From 1a26866d771d8c3795e89712e530bd4976b506b1 Mon Sep 17 00:00:00 2001
From: Luc Maisonobe
Date: Wed, 6 Jan 2016 12:24:29 +0100
Subject: [PATCH] Intermediate level implementations of variable-step
Runge-Kutta methods.
---
.../AdaptiveStepsizeFieldIntegrator.java | 366 +++++++++++++++++
.../EmbeddedRungeKuttaFieldIntegrator.java | 379 ++++++++++++++++++
2 files changed, 745 insertions(+)
create mode 100644 src/main/java/org/apache/commons/math4/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
create mode 100644 src/main/java/org/apache/commons/math4/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
new file mode 100644
index 000000000..fa728939d
--- /dev/null
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/AdaptiveStepsizeFieldIntegrator.java
@@ -0,0 +1,366 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math4.ode.nonstiff;
+
+import org.apache.commons.math4.Field;
+import org.apache.commons.math4.RealFieldElement;
+import org.apache.commons.math4.exception.DimensionMismatchException;
+import org.apache.commons.math4.exception.MaxCountExceededException;
+import org.apache.commons.math4.exception.NumberIsTooSmallException;
+import org.apache.commons.math4.exception.util.LocalizedFormats;
+import org.apache.commons.math4.ode.AbstractFieldIntegrator;
+import org.apache.commons.math4.ode.FieldEquationsMapper;
+import org.apache.commons.math4.ode.FieldODEState;
+import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
+import org.apache.commons.math4.util.FastMath;
+import org.apache.commons.math4.util.MathArrays;
+import org.apache.commons.math4.util.MathUtils;
+
+/**
+ * This abstract class holds the common part of all adaptive
+ * stepsize integrators for Ordinary Differential Equations.
+ *
+ * These algorithms perform integration with stepsize control, which
+ * means the user does not specify the integration step but rather a
+ * tolerance on error. The error threshold is computed as
+ *
+ * threshold_i = absTol_i + relTol_i * max (abs (ym), abs (ym+1))
+ *
+ * where absTol_i is the absolute tolerance for component i of the
+ * state vector and relTol_i is the relative tolerance for the same
+ * component. The user can also use only two scalar values absTol and
+ * relTol which will be used for all components.
+ *
+ *
+ * Note that only the {@link FieldODEState#getState() main part}
+ * of the state vector is used for stepsize control. The {@link
+ * FieldODEState#getSecondaryState(int) secondary parts} of the state
+ * vector are explicitly ignored for stepsize control.
+ *
+ *
+ * If the estimated error for ym+1 is such that
+ *
+ * sqrt((sum (errEst_i / threshold_i)^2 ) / n) < 1
+ *
+ *
+ * (where n is the main set dimension) then the step is accepted,
+ * otherwise the step is rejected and a new attempt is made with a new
+ * stepsize.
+ *
+ * @param the type of the field elements
+ * @since 3.6
+ *
+ */
+
+public abstract class AdaptiveStepsizeFieldIntegrator>
+ extends AbstractFieldIntegrator {
+
+ /** Allowed absolute scalar error. */
+ protected double scalAbsoluteTolerance;
+
+ /** Allowed relative scalar error. */
+ protected double scalRelativeTolerance;
+
+ /** Allowed absolute vectorial error. */
+ protected double[] vecAbsoluteTolerance;
+
+ /** Allowed relative vectorial error. */
+ protected double[] vecRelativeTolerance;
+
+ /** Main set dimension. */
+ protected int mainSetDimension;
+
+ /** User supplied initial step. */
+ private T initialStep;
+
+ /** Minimal step. */
+ private T minStep;
+
+ /** Maximal step. */
+ private T maxStep;
+
+ /** Build an integrator with the given stepsize bounds.
+ * The default step handler does nothing.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ */
+ public AdaptiveStepsizeFieldIntegrator(final Field field, final String name,
+ final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance) {
+
+ super(field, name);
+ setStepSizeControl(minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
+ resetInternalState();
+
+ }
+
+ /** Build an integrator with the given stepsize bounds.
+ * The default step handler does nothing.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ */
+ public AdaptiveStepsizeFieldIntegrator(final Field field, final String name,
+ final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance) {
+
+ super(field, name);
+ setStepSizeControl(minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
+ resetInternalState();
+
+ }
+
+ /** Set the adaptive step size control parameters.
