MATH-1172: "SimpleCurveFitter" as parent class for curve fitter implementations.
This commit is contained in:
parent
9146f7abe2
commit
1d9670cb12
|
@ -16,22 +16,15 @@
|
|||
*/
|
||||
package org.apache.commons.math4.legacy.fitting;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
import java.util.Collection;
|
||||
|
||||
import org.apache.commons.math4.legacy.analysis.function.Gaussian;
|
||||
import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
|
||||
import org.apache.commons.math4.legacy.exception.NullArgumentException;
|
||||
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
|
||||
import org.apache.commons.math4.legacy.exception.ZeroException;
|
||||
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder;
|
||||
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem;
|
||||
import org.apache.commons.math4.legacy.linear.DiagonalMatrix;
|
||||
import org.apache.commons.math4.legacy.util.FastMath;
|
||||
|
||||
/**
|
||||
|
@ -69,7 +62,7 @@ import org.apache.commons.math4.legacy.util.FastMath;
|
|||
*
|
||||
* @since 3.3
|
||||
*/
|
||||
public class GaussianCurveFitter extends AbstractCurveFitter {
|
||||
public class GaussianCurveFitter extends SimpleCurveFitter {
|
||||
/** Parametric function to be fitted. */
|
||||
private static final Gaussian.Parametric FUNCTION = new Gaussian.Parametric() {
|
||||
/** {@inheritDoc} */
|
||||
|
@ -98,10 +91,6 @@ public class GaussianCurveFitter extends AbstractCurveFitter {
|
|||
return v;
|
||||
}
|
||||
};
|
||||
/** Initial guess. */
|
||||
private final double[] initialGuess;
|
||||
/** Maximum number of iterations of the optimization algorithm. */
|
||||
private final int maxIter;
|
||||
|
||||
/**
|
||||
* Constructor used by the factory methods.
|
||||
|
@ -112,8 +101,7 @@ public class GaussianCurveFitter extends AbstractCurveFitter {
|
|||
*/
|
||||
private GaussianCurveFitter(double[] initialGuess,
|
||||
int maxIter) {
|
||||
this.initialGuess = initialGuess;
|
||||
this.maxIter = maxIter;
|
||||
super(FUNCTION, initialGuess, new ParameterGuesser(), maxIter);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -131,87 +119,28 @@ public class GaussianCurveFitter extends AbstractCurveFitter {
|
|||
return new GaussianCurveFitter(null, Integer.MAX_VALUE);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the start point (initial guess).
|
||||
* @param newStart new start point (initial guess)
|
||||
* @return a new instance.
|
||||
*/
|
||||
public GaussianCurveFitter withStartPoint(double[] newStart) {
|
||||
return new GaussianCurveFitter(newStart.clone(),
|
||||
maxIter);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the maximum number of iterations.
|
||||
* @param newMaxIter maximum number of iterations
|
||||
* @return a new instance.
|
||||
*/
|
||||
public GaussianCurveFitter withMaxIterations(int newMaxIter) {
|
||||
return new GaussianCurveFitter(initialGuess,
|
||||
newMaxIter);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
|
||||
|
||||
// Prepare least-squares problem.
|
||||
final int len = observations.size();
|
||||
final double[] target = new double[len];
|
||||
final double[] weights = new double[len];
|
||||
|
||||
int i = 0;
|
||||
for (WeightedObservedPoint obs : observations) {
|
||||
target[i] = obs.getY();
|
||||
weights[i] = obs.getWeight();
|
||||
++i;
|
||||
}
|
||||
|
||||
final AbstractCurveFitter.TheoreticalValuesFunction model =
|
||||
new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations);
|
||||
|
||||
final double[] startPoint = initialGuess != null ?
|
||||
initialGuess :
|
||||
// Compute estimation.
|
||||
new ParameterGuesser(observations).guess();
|
||||
|
||||
// Return a new least squares problem set up to fit a Gaussian curve to the
|
||||
// observed points.
|
||||
return new LeastSquaresBuilder().
|
||||
maxEvaluations(Integer.MAX_VALUE).
|
||||
maxIterations(maxIter).
|
||||
start(startPoint).
|
||||
target(target).
|
||||
weight(new DiagonalMatrix(weights)).
|
||||
model(model.getModelFunction(), model.getModelFunctionJacobian()).
|
||||
build();
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
|
||||
* of a {@link org.apache.commons.math4.legacy.analysis.function.Gaussian.Parametric}
|
||||
* based on the specified observed points.
|
||||
*/
|
||||
public static class ParameterGuesser {
|
||||
/** Normalization factor. */
|
||||
private final double norm;
|
||||
/** Mean. */
|
||||
private final double mean;
|
||||
/** Standard deviation. */
|
||||
private final double sigma;
|
||||
|
||||
public static class ParameterGuesser extends SimpleCurveFitter.ParameterGuesser {
|
||||
/**
|
||||
* Constructs instance with the specified observed points.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param observations Observed points from which to guess the
|
||||
* parameters of the Gaussian.
|
||||
* @return the guessed parameters, in the following order:
|
||||
* <ul>
|
||||
* <li>Normalization factor</li>
|
||||
* <li>Mean</li>
|
||||
* <li>Standard deviation</li>
|
||||
* </ul>
|
||||
* @throws NullArgumentException if {@code observations} is
|
||||
* {@code null}.
