
||||
/**
|
||||
* Modify the scale parameter.
|
||||
* @param s scale parameter for this distribution
|
||||
* @throws IllegalArgumentException if <code>sd</code> is not positive.
|
||||
*/
|
||||
public void setScale(double s) {
|
||||
if (s <= 0.0) {
|
||||
throw new IllegalArgumentException(
|
||||
"Scale must be positive.");
|
||||
}
|
||||
scale = s;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the domain value lower bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value lower bound, i.e.
|
||||
* P(X < <i>lower bound</i>) < <code>p</code>
|
||||
*/
|
||||
protected double getDomainLowerBound(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
ret = -Double.MAX_VALUE;
|
||||
} else {
|
||||
ret = getMedian();
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the domain value upper bound, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return domain value upper bound, i.e.
|
||||
* P(X < <i>upper bound</i>) > <code>p</code>
|
||||
*/
|
||||
protected double getDomainUpperBound(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
ret = getMedian();
|
||||
} else {
|
||||
ret = Double.MAX_VALUE;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the initial domain value, based on <code>p</code>, used to
|
||||
* bracket a CDF root. This method is used by
|
||||
* {@link #inverseCumulativeProbability(double)} to find critical values.
|
||||
*
|
||||
* @param p the desired probability for the critical value
|
||||
* @return initial domain value
|
||||
*/
|
||||
protected double getInitialDomain(double p) {
|
||||
double ret;
|
||||
|
||||
if (p < .5) {
|
||||
ret = getMedian() - getScale();
|
||||
} else if (p > .5) {
|
||||
ret = getMedian() + getScale();
|
||||
} else {
|
||||
ret = getMedian();
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
}
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright 2003-2004 The Apache Software Foundation.
|
||||
* Copyright 2003-2005 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -23,6 +23,7 @@ import org.apache.commons.discovery.tools.DiscoverClass;
|
|||
* The following distributions are supported:
|
||||
* <ul>
|
||||
* <li>Binomial</li>
|
||||
* <li>Cauchy</li>
|
||||
* <li>Chi-Squared</li>
|
||||
* <li>Exponential</li>
|
||||
* <li>F</li>
|
||||
|
@ -40,7 +41,7 @@ import org.apache.commons.discovery.tools.DiscoverClass;
|
|||
* ChiSquaredDistribution chi = factory.createChiSquareDistribution(5.0);
|
||||
* </pre>
|
||||
*
|
||||
* @version $Revision: 1.22 $ $Date: 2004/11/07 03:32:48 $
|
||||
* @version $Revision: 1.22 $ $Date$
|
||||
*/
|
||||
public abstract class DistributionFactory {
|
||||
/**
|
||||
|
@ -77,6 +78,18 @@ public abstract class DistributionFactory {
|
|||
*/
|
||||
public abstract BinomialDistribution createBinomialDistribution(
|
||||
int numberOfTrials, double probabilityOfSuccess);
|
||||
|
||||
/**
|
||||
* Create a new cauchy distribution with the given median and scale.
|
||||
* @param median the median of the distribution
|
||||
* @param scale the scale
|
||||
* @return a new cauchy distribution
|
||||
*/
|
||||
public CauchyDistribution createCauchyDistribution(
|
||||
double median, double scale)
|
||||
{
|
||||
return new CauchyDistributionImpl(median, scale);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new chi-square distribution with the given degrees of freedom.
|
||||
|
|
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
* Copyright 2005 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.distribution;
|
||||
|
||||
/**
|
||||
* Test cases for CauchyDistribution.
|
||||
* Extends ContinuousDistributionAbstractTest. See class javadoc for
|
||||
* ContinuousDistributionAbstractTest for details.
|
||||
*
|
||||
* @version $Revision: 1.8 $ $Date: 2004-07-24 16:41:37 -0500 (Sat, 24 Jul 2004) $
|
||||
*/
|
||||
public class CauchyDistributionTest extends ContinuousDistributionAbstractTest {
|
||||
|
||||
/**
|
||||
* Constructor for CauchyDistributionTest.