+ *
+ * A side effect of this method is to also reset the initial
+ * step so it will be automatically computed by the integrator
+ * if {@link #setInitialStepSize(double) setInitialStepSize}
+ * is not called by the user.
+ *
+ * @param minimalStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maximalStep maximal step (must be positive even for backward
+ * integration)
+ * @param absoluteTolerance allowed absolute error
+ * @param relativeTolerance allowed relative error
+ */
+ public void setStepSizeControl(final double minimalStep, final double maximalStep,
+ final double absoluteTolerance,
+ final double relativeTolerance) {
+
+ minStep = getField().getZero().add(FastMath.abs(minimalStep));
+ maxStep = getField().getZero().add(FastMath.abs(maximalStep));
+ initialStep = getField().getOne().negate();
+
+ scalAbsoluteTolerance = absoluteTolerance;
+ scalRelativeTolerance = relativeTolerance;
+ vecAbsoluteTolerance = null;
+ vecRelativeTolerance = null;
+
+ }
+
+ /** Set the adaptive step size control parameters.
+ *
+ * A side effect of this method is to also reset the initial
+ * step so it will be automatically computed by the integrator
+ * if {@link #setInitialStepSize(double) setInitialStepSize}
+ * is not called by the user.
+ *
+ * @param minimalStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maximalStep maximal step (must be positive even for backward
+ * integration)
+ * @param absoluteTolerance allowed absolute error
+ * @param relativeTolerance allowed relative error
+ */
+ public void setStepSizeControl(final double minimalStep, final double maximalStep,
+ final double[] absoluteTolerance,
+ final double[] relativeTolerance) {
+
+ minStep = getField().getZero().add(FastMath.abs(minimalStep));
+ maxStep = getField().getZero().add(FastMath.abs(maximalStep));
+ initialStep = getField().getOne().negate();
+
+ scalAbsoluteTolerance = 0;
+ scalRelativeTolerance = 0;
+ vecAbsoluteTolerance = absoluteTolerance.clone();
+ vecRelativeTolerance = relativeTolerance.clone();
+
+ }
+
+ /** Set the initial step size.
+ * This method allows the user to specify an initial positive
+ * step size instead of letting the integrator guess it by
+ * itself. If this method is not called before integration is
+ * started, the initial step size will be estimated by the
+ * integrator.
+ * @param initialStepSize initial step size to use (must be positive even
+ * for backward integration ; providing a negative value or a value
+ * outside of the min/max step interval will lead the integrator to
+ * ignore the value and compute the initial step size by itself)
+ */
+ public void setInitialStepSize(final T initialStepSize) {
+ if (initialStepSize.subtract(minStep).getReal() < 0 ||
+ initialStepSize.subtract(maxStep).getReal() > 0) {
+ initialStep = getField().getOne().negate();
+ } else {
+ initialStep = initialStepSize;
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected void sanityChecks(final FieldODEState eqn, final T t)
+ throws DimensionMismatchException, NumberIsTooSmallException {
+
+ super.sanityChecks(eqn, t);
+
+ mainSetDimension = eqn.getState().length;
+
+ if (vecAbsoluteTolerance != null && vecAbsoluteTolerance.length != mainSetDimension) {
+ throw new DimensionMismatchException(mainSetDimension, vecAbsoluteTolerance.length);
+ }
+
+ if (vecRelativeTolerance != null && vecRelativeTolerance.length != mainSetDimension) {
+ throw new DimensionMismatchException(mainSetDimension, vecRelativeTolerance.length);
+ }
+
+ }
+
+ /** Initialize the integration step.