|
||||
* @throws NumberIsTooSmallException if there are less than 3
|
||||
* observations.
|
||||
*/
|
||||
public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
|
||||
@Override
|
||||
public double[] guess(Collection<WeightedObservedPoint> observations) {
|
||||
if (observations == null) {
|
||||
throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
|
||||
}
|
||||
|
@ -220,68 +149,7 @@ public class GaussianCurveFitter extends AbstractCurveFitter {
|
|||
}
|
||||
|
||||
final List<WeightedObservedPoint> sorted = sortObservations(observations);
|
||||
final double[] params = basicGuess(sorted.toArray(new WeightedObservedPoint[0]));
|
||||
|
||||
norm = params[0];
|
||||
mean = params[1];
|
||||
sigma = params[2];
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets an estimation of the parameters.
|
||||
*
|
||||
* @return the guessed parameters, in the following order:
|
||||
* <ul>
|
||||
* <li>Normalization factor</li>
|
||||
* <li>Mean</li>
|
||||
* <li>Standard deviation</li>
|
||||
* </ul>
|
||||
*/
|
||||
public double[] guess() {
|
||||
return new double[] { norm, mean, sigma };
|
||||
}
|
||||
|
||||
/**
|
||||
* Sort the observations.
|
||||
*
|
||||
* @param unsorted Input observations.
|
||||
* @return the input observations, sorted.
|
||||
*/
|
||||
private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
|
||||
final List<WeightedObservedPoint> observations = new ArrayList<>(unsorted);
|
||||
|
||||
final Comparator<WeightedObservedPoint> cmp = new Comparator<WeightedObservedPoint>() {
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public int compare(WeightedObservedPoint p1,
|
||||
WeightedObservedPoint p2) {
|
||||
if (p1 == null && p2 == null) {
|
||||
return 0;
|
||||
}
|
||||
if (p1 == null) {
|
||||
return -1;
|
||||
}
|
||||
if (p2 == null) {
|
||||
return 1;
|
||||
}
|
||||
int comp = Double.compare(p1.getX(), p2.getX());
|
||||
if (comp != 0) {
|
||||
return comp;
|
||||
}
|
||||
comp = Double.compare(p1.getY(), p2.getY());
|
||||
if (comp != 0) {
|
||||
return comp;
|
||||
}
|
||||
comp = Double.compare(p1.getWeight(), p2.getWeight());
|
||||
if (comp != 0) {
|
||||
return comp;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
Collections.sort(observations, cmp);
|
||||
return observations;
|
||||
return basicGuess(sorted.toArray(new WeightedObservedPoint[0]));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -309,119 +177,5 @@ public class GaussianCurveFitter extends AbstractCurveFitter {
|
|||
|
||||
return new double[] { n, points[maxYIdx].getX(), s };
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds index of point in specified points with the largest Y.
|
||||
*
|
||||
* @param points Points to search.
|
||||
* @return the index in specified points array.
|
||||
*/
|
||||
private int findMaxY(WeightedObservedPoint[] points) {
|
||||
int maxYIdx = 0;
|
||||
for (int i = 1; i < points.length; i++) {
|
||||
if (points[i].getY() > points[maxYIdx].getY()) {
|
||||
maxYIdx = i;
|
||||
}
|
||||
}
|
||||
return maxYIdx;
|
||||
}
|
||||
|
||||
/**
|
||||
* Interpolates using the specified points to determine X at the
|
||||
* specified Y.
|
||||
*
|
||||
* @param points Points to use for interpolation.
|
||||
* @param startIdx Index within points from which to start the search for
|
||||
* interpolation bounds points.
|
||||
* @param idxStep Index step for searching interpolation bounds points.
|
||||
* @param y Y value for which X should be determined.
|
||||
* @return the value of X for the specified Y.
|
||||
* @throws ZeroException if {@code idxStep} is 0.
|
||||
* @throws OutOfRangeException if specified {@code y} is not within the
|
||||
* range of the specified {@code points}.
|
||||
*/
|
||||
private double interpolateXAtY(WeightedObservedPoint[] points,
|
||||
int startIdx,
|
||||
int idxStep,
|
||||
double y)
|
||||
throws OutOfRangeException {
|
||||
if (idxStep == 0) {
|
||||
throw new ZeroException();
|
||||
}
|
||||
final WeightedObservedPoint[] twoPoints
|
||||
= getInterpolationPointsForY(points, startIdx, idxStep, y);
|
||||
final WeightedObservedPoint p1 = twoPoints[0];
|
||||
final WeightedObservedPoint p2 = twoPoints[1];
|
||||
if (p1.getY() == y) {
|
||||
return p1.getX();
|
||||
}
|
||||
if (p2.getY() == y) {
|
||||
return p2.getX();
|
||||
}
|
||||
return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
|
||||
(p2.getY() - p1.getY()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the two bounding interpolation points from the specified points
|
||||
* suitable for determining X at the specified Y.
|
||||
*
|
||||
* @param points Points to use for interpolation.