|
||||
* @param arg0
|
||||
*/
|
||||
public CauchyDistributionTest(String arg0) {
|
||||
super(arg0);
|
||||
}
|
||||
|
||||
//-------------- Implementations for abstract methods -----------------------
|
||||
|
||||
/** Creates the default continuous distribution instance to use in tests. */
|
||||
public ContinuousDistribution makeDistribution() {
|
||||
return DistributionFactory.newInstance().createCauchyDistribution(1.2, 2.1);
|
||||
}
|
||||
|
||||
/** Creates the default cumulative probability distribution test input values */
|
||||
public double[] makeCumulativeTestPoints() {
|
||||
// quantiles computed using Mathematica
|
||||
return new double[] {-667.2485619d, -65.6230835d, -25.48302995d,
|
||||
-12.05887818d, -5.263135428d, 7.663135428d, 14.45887818d,
|
||||
27.88302995d, 68.0230835d, 669.6485619d};
|
||||
}
|
||||
|
||||
/** Creates the default cumulative probability density test expected values */
|
||||
public double[] makeCumulativeTestValues() {
|
||||
return new double[] {0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.900d, 0.950d,
|
||||
0.975d, 0.990d, 0.999d};
|
||||
}
|
||||
|
||||
//---------------------------- Additional test cases -------------------------
|
||||
|
||||
public void testInverseCumulativeProbabilityExtremes() throws Exception {
|
||||
setInverseCumulativeTestPoints(new double[] {0.0, 1.0});
|
||||
setInverseCumulativeTestValues(
|
||||
new double[] {Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY});
|
||||
verifyInverseCumulativeProbabilities();
|
||||
}
|
||||
|
||||
public void testMedian() {
|
||||
CauchyDistribution distribution = (CauchyDistribution) getDistribution();
|
||||
double expected = Math.random();
|
||||
distribution.setMedian(expected);
|
||||
assertEquals(expected, distribution.getMedian(), 0.0);
|
||||
}
|
||||
|
||||
public void testScale() {
|
||||
CauchyDistribution distribution = (CauchyDistribution) getDistribution();
|
||||
double expected = Math.random();
|
||||
distribution.setScale(expected);
|
||||
assertEquals(expected, distribution.getScale(), 0.0);
|
||||
}
|
||||
|
||||
public void testSetScale() {
|
||||
CauchyDistribution distribution = (CauchyDistribution) getDistribution();
|
||||
try {
|
||||
distribution.setScale(0.0);
|
||||
fail("Can not have 0.0 scale.");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// success
|
||||
}
|
||||
|
||||
try {
|
||||
distribution.setScale(-1.0);
|
||||
fail("Can not have negative scale.");
|
||||
} catch (IllegalArgumentException ex) {
|
||||
// success
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright 2003-2004 The Apache Software Foundation.
|
||||
* Copyright 2003-2005 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -19,7 +19,7 @@ package org.apache.commons.math.distribution;
|
|||
import junit.framework.TestCase;
|
||||
|
||||
/**
|
||||
* @version $Revision: 1.16 $ $Date: 2004/02/21 21:35:17 $
|
||||
* @version $Revision: 1.16 $ $Date$
|
||||
*/
|
||||
public class DistributionFactoryImplTest extends TestCase {
|
||||
/** */
|
||||
|
@ -317,4 +317,12 @@ public class DistributionFactoryImplTest extends TestCase {
|
|||
fail("valid sample size. IllegalArgumentException is not expected");
|
||||
}
|
||||
}
|
||||
|
||||
public void testHypergeometricDistributionSmallPopulationSize() {
|
||||
try {
|
||||
factory.createHypergeometricDistribution(5, 3, 10);
|
||||
fail("sample size larger than population size. IllegalArgumentException expected");
|
||||
} catch(IllegalArgumentException ex) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright 2003-2004 The Apache Software Foundation.
|
||||
* Copyright 2003-2005 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -21,7 +21,7 @@ package org.apache.commons.math.distribution;
|
|||
* Extends IntegerDistributionAbstractTest. See class javadoc for
|
||||
* IntegerDistributionAbstractTest for details.
|
||||
*
|
||||
* @version $Revision: 1.13 $ $Date: 2004/11/07 03:32:49 $
|
||||
* @version $Revision: 1.13 $ $Date$
|
||||
*/
|
||||
public class HypergeometricDistributionTest extends IntegerDistributionAbstractTest {
|
||||
|
||||
|
@ -117,4 +117,15 @@ public class HypergeometricDistributionTest extends IntegerDistributionAbstractT
|
|||
verifyInverseCumulativeProbabilities();
|
||||
}
|
||||
|
||||
public void testPopulationSize() {
|
||||
HypergeometricDistribution dist = DistributionFactory.newInstance().createHypergeometricDistribution(5,3,5);
|
||||
try {
|
||||
dist.setPopulationSize(-1);
|
||||
fail("negative population size. IllegalArgumentException expected");
|
||||
} catch(IllegalArgumentException ex) {
|
||||
}
|
||||
|
||||
dist.setPopulationSize(10);
|
||||
assertEquals(10, dist.getPopulationSize());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright 2004 The Apache Software Foundation.