+ * @param forward forward integration indicator
+ * @param order order of the method
+ * @param scale scaling vector for the state vector (can be shorter than state vector)
+ * @param state0 state at integration start time
+ * @param mapper mapper for all the equations
+ * @return first integration step
+ * @exception MaxCountExceededException if the number of functions evaluations is exceeded
+ * @exception DimensionMismatchException if arrays dimensions do not match equations settings
+ */
+ public T initializeStep(final boolean forward, final int order, final T[] scale,
+ final FieldODEStateAndDerivative state0,
+ final FieldEquationsMapper mapper)
+ throws MaxCountExceededException, DimensionMismatchException {
+
+ if (initialStep.getReal() > 0) {
+ // use the user provided value
+ return forward ? initialStep : initialStep.negate();
+ }
+
+ // very rough first guess : h = 0.01 * ||y/scale|| / ||y'/scale||
+ // this guess will be used to perform an Euler step
+ final T[] y0 = mapper.mapState(state0);
+ final T[] yDot0 = mapper.mapDerivative(state0);
+ T yOnScale2 = getField().getZero();
+ T yDotOnScale2 = getField().getZero();
+ for (int j = 0; j < scale.length; ++j) {
+ final T ratio = y0[j].divide(scale[j]);
+ yOnScale2 = yOnScale2.add(ratio.multiply(ratio));
+ final T ratioDot = yDot0[j].divide(scale[j]);
+ yDotOnScale2 = yDotOnScale2.add(ratioDot.multiply(ratioDot));
+ }
+
+ T h = (yOnScale2.getReal() < 1.0e-10 || yDotOnScale2.getReal() < 1.0e-10) ?
+ getField().getZero().add(1.0e-6) :
+ yOnScale2.divide(yDotOnScale2).sqrt().multiply(0.01);
+ if (! forward) {
+ h = h.negate();
+ }
+
+ // perform an Euler step using the preceding rough guess
+ final T[] y1 = MathArrays.buildArray(getField(), y0.length);
+ for (int j = 0; j < y0.length; ++j) {
+ y1[j] = y0[j].add(yDot0[j].multiply(h));
+ }
+ final T[] yDot1 = computeDerivatives(state0.getTime().add(h), y1);
+
+ // estimate the second derivative of the solution
+ T yDDotOnScale = getField().getZero();
+ for (int j = 0; j < scale.length; ++j) {
+ final T ratioDotDot = yDot1[j].subtract(yDot0[j]).divide(scale[j]);
+ yDDotOnScale = yDDotOnScale.add(ratioDotDot.multiply(ratioDotDot));
+ }
+ yDDotOnScale = yDDotOnScale.sqrt().divide(h);
+
+ // step size is computed such that
+ // h^order * max (||y'/tol||, ||y''/tol||) = 0.01
+ final T maxInv2 = MathUtils.max(yDotOnScale2.sqrt(), yDDotOnScale);
+ final T h1 = maxInv2.getReal() < 1.0e-15 ?
+ MathUtils.max(getField().getZero().add(1.0e-6), h.abs().multiply(0.001)) :
+ maxInv2.multiply(100).reciprocal().pow(1.0 / order);
+ h = MathUtils.min(h.abs().multiply(100), h1);
+ h = MathUtils.max(h, state0.getTime().abs().multiply(1.0e-12)); // avoids cancellation when computing t1 - t0
+ h = MathUtils.max(minStep, MathUtils.min(maxStep, h));
+ if (! forward) {
+ h = h.negate();
+ }
+
+ return h;
+
+ }
+
+ /** Filter the integration step.
+ * @param h signed step
+ * @param forward forward integration indicator
+ * @param acceptSmall if true, steps smaller than the minimal value
+ * are silently increased up to this value, if false such small
+ * steps generate an exception
+ * @return a bounded integration step (h if no bound is reach, or a bounded value)
+ * @exception NumberIsTooSmallException if the step is too small and acceptSmall is false
+ */
+ protected T filterStep(final T h, final boolean forward, final boolean acceptSmall)
+ throws NumberIsTooSmallException {
+
+ T filteredH = h;
+ if (h.abs().subtract(minStep).getReal() < 0) {
+ if (acceptSmall) {
+ filteredH = forward ? minStep : minStep.negate();
+ } else {
+ throw new NumberIsTooSmallException(LocalizedFormats.MINIMAL_STEPSIZE_REACHED_DURING_INTEGRATION,
+ h.abs().getReal(), minStep.getReal(), true);
+ }
+ }
+
+ if (filteredH.subtract(maxStep).getReal() > 0) {
+ filteredH = maxStep;
+ } else if (filteredH.add(maxStep).getReal() < 0) {
+ filteredH = maxStep.negate();
+ }
+
+ return filteredH;
+
+ }
+
+ /** Reset internal state to dummy values. */
+ protected void resetInternalState() {
+ stepStart = null;
+ stepSize = minStep.multiply(maxStep).sqrt();
+ }
+
+ /** Get the minimal step.