|
||||
* @param startIdx Index within points from which to start search for
|
||||
* interpolation bounds points.
|
||||
* @param idxStep Index step for search for interpolation bounds points.
|
||||
* @param y Y value for which X should be determined.
|
||||
* @return the array containing two points suitable for determining X at
|
||||
* the specified Y.
|
||||
* @throws ZeroException if {@code idxStep} is 0.
|
||||
* @throws OutOfRangeException if specified {@code y} is not within the
|
||||
* range of the specified {@code points}.
|
||||
*/
|
||||
private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
|
||||
int startIdx,
|
||||
int idxStep,
|
||||
double y)
|
||||
throws OutOfRangeException {
|
||||
if (idxStep == 0) {
|
||||
throw new ZeroException();
|
||||
}
|
||||
for (int i = startIdx;
|
||||
idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
|
||||
i += idxStep) {
|
||||
final WeightedObservedPoint p1 = points[i];
|
||||
final WeightedObservedPoint p2 = points[i + idxStep];
|
||||
if (isBetween(y, p1.getY(), p2.getY())) {
|
||||
if (idxStep < 0) {
|
||||
return new WeightedObservedPoint[] { p2, p1 };
|
||||
} else {
|
||||
return new WeightedObservedPoint[] { p1, p2 };
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Boundaries are replaced by dummy values because the raised
|
||||
// exception is caught and the message never displayed.
|
||||
// TODO: Exceptions should not be used for flow control.
|
||||
throw new OutOfRangeException(y,
|
||||
Double.NEGATIVE_INFINITY,
|
||||
Double.POSITIVE_INFINITY);
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines whether a value is between two other values.
|
||||
*
|
||||
* @param value Value to test whether it is between {@code boundary1}
|
||||
* and {@code boundary2}.
|
||||
* @param boundary1 One end of the range.
|
||||
* @param boundary2 Other end of the range.
|
||||
* @return {@code true} if {@code value} is between {@code boundary1} and
|
||||
* {@code boundary2} (inclusive), {@code false} otherwise.
|
||||
*/
|
||||
private boolean isBetween(double value,
|
||||
double boundary1,
|
||||
double boundary2) {
|
||||
return (value >= boundary1 && value <= boundary2) ||
|
||||
(value >= boundary2 && value <= boundary1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -25,9 +25,6 @@ import org.apache.commons.math4.legacy.exception.MathIllegalStateException;
|
|||
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math4.legacy.exception.ZeroException;
|
||||
import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder;
|
||||
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem;
|
||||
import org.apache.commons.math4.legacy.linear.DiagonalMatrix;
|
||||
import org.apache.commons.math4.legacy.util.FastMath;
|
||||
|
||||
/**
|
||||
|
@ -46,13 +43,9 @@ import org.apache.commons.math4.legacy.util.FastMath;
|
|||
*
|
||||
* @since 3.3
|
||||
*/
|
||||
public class HarmonicCurveFitter extends AbstractCurveFitter {
|
||||
public class HarmonicCurveFitter extends SimpleCurveFitter {
|
||||
/** Parametric function to be fitted. */
|
||||
private static final HarmonicOscillator.Parametric FUNCTION = new HarmonicOscillator.Parametric();
|
||||
/** Initial guess. */
|
||||
private final double[] initialGuess;
|
||||
/** Maximum number of iterations of the optimization algorithm. */
|
||||
private final int maxIter;
|
||||
|
||||
/**
|
||||
* Constructor used by the factory methods.
|
||||
|
@ -63,8 +56,7 @@ public class HarmonicCurveFitter extends AbstractCurveFitter {
|
|||
*/
|
||||
private HarmonicCurveFitter(double[] initialGuess,
|
||||
int maxIter) {
|
||||
this.initialGuess = initialGuess;
|
||||
this.maxIter = maxIter;
|
||||
super(FUNCTION, initialGuess, new ParameterGuesser(), maxIter);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -82,63 +74,6 @@ public class HarmonicCurveFitter extends AbstractCurveFitter {
|
|||
return new HarmonicCurveFitter(null, Integer.MAX_VALUE);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the start point (initial guess).
|
||||
* @param newStart new start point (initial guess)
|
||||
* @return a new instance.
|
||||
*/
|
||||
public HarmonicCurveFitter withStartPoint(double[] newStart) {
|
||||
return new HarmonicCurveFitter(newStart.clone(),
|
||||
maxIter);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the maximum number of iterations.
|
||||
* @param newMaxIter maximum number of iterations
|
||||
* @return a new instance.
|
||||
*/
|
||||
public HarmonicCurveFitter withMaxIterations(int newMaxIter) {
|
||||
return new HarmonicCurveFitter(initialGuess,
|
||||
newMaxIter);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
|
||||
// Prepare least-squares problem.
|
||||
final int len = observations.size();
|
||||
final double[] target = new double[len];
|
||||
final double[] weights = new double[len];
|
||||
|
||||
int i = 0;
|
||||
for (WeightedObservedPoint obs : observations) {
|
||||
target[i] = obs.getY();
|
||||
weights[i] = obs.getWeight();
|
||||
++i;
|
||||
}
|
||||
|
||||
final AbstractCurveFitter.TheoreticalValuesFunction model
|
||||
= new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION,
|
||||
observations);
|
||||
|
||||
final double[] startPoint = initialGuess != null ?