|
||||
* Copyright 2004-2005 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -18,7 +18,7 @@ package org.apache.commons.math.distribution;
|
|||
/**
|
||||
* <code>PoissonDistributionTest</code>
|
||||
*
|
||||
* @version $Revision: 1.2 $ $Date: 2004/11/07 20:39:15 $
|
||||
* @version $Revision: 1.2 $ $Date$
|
||||
*/
|
||||
public class PoissonDistributionTest extends IntegerDistributionAbstractTest {
|
||||
|
||||
|
@ -102,7 +102,7 @@ public class PoissonDistributionTest extends IntegerDistributionAbstractTest {
|
|||
* P(9900 ≤ X ≤ 10200) for X = Po(10000)
|
||||
*/
|
||||
public void testNormalApproximateProbability() throws Exception {
|
||||
PoissonDistribution dist = new PoissonDistributionImpl(100);
|
||||
PoissonDistribution dist = DistributionFactory.newInstance().createPoissonDistribution(100);
|
||||
double result = dist.normalApproximateProbability(110)
|
||||
- dist.normalApproximateProbability(89);
|
||||
assertEquals(0.706281887248, result, 1E-10);
|
||||
|
@ -117,9 +117,20 @@ public class PoissonDistributionTest extends IntegerDistributionAbstractTest {
|
|||
* @throws Exception
|
||||
*/
|
||||
public void testDegenerateInverseCumulativeProbability() throws Exception {
|
||||
PoissonDistribution dist = new PoissonDistributionImpl(
|
||||
DEFAULT_TEST_POISSON_PARAMETER);
|
||||
assertEquals(Integer.MAX_VALUE, dist.inverseCumulativeProbability(1.0d));
|
||||
assertEquals(-1, dist.inverseCumulativeProbability(0d));
|
||||
PoissonDistribution dist = DistributionFactory.newInstance().createPoissonDistribution(DEFAULT_TEST_POISSON_PARAMETER);
|
||||
assertEquals(Integer.MAX_VALUE, dist.inverseCumulativeProbability(1.0d));
|
||||
assertEquals(-1, dist.inverseCumulativeProbability(0d));
|
||||
}
|
||||
|
||||
public void testMean() {
|
||||
PoissonDistribution dist = DistributionFactory.newInstance().createPoissonDistribution(DEFAULT_TEST_POISSON_PARAMETER);
|
||||
try {
|
||||
dist.setMean(-1);
|
||||
fail("negative mean. IllegalArgumentException expected");
|
||||
} catch(IllegalArgumentException ex) {
|
||||
}
|
||||
|
||||
dist.setMean(10.0);
|
||||
assertEquals(10.0, dist.getMean(), 0.0);
|
||||
}
|
||||
}
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright 2003-2004 The Apache Software Foundation.
|
||||
* Copyright 2003-2005 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -43,13 +43,13 @@ public class TDistributionTest extends ContinuousDistributionAbstractTest {
|
|||
public double[] makeCumulativeTestPoints() {
|
||||
// quantiles computed using R version 1.8.1 (linux version)
|
||||
return new double[] {-5.89343,-3.36493, -2.570582, -2.015048,
|
||||
-1.475884, 5.89343, 3.36493, 2.570582,
|
||||
-1.475884, 0.0, 5.89343, 3.36493, 2.570582,
|
||||
2.015048, 1.475884};
|
||||
}
|
||||
|
||||
/** Creates the default cumulative probability density test expected values */
|
||||
public double[] makeCumulativeTestValues() {
|
||||
return new double[] {0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.999d,
|
||||
return new double[] {0.001d, 0.01d, 0.025d, 0.05d, 0.1d, 0.0d, 0.999d,
|
||||
0.990d, 0.975d, 0.950d, 0.900d};
|
||||
}
|
||||
|
||||
|
|
|
@ -39,6 +39,9 @@ The <action> type attribute can be add,update,fix,remove.
|
|||
<body>
|
||||
<release version="1.1" date="In Development"
|
||||
description="Jakarta Commons Math 1.1 - Development">
|
||||
<action dev="brentworden" type="add">
|
||||
Added Cauchy distribution implementation.
|
||||
</action>
|
||||
<action dev="brentworden" type="add">
|
||||
Added convience methods for rounding.
|
||||
</action>
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
<?xml version="1.0"?>
|
||||
|
||||
<!--
|
||||
Copyright 2003-2004 The Apache Software Foundation
|
||||
Copyright 2003-2005 The Apache Software Foundation
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
@ -17,7 +17,7 @@
|
|||
-->
|
||||
|
||||
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
|
||||
<!-- $Revision: 1.3 $ $Date: 2004/11/09 12:41:37 $ -->
|
||||
<!-- $Revision: 1.3 $ $Date$ -->
|
||||
<document url="stat.html">
|
||||
<properties>
|
||||
<title>The Commons Math User Guide - Statistics</title>
|
||||
|
@ -54,6 +54,7 @@ BinomialDistribution binomial = factory.createBinomialDistribution(10, .75);</so
|
|||
<table>
|
||||
<tr><th>Distribution</th><th>Factory Method</th><th>Parameters</th></tr>
|
||||
<tr><td>Binomial</td><td>createBinomialDistribution</td><td><div>Number of trials</div><div>Probability of success</div></td></tr>
|
||||
<tr><td>Cauchy</td><td>createCauchyDistribution</td><td><div>Median</div><div>Scale</div></td></tr>
|
||||
<tr><td>Chi-Squared</td><td>createChiSquaredDistribution</td><td><div>Degrees of freedom</div></td></tr>
|
||||
<tr><td>Exponential</td><td>createExponentialDistribution</td><td><div>Mean</div></td></tr>
|
||||
<tr><td>F</td><td>createFDistribution</td><td><div>Numerator degrees of freedom</div><div>Denominator degrees of freedom</div></td></tr>
|
||||
|
|
Loading…
Reference in New Issue