+ * @return minimal step
+ */
+ public T getMinStep() {
+ return minStep;
+ }
+
+ /** Get the maximal step.
+ * @return maximal step
+ */
+ public T getMaxStep() {
+ return maxStep;
+ }
+
+}
diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java
new file mode 100644
index 000000000..8a333f943
--- /dev/null
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/EmbeddedRungeKuttaFieldIntegrator.java
@@ -0,0 +1,379 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math4.ode.nonstiff;
+
+import org.apache.commons.math4.Field;
+import org.apache.commons.math4.RealFieldElement;
+import org.apache.commons.math4.exception.DimensionMismatchException;
+import org.apache.commons.math4.exception.MaxCountExceededException;
+import org.apache.commons.math4.exception.NoBracketingException;
+import org.apache.commons.math4.exception.NumberIsTooSmallException;
+import org.apache.commons.math4.ode.FieldExpandableODE;
+import org.apache.commons.math4.ode.FieldODEState;
+import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
+import org.apache.commons.math4.util.MathArrays;
+import org.apache.commons.math4.util.MathUtils;
+
+/**
+ * This class implements the common part of all embedded Runge-Kutta
+ * integrators for Ordinary Differential Equations.
+ *
+ * These methods are embedded explicit Runge-Kutta methods with two
+ * sets of coefficients allowing to estimate the error, their Butcher
+ * arrays are as follows :
+ *
+ * 0 |
+ * c2 | a21
+ * c3 | a31 a32
+ * ... | ...
+ * cs | as1 as2 ... ass-1
+ * |--------------------------
+ * | b1 b2 ... bs-1 bs
+ * | b'1 b'2 ... b's-1 b's
+ *
+ *
+ *
+ * In fact, we rather use the array defined by ej = bj - b'j to
+ * compute directly the error rather than computing two estimates and
+ * then comparing them.
+ *
+ * Some methods are qualified as fsal (first same as last)
+ * methods. This means the last evaluation of the derivatives in one
+ * step is the same as the first in the next step. Then, this
+ * evaluation can be reused from one step to the next one and the cost
+ * of such a method is really s-1 evaluations despite the method still
+ * has s stages. This behaviour is true only for successful steps, if
+ * the step is rejected after the error estimation phase, no
+ * evaluation is saved. For an fsal method, we have cs = 1 and
+ * asi = bi for all i.
+ *
+ * @param the type of the field elements
+ * @since 3.6
+ */
+
+public abstract class EmbeddedRungeKuttaFieldIntegrator>
+ extends AdaptiveStepsizeFieldIntegrator {
+
+ /** Indicator for fsal methods. */
+ private final boolean fsal;
+
+ /** Time steps from Butcher array (without the first zero). */
+ private final double[] c;
+
+ /** Internal weights from Butcher array (without the first empty row). */
+ private final double[][] a;
+
+ /** External weights for the high order method from Butcher array. */
+ private final double[] b;
+
+ /** Prototype of the step interpolator. */
+ private final RungeKuttaFieldStepInterpolator prototype;
+
+ /** Stepsize control exponent. */
+ private final double exp;
+
+ /** Safety factor for stepsize control. */
+ private T safety;
+
+ /** Minimal reduction factor for stepsize control. */
+ private T minReduction;
+
+ /** Maximal growth factor for stepsize control. */
+ private T maxGrowth;
+
+ /** Build a Runge-Kutta integrator with the given Butcher array.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param fsal indicate that the method is an fsal
+ * @param c time steps from Butcher array (without the first zero)
+ * @param a internal weights from Butcher array (without the first empty row)
+ * @param b propagation weights for the high order method from Butcher array
+ * @param prototype prototype of the step interpolator to use
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ */
+ protected EmbeddedRungeKuttaFieldIntegrator(final Field field, final String name, final boolean fsal,
+ final double[] c, final double[][] a, final double[] b,
+ final RungeKuttaFieldStepInterpolator prototype,
+ final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance) {
+
+ super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
+
+ this.fsal = fsal;
+ this.c = c;
+ this.a = a;
+ this.b = b;
+ this.prototype = prototype;
+
+ exp = -1.0 / getOrder();
+
+ // set the default values of the algorithm control parameters
+ setSafety(field.getZero().add(0.9));
+ setMinReduction(field.getZero().add(0.2));
+ setMaxGrowth(field.getZero().add(10.0));
+
+ }
+
+ /** Build a Runge-Kutta integrator with the given Butcher array.