|
||||
initialGuess :
|
||||
// Compute estimation.
|
||||
new ParameterGuesser(observations).guess();
|
||||
|
||||
// Return a new optimizer set up to fit a Gaussian curve to the
|
||||
// observed points.
|
||||
return new LeastSquaresBuilder().
|
||||
maxEvaluations(Integer.MAX_VALUE).
|
||||
maxIterations(maxIter).
|
||||
start(startPoint).
|
||||
target(target).
|
||||
weight(new DiagonalMatrix(weights)).
|
||||
model(model.getModelFunction(), model.getModelFunctionJacobian()).
|
||||
build();
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* This class guesses harmonic coefficients from a sample.
|
||||
* <p>The algorithm used to guess the coefficients is as follows:</p>
|
||||
|
@ -238,24 +173,22 @@ public class HarmonicCurveFitter extends AbstractCurveFitter {
|
|||
* estimations, these operations run in \(O(n)\) time, where \(n\) is the
|
||||
* number of measurements.</p>
|
||||
*/
|
||||
public static class ParameterGuesser {
|
||||
/** Amplitude. */
|
||||
private final double a;
|
||||
/** Angular frequency. */
|
||||
private final double omega;
|
||||
/** Phase. */
|
||||
private final double phi;
|
||||
|
||||
public static class ParameterGuesser extends SimpleCurveFitter.ParameterGuesser {
|
||||
/**
|
||||
* Simple constructor.
|
||||
* {@inheritDoc}
|
||||
*
|
||||
* @param observations Sampled observations.
|
||||
* @return the guessed parameters, in the following order:
|
||||
* <ul>
|
||||
* <li>Amplitude</li>
|
||||
* <li>Angular frequency</li>
|
||||
* <li>Phase</li>
|
||||
* </ul>
|
||||
* @throws NumberIsTooSmallException if the sample is too short.
|
||||
* @throws ZeroException if the abscissa range is zero.
|
||||
* @throws MathIllegalStateException when the guessing procedure cannot
|
||||
* produce sensible results.
|
||||
*/
|
||||
public ParameterGuesser(Collection<WeightedObservedPoint> observations) {
|
||||
public double[] guess(Collection<WeightedObservedPoint> observations) {
|
||||
if (observations.size() < 4) {
|
||||
throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
|
||||
observations.size(), 4, true);
|
||||
|
@ -265,61 +198,14 @@ public class HarmonicCurveFitter extends AbstractCurveFitter {
|
|||
= sortObservations(observations).toArray(new WeightedObservedPoint[0]);
|
||||
|
||||
final double aOmega[] = guessAOmega(sorted);
|
||||
a = aOmega[0];
|
||||
omega = aOmega[1];
|
||||
final double a = aOmega[0];
|
||||
final double omega = aOmega[1];
|
||||
|
||||
phi = guessPhi(sorted);
|
||||
}
|
||||
final double phi = guessPhi(sorted, omega);
|
||||
|
||||
/**
|
||||
* Gets an estimation of the parameters.
|
||||
*
|
||||
* @return the guessed parameters, in the following order:
|
||||
* <ul>
|
||||
* <li>Amplitude</li>
|
||||
* <li>Angular frequency</li>
|
||||
* <li>Phase</li>
|
||||
* </ul>
|
||||
*/
|
||||
public double[] guess() {
|
||||
return new double[] { a, omega, phi };
|
||||
}
|
||||
|
||||
/**
|
||||
* Sort the observations with respect to the abscissa.
|
||||
*
|
||||
* @param unsorted Input observations.
|
||||
* @return the input observations, sorted.
|
||||
*/
|
||||
private List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
|
||||
final List<WeightedObservedPoint> observations = new ArrayList<>(unsorted);
|
||||
|
||||
// Since the samples are almost always already sorted, this
|
||||
// method is implemented as an insertion sort that reorders the
|
||||
// elements in place. Insertion sort is very efficient in this case.
|
||||
WeightedObservedPoint curr = observations.get(0);
|
||||
final int len = observations.size();
|
||||
for (int j = 1; j < len; j++) {
|
||||
WeightedObservedPoint prec = curr;
|
||||
curr = observations.get(j);
|
||||
if (curr.getX() < prec.getX()) {
|
||||
// the current element should be inserted closer to the beginning
|
||||
int i = j - 1;
|
||||
WeightedObservedPoint mI = observations.get(i);
|
||||
while ((i >= 0) && (curr.getX() < mI.getX())) {
|
||||
observations.set(i + 1, mI);
|
||||
if (i-- != 0) {
|
||||
mI = observations.get(i);
|
||||
}
|
||||
}
|
||||
observations.set(i + 1, curr);
|
||||
curr = observations.get(j);
|
||||
}
|
||||
}
|
||||
|
||||
return observations;
|
||||
}
|
||||
|
||||
/**
|
||||
* Estimate a first guess of the amplitude and angular frequency.
|
||||
*
|
||||
|
@ -415,9 +301,11 @@ public class HarmonicCurveFitter extends AbstractCurveFitter {
|
|||
* Estimate a first guess of the phase.