+ * @param field field to which the time and state vector elements belong
+ * @param name name of the method
+ * @param fsal indicate that the method is an fsal
+ * @param c time steps from Butcher array (without the first zero)
+ * @param a internal weights from Butcher array (without the first empty row)
+ * @param b propagation weights for the high order method from Butcher array
+ * @param prototype prototype of the step interpolator to use
+ * @param minStep minimal step (must be positive even for backward
+ * integration), the last step can be smaller than this
+ * @param maxStep maximal step (must be positive even for backward
+ * integration)
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ */
+ protected EmbeddedRungeKuttaFieldIntegrator(final Field field, final String name, final boolean fsal,
+ final double[] c, final double[][] a, final double[] b,
+ final RungeKuttaFieldStepInterpolator prototype,
+ final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance) {
+
+ super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
+
+ this.fsal = fsal;
+ this.c = c;
+ this.a = a;
+ this.b = b;
+ this.prototype = prototype;
+
+ exp = -1.0 / getOrder();
+
+ // set the default values of the algorithm control parameters
+ setSafety(field.getZero().add(0.9));
+ setMinReduction(field.getZero().add(0.2));
+ setMaxGrowth(field.getZero().add(10.0));
+
+ }
+
+ /** Get the order of the method.
+ * @return order of the method
+ */
+ public abstract int getOrder();
+
+ /** Get the safety factor for stepsize control.
+ * @return safety factor
+ */
+ public T getSafety() {
+ return safety;
+ }
+
+ /** Set the safety factor for stepsize control.
+ * @param safety safety factor
+ */
+ public void setSafety(final T safety) {
+ this.safety = safety;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public FieldODEStateAndDerivative integrate(final FieldExpandableODE equations,
+ final FieldODEState initialState, final T finalTime)
+ throws NumberIsTooSmallException, DimensionMismatchException,
+ MaxCountExceededException, NoBracketingException {
+
+ sanityChecks(initialState, finalTime);
+ final T t0 = initialState.getTime();
+ final T[] y0 = equations.getMapper().mapState(initialState);
+ stepStart = initIntegration(equations, t0, y0, finalTime);
+ final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
+
+ // create some internal working arrays
+ final int stages = c.length + 1;
+ T[] y = y0;
+ final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1);
+ final T[] yTmp = MathArrays.buildArray(getField(), y0.length);
+
+ // set up an interpolator sharing the integrator arrays
+ final RungeKuttaFieldStepInterpolator interpolator = (RungeKuttaFieldStepInterpolator) prototype.copy();
+ interpolator.reinitialize(this, y0, yDotK, forward, equations.getMapper());
+ interpolator.storeState(stepStart);
+
+ // set up integration control objects
+ T hNew = getField().getZero();
+ boolean firstTime = true;
+
+ // main integration loop
+ isLastStep = false;
+ do {
+
+ interpolator.shift();
+
+ // iterate over step size, ensuring local normalized error is smaller than 1
+ T error = getField().getZero().add(10);
+ while (error.subtract(1.0).getReal() >= 0) {
+
+ // first stage
+ yDotK[0] = stepStart.getDerivative();
+
+ if (firstTime) {
+ final T[] scale = MathArrays.buildArray(getField(), mainSetDimension);
+ if (vecAbsoluteTolerance == null) {
+ for (int i = 0; i < scale.length; ++i) {
+ scale[i] = y[i].abs().multiply(scalRelativeTolerance).add(scalAbsoluteTolerance);
+ }
+ } else {
+ for (int i = 0; i < scale.length; ++i) {
+ scale[i] = y[i].abs().multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
+ }
+ }
+ hNew = initializeStep(forward, getOrder(), scale, stepStart, equations.getMapper());
+ firstTime = false;
+ }
+
+ stepSize = hNew;
+ if (forward) {