|
||||
*
|
||||
* @param observations Observations, sorted w.r.t. abscissa.
|
||||
* @param omega Angular frequency.
|
||||
* @return the guessed phase.
|
||||
*/
|
||||
private double guessPhi(WeightedObservedPoint[] observations) {
|
||||
private double guessPhi(WeightedObservedPoint[] observations,
|
||||
double omega) {
|
||||
// initialize the means
|
||||
double fcMean = 0;
|
||||
double fsMean = 0;
|
||||
|
|
|
@ -19,10 +19,6 @@ package org.apache.commons.math4.legacy.fitting;
|
|||
import java.util.Collection;
|
||||
|
||||
import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction;
|
||||
import org.apache.commons.math4.legacy.exception.MathInternalError;
|
||||
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder;
|
||||
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem;
|
||||
import org.apache.commons.math4.legacy.linear.DiagonalMatrix;
|
||||
|
||||
/**
|
||||
* Fits points to a {@link
|
||||
|
@ -36,25 +32,19 @@ import org.apache.commons.math4.legacy.linear.DiagonalMatrix;
|
|||
*
|
||||
* @since 3.3
|
||||
*/
|
||||
public class PolynomialCurveFitter extends AbstractCurveFitter {
|
||||
public class PolynomialCurveFitter extends SimpleCurveFitter {
|
||||
/** Parametric function to be fitted. */
|
||||
private static final PolynomialFunction.Parametric FUNCTION = new PolynomialFunction.Parametric();
|
||||
/** Initial guess. */
|
||||
private final double[] initialGuess;
|
||||
/** Maximum number of iterations of the optimization algorithm. */
|
||||
private final int maxIter;
|
||||
|
||||
/**
|
||||
* Constructor used by the factory methods.
|
||||
*
|
||||
* @param initialGuess Initial guess.
|
||||
* @param maxIter Maximum number of iterations of the optimization algorithm.
|
||||
* @throws MathInternalError if {@code initialGuess} is {@code null}.
|
||||
*/
|
||||
private PolynomialCurveFitter(double[] initialGuess,
|
||||
int maxIter) {
|
||||
this.initialGuess = initialGuess;
|
||||
this.maxIter = maxIter;
|
||||
super(FUNCTION, initialGuess, null, maxIter);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -72,60 +62,4 @@ public class PolynomialCurveFitter extends AbstractCurveFitter {
|
|||
public static PolynomialCurveFitter create(int degree) {
|
||||
return new PolynomialCurveFitter(new double[degree + 1], Integer.MAX_VALUE);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the start point (initial guess).
|
||||
* @param newStart new start point (initial guess)
|
||||
* @return a new instance.
|
||||
*/
|
||||
public PolynomialCurveFitter withStartPoint(double[] newStart) {
|
||||
return new PolynomialCurveFitter(newStart.clone(),
|
||||
maxIter);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the maximum number of iterations.
|
||||
* @param newMaxIter maximum number of iterations
|
||||
* @return a new instance.
|
||||
*/
|
||||
public PolynomialCurveFitter withMaxIterations(int newMaxIter) {
|
||||
return new PolynomialCurveFitter(initialGuess,
|
||||
newMaxIter);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> observations) {
|
||||
// Prepare least-squares problem.
|
||||
final int len = observations.size();
|
||||
final double[] target = new double[len];
|
||||
final double[] weights = new double[len];
|
||||
|
||||
int i = 0;
|
||||
for (WeightedObservedPoint obs : observations) {
|
||||
target[i] = obs.getY();
|
||||
weights[i] = obs.getWeight();
|
||||
++i;
|
||||
}
|
||||
|
||||
final AbstractCurveFitter.TheoreticalValuesFunction model =
|
||||
new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations);
|
||||
|
||||
if (initialGuess == null) {
|
||||
throw new MathInternalError();
|
||||
}
|
||||
|
||||
// Return a new least squares problem set up to fit a polynomial curve to the
|
||||
// observed points.
|
||||
return new LeastSquaresBuilder().
|
||||
maxEvaluations(Integer.MAX_VALUE).
|
||||
maxIterations(maxIter).
|
||||
start(initialGuess).
|
||||
target(target).
|
||||
weight(new DiagonalMatrix(weights)).
|
||||
model(model.getModelFunction(), model.getModelFunctionJacobian()).
|
||||
build();
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -16,8 +16,14 @@
|
|||
*/
|
||||
package org.apache.commons.math4.legacy.fitting;
|
||||
|
||||
import java.util.Collections;
|
||||
import java.util.Collection;
|
||||
import java.util.Comparator;
|
||||
import java.util.List;
|
||||
import java.util.ArrayList;
|
||||
|
||||
import org.apache.commons.math4.legacy.exception.ZeroException;
|
||||
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
|
||||
import org.apache.commons.math4.legacy.analysis.ParametricUnivariateFunction;
|
||||
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresBuilder;
|
||||
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem;
|
||||
|
@ -33,6 +39,8 @@ public class SimpleCurveFitter extends AbstractCurveFitter {
|
|||
private final ParametricUnivariateFunction function;
|
||||
/** Initial guess for the parameters. */
|
||||
private final double[] initialGuess;
|
||||
/** Parameter guesser. */
|
||||
private final ParameterGuesser guesser;
|
||||
/** Maximum number of iterations of the optimization algorithm. */
|
||||
private final int maxIter;
|
||||
|
||||
|
@ -42,13 +50,17 @@ public class SimpleCurveFitter extends AbstractCurveFitter {
|
|||
* @param function Function to fit.
|
||||
* @param initialGuess Initial guess. Cannot be {@code null}. Its length must
|
||||
* be consistent with the number of parameters of the {@code function} to fit.
|
||||
* @param guesser Method for providing an initial guess (if {@code initialGuess}
|
||||
* is {@code null}).
|
||||
* @param maxIter Maximum number of iterations of the optimization algorithm.
|
||||
*/
|
||||
private SimpleCurveFitter(ParametricUnivariateFunction function,
|
||||
protected SimpleCurveFitter(ParametricUnivariateFunction function,
|
||||
double[] initialGuess,
|
||||
ParameterGuesser guesser,
|
||||
int maxIter) {
|
||||
this.function = function;
|
||||
this.initialGuess = initialGuess;
|
||||
this.guesser = guesser;
|
||||
this.maxIter = maxIter;
|
||||
}
|
||||
|
||||
|
@ -68,7 +80,24 @@ public class SimpleCurveFitter extends AbstractCurveFitter {
|
|||
*/
|
||||
public static SimpleCurveFitter create(ParametricUnivariateFunction f,
|
||||
double[] start) {
|
||||
return new SimpleCurveFitter(f, start, Integer.MAX_VALUE);
|
||||
return new SimpleCurveFitter(f, start, null, Integer.MAX_VALUE);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a curve fitter.
|
||||
* The maximum number of iterations of the optimization algorithm is set
|
||||
* to {@link Integer#MAX_VALUE}.
|
||||
*
|
||||
* @param f Function to fit.
|
||||
* @param guesser Method for providing an initial guess.
|
||||
* @return a curve fitter.
|
||||
*
|
||||
* @see #withStartPoint(double[])
|
||||
* @see #withMaxIterations(int)
|
||||
*/
|
||||
public static SimpleCurveFitter create(ParametricUnivariateFunction f,
|
||||
ParameterGuesser guesser) {
|
||||
return new SimpleCurveFitter(f, null, guesser, Integer.MAX_VALUE);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -79,6 +108,7 @@ public class SimpleCurveFitter extends AbstractCurveFitter {
|
|||
public SimpleCurveFitter withStartPoint(double[] newStart) {
|
||||
return new SimpleCurveFitter(function,
|
||||
newStart.clone(),
|
||||
null,
|
||||
maxIter);
|
||||
}
|
||||
|
||||
|
@ -90,6 +120,7 @@ public class SimpleCurveFitter extends AbstractCurveFitter {
|
|||
public SimpleCurveFitter withMaxIterations(int newMaxIter) {
|
||||
return new SimpleCurveFitter(function,
|
||||
initialGuess,
|
||||
guesser,
|
||||
newMaxIter);
|
||||
}
|
||||
|
||||
|
@ -112,14 +143,186 @@ public class SimpleCurveFitter extends AbstractCurveFitter {
|
|||
= new AbstractCurveFitter.TheoreticalValuesFunction(function,
|
||||
observations);
|
||||
|
||||
final double[] startPoint = initialGuess != null ?
|
||||
initialGuess :
|
||||
// Compute estimation.
|
||||
guesser.guess(observations);
|
||||
|
||||
// Create an optimizer for fitting the curve to the observed points.
|
||||
return new LeastSquaresBuilder().
|
||||
maxEvaluations(Integer.MAX_VALUE).
|
||||
maxIterations(maxIter).
|
||||
start(initialGuess).
|
||||
start(startPoint).
|
||||
target(target).
|
||||
weight(new DiagonalMatrix(weights)).
|
||||
model(model.getModelFunction(), model.getModelFunctionJacobian()).
|
||||
build();
|
||||
}
|
||||
|
||||
/**
|
||||
* Guesses the parameters.
|
||||
*/
|
||||
public static abstract class ParameterGuesser {
|
||||
private final Comparator<WeightedObservedPoint> CMP = new Comparator<WeightedObservedPoint>() {
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public int compare(WeightedObservedPoint p1,
|
||||
WeightedObservedPoint p2) {
|
||||
if (p1 == null && p2 == null) {
|
||||
return 0;
|
||||
}
|
||||
if (p1 == null) {
|
||||
return -1;
|
||||
}
|
||||
if (p2 == null) {
|
||||
return 1;
|
||||
}
|
||||
int comp = Double.compare(p1.getX(), p2.getX());
|
||||
if (comp != 0) {
|
||||
return comp;
|
||||
}
|
||||
comp = Double.compare(p1.getY(), p2.getY());
|
||||
if (comp != 0) {
|
||||
return comp;
|
||||
}
|
||||
comp = Double.compare(p1.getWeight(), p2.getWeight());
|
||||
if (comp != 0) {
|
||||
return comp;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Computes an estimation of the parameters.
|
||||
*
|
||||
* @param obs Observations.