+ if (stepStart.getTime().add(stepSize).subtract(finalTime).getReal() >= 0) {
+ stepSize = finalTime.subtract(stepStart.getTime());
+ }
+ } else {
+ if (stepStart.getTime().add(stepSize).subtract(finalTime).getReal() <= 0) {
+ stepSize = finalTime.subtract(stepStart.getTime());
+ }
+ }
+
+ // next stages
+ for (int k = 1; k < stages; ++k) {
+
+ for (int j = 0; j < y0.length; ++j) {
+ T sum = yDotK[0][j].multiply(a[k-1][0]);
+ for (int l = 1; l < k; ++l) {
+ sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
+ }
+ yTmp[j] = y[j].add(stepSize.multiply(sum));
+ }
+
+ yDotK[k] = computeDerivatives(stepStart.getTime().add(stepSize.multiply(c[k-1])), yTmp);
+
+ }
+
+ // estimate the state at the end of the step
+ for (int j = 0; j < y0.length; ++j) {
+ T sum = yDotK[0][j].multiply(b[0]);
+ for (int l = 1; l < stages; ++l) {
+ sum = sum.add(yDotK[l][j].multiply(b[l]));
+ }
+ yTmp[j] = y[j].add(stepSize.multiply(sum));
+ }
+
+ // estimate the error at the end of the step
+ error = estimateError(yDotK, y, yTmp, stepSize);
+ if (error.subtract(1.0).getReal() >= 0) {
+ // reject the step and attempt to reduce error by stepsize control
+ final T factor = MathUtils.min(maxGrowth,
+ MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
+ hNew = filterStep(stepSize.multiply(factor), forward, false);
+ }
+
+ }
+ final T stepEnd = stepStart.getTime().add(stepSize);
+ final T[] yDotTmp = fsal ? yDotK[stages - 1] : computeDerivatives(stepEnd, yTmp);
+ final FieldODEStateAndDerivative stateTmp = new FieldODEStateAndDerivative(stepEnd, yTmp, yDotTmp);
+
+ // local error is small enough: accept the step, trigger events and step handlers
+ interpolator.storeState(stateTmp);
+ System.arraycopy(yTmp, 0, y, 0, y0.length);
+ stepStart = acceptStep(interpolator, finalTime);
+ System.arraycopy(y, 0, yTmp, 0, y.length);
+
+ if (!isLastStep) {
+
+ // prepare next step
+ interpolator.storeState(stepStart);
+
+ // stepsize control for next step
+ final T factor = MathUtils.min(maxGrowth,
+ MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
+ final T scaledH = stepSize.multiply(factor);
+ final T nextT = stepStart.getTime().add(scaledH);
+ final boolean nextIsLast = forward ?
+ nextT.subtract(finalTime).getReal() >= 0 :
+ nextT.subtract(finalTime).getReal() <= 0;
+ hNew = filterStep(scaledH, forward, nextIsLast);
+
+ final T filteredNextT = stepStart.getTime().add(hNew);
+ final boolean filteredNextIsLast = forward ?
+ filteredNextT.subtract(finalTime).getReal() >= 0 :
+ filteredNextT.subtract(finalTime).getReal() <= 0;
+ if (filteredNextIsLast) {
+ hNew = finalTime.subtract(stepStart.getTime());
+ }
+
+ }
+
+ } while (!isLastStep);
+
+ final FieldODEStateAndDerivative finalState = stepStart;
+ resetInternalState();
+ return finalState;
+
+ }
+
+ /** Get the minimal reduction factor for stepsize control.
+ * @return minimal reduction factor
+ */
+ public T getMinReduction() {
+ return minReduction;
+ }
+
+ /** Set the minimal reduction factor for stepsize control.
+ * @param minReduction minimal reduction factor
+ */
+ public void setMinReduction(final T minReduction) {
+ this.minReduction = minReduction;
+ }
+
+ /** Get the maximal growth factor for stepsize control.
+ * @return maximal growth factor
+ */
+ public T getMaxGrowth() {
+ return maxGrowth;
+ }
+
+ /** Set the maximal growth factor for stepsize control.
+ * @param maxGrowth maximal growth factor
+ */
+ public void setMaxGrowth(final T maxGrowth) {
+ this.maxGrowth = maxGrowth;
+ }
+
+ /** Compute the error ratio.
+ * @param yDotK derivatives computed during the first stages
+ * @param y0 estimate of the step at the start of the step
+ * @param y1 estimate of the step at the end of the step
+ * @param h current step
+ * @return error ratio, greater than 1 if step should be rejected
+ */
+ protected abstract T estimateError(T[][] yDotK, T[] y0, T[] y1, T h);
+
+}