|
||||
* @return the guessed parameters.
|
||||
*/
|
||||
public abstract double[] guess(Collection<WeightedObservedPoint> obs);
|
||||
|
||||
/**
|
||||
* Sort the observations.
|
||||
*
|
||||
* @param unsorted Input observations.
|
||||
* @return the input observations, sorted.
|
||||
*/
|
||||
protected List<WeightedObservedPoint> sortObservations(Collection<WeightedObservedPoint> unsorted) {
|
||||
final List<WeightedObservedPoint> observations = new ArrayList<>(unsorted);
|
||||
Collections.sort(observations, CMP);
|
||||
return observations;
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds index of point in specified points with the largest Y.
|
||||
*
|
||||
* @param points Points to search.
|
||||
* @return the index in specified points array.
|
||||
*/
|
||||
protected int findMaxY(WeightedObservedPoint[] points) {
|
||||
int maxYIdx = 0;
|
||||
for (int i = 1; i < points.length; i++) {
|
||||
if (points[i].getY() > points[maxYIdx].getY()) {
|
||||
maxYIdx = i;
|
||||
}
|
||||
}
|
||||
return maxYIdx;
|
||||
}
|
||||
|
||||
/**
|
||||
* Interpolates using the specified points to determine X at the
|
||||
* specified Y.
|
||||
*
|
||||
* @param points Points to use for interpolation.
|
||||
* @param startIdx Index within points from which to start the search for
|
||||
* interpolation bounds points.
|
||||
* @param idxStep Index step for searching interpolation bounds points.
|
||||
* @param y Y value for which X should be determined.
|
||||
* @return the value of X for the specified Y.
|
||||
* @throws ZeroException if {@code idxStep} is 0.
|
||||
* @throws OutOfRangeException if specified {@code y} is not within the
|
||||
* range of the specified {@code points}.
|
||||
*/
|
||||
protected double interpolateXAtY(WeightedObservedPoint[] points,
|
||||
int startIdx,
|
||||
int idxStep,
|
||||
double y) {
|
||||
if (idxStep == 0) {
|
||||
throw new ZeroException();
|
||||
}
|
||||
final WeightedObservedPoint[] twoPoints
|
||||
= getInterpolationPointsForY(points, startIdx, idxStep, y);
|
||||
final WeightedObservedPoint p1 = twoPoints[0];
|
||||
final WeightedObservedPoint p2 = twoPoints[1];
|
||||
if (p1.getY() == y) {
|
||||
return p1.getX();
|
||||
}
|
||||
if (p2.getY() == y) {
|
||||
return p2.getX();
|
||||
}
|
||||
return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
|
||||
(p2.getY() - p1.getY()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the two bounding interpolation points from the specified points
|
||||
* suitable for determining X at the specified Y.
|
||||
*
|
||||
* @param points Points to use for interpolation.
|
||||
* @param startIdx Index within points from which to start search for
|
||||
* interpolation bounds points.
|
||||
* @param idxStep Index step for search for interpolation bounds points.
|
||||
* @param y Y value for which X should be determined.
|
||||
* @return the array containing two points suitable for determining X at
|
||||
* the specified Y.
|
||||
* @throws ZeroException if {@code idxStep} is 0.
|
||||
* @throws OutOfRangeException if specified {@code y} is not within the
|
||||
* range of the specified {@code points}.
|
||||
*/
|
||||
private WeightedObservedPoint[] getInterpolationPointsForY(WeightedObservedPoint[] points,
|
||||
int startIdx,
|
||||
int idxStep,
|
||||
double y) {
|
||||
if (idxStep == 0) {
|
||||
throw new ZeroException();
|
||||
}
|
||||
for (int i = startIdx;
|
||||
idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
|
||||
i += idxStep) {
|
||||
final WeightedObservedPoint p1 = points[i];
|
||||
final WeightedObservedPoint p2 = points[i + idxStep];
|
||||
if (isBetween(y, p1.getY(), p2.getY())) {
|
||||
if (idxStep < 0) {
|
||||
return new WeightedObservedPoint[] { p2, p1 };
|
||||
} else {
|
||||
return new WeightedObservedPoint[] { p1, p2 };
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Boundaries are replaced by dummy values because the raised
|
||||
// exception is caught and the message never displayed.
|
||||
// TODO: Exceptions should not be used for flow control.
|
||||
throw new OutOfRangeException(y,
|
||||
Double.NEGATIVE_INFINITY,
|
||||
Double.POSITIVE_INFINITY);
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines whether a value is between two other values.
|
||||
*
|
||||
* @param value Value to test whether it is between {@code boundary1}
|
||||
* and {@code boundary2}.
|
||||
* @param boundary1 One end of the range.
|
||||
* @param boundary2 Other end of the range.
|
||||
* @return {@code true} if {@code value} is between {@code boundary1} and
|
||||
* {@code boundary2} (inclusive), {@code false} otherwise.
|
||||
*/
|
||||
private boolean isBetween(double value,
|
||||
double boundary1,
|
||||
double boundary2) {
|
||||
return (value >= boundary1 && value <= boundary2) ||
|
||||
(value >= boundary2 && value <= boundary1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -180,7 +180,7 @@ public class GaussianCurveFitterTest {
|
|||
*/
|
||||
@Test
|
||||
public void testFit01() {
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
double[] parameters = fitter.fit(createDataset(DATASET1).toList());
|
||||
|
||||
Assert.assertEquals(3496978.1837704973, parameters[0], 1e-7);
|
||||
|
@ -190,7 +190,7 @@ public class GaussianCurveFitterTest {
|
|||
|
||||
@Test
|
||||
public void testDataset1LargeXShift() {
|
||||
final GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
final SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
final double xShift = 1e8;
|
||||
final double[] parameters = fitter.fit(createDataset(DATASET1, xShift, 0).toList());
|
||||
|
||||
|
@ -204,7 +204,7 @@ public class GaussianCurveFitterTest {
|
|||
final int maxIter = 20;
|
||||
final double[] init = { 3.5e6, 4.2, 0.1 };
|
||||
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
double[] parameters = fitter
|
||||
.withMaxIterations(maxIter)
|
||||
.withStartPoint(init)
|
||||
|
@ -220,7 +220,7 @@ public class GaussianCurveFitterTest {
|
|||
final int maxIter = 1; // Too few iterations.
|
||||
final double[] init = { 3.5e6, 4.2, 0.1 };
|
||||
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
fitter.withMaxIterations(maxIter)
|
||||
.withStartPoint(init)
|
||||
.fit(createDataset(DATASET1).toList());
|
||||
|
@ -230,7 +230,7 @@ public class GaussianCurveFitterTest {
|
|||
public void testWithStartPoint() {
|
||||
final double[] init = { 3.5e6, 4.2, 0.1 };
|
||||
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
double[] parameters = fitter
|
||||
.withStartPoint(init)
|
||||
.fit(createDataset(DATASET1).toList());
|
||||
|
@ -253,7 +253,7 @@ public class GaussianCurveFitterTest {
|
|||
*/
|
||||
@Test(expected=MathIllegalArgumentException.class)
|
||||
public void testFit03() {
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
fitter.fit(createDataset(new double[][] {
|
||||
{4.0254623, 531026.0},
|
||||
{4.02804905, 664002.0}
|
||||
|
@ -265,7 +265,7 @@ public class GaussianCurveFitterTest {
|
|||
*/
|
||||
@Test
|
||||
public void testFit04() {
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
double[] parameters = fitter.fit(createDataset(DATASET2).toList());
|
||||
|
||||
Assert.assertEquals(233003.2967252038, parameters[0], 1e-4);
|
||||
|
@ -278,7 +278,7 @@ public class GaussianCurveFitterTest {
|
|||
*/
|
||||
@Test
|
||||
public void testFit05() {
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
double[] parameters = fitter.fit(createDataset(DATASET3).toList());
|
||||
|
||||
Assert.assertEquals(283863.81929180305, parameters[0], 1e-4);
|
||||
|
@ -291,7 +291,7 @@ public class GaussianCurveFitterTest {
|
|||
*/
|
||||
@Test
|
||||
public void testFit06() {
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
double[] parameters = fitter.fit(createDataset(DATASET4).toList());
|
||||
|
||||
Assert.assertEquals(285250.66754309234, parameters[0], 1e-4);
|
||||
|
@ -304,7 +304,7 @@ public class GaussianCurveFitterTest {
|
|||
*/
|
||||
@Test
|
||||
public void testFit07() {
|
||||
GaussianCurveFitter fitter = GaussianCurveFitter.create();
|
||||
SimpleCurveFitter fitter = GaussianCurveFitter.create();
|
||||
double[] parameters = fitter.fit(createDataset(DATASET5).toList());
|
||||
|
||||
Assert.assertEquals(3514384.729342235, parameters[0], 1e-4);
|
||||
|
|
|
@ -49,7 +49,7 @@ public class HarmonicCurveFitterTest {
|
|||
points.add(1, x, f.value(x));
|
||||
}
|
||||
|
||||
final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
|
||||
final SimpleCurveFitter fitter = HarmonicCurveFitter.create();
|
||||
final double[] fitted = fitter.fit(points.toList());
|
||||
Assert.assertEquals(a, fitted[0], 1.0e-13);
|
||||
Assert.assertEquals(w, fitted[1], 1.0e-13);
|
||||
|
@ -74,7 +74,7 @@ public class HarmonicCurveFitterTest {
|
|||
points.add(1, x, f.value(x) + 0.01 * randomizer.nextGaussian());
|
||||
}
|
||||
|
||||
final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
|
||||
final SimpleCurveFitter fitter = HarmonicCurveFitter.create();
|
||||
final double[] fitted = fitter.fit(points.toList());
|
||||
Assert.assertEquals(a, fitted[0], 7.6e-4);
|
||||
Assert.assertEquals(w, fitted[1], 2.7e-3);
|
||||
|
@ -90,7 +90,7 @@ public class HarmonicCurveFitterTest {
|
|||
points.add(1, x, 1e-7 * randomizer.nextGaussian());
|
||||
}
|
||||
|
||||
final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
|
||||
final SimpleCurveFitter fitter = HarmonicCurveFitter.create();
|
||||
fitter.fit(points.toList());
|
||||
|
||||
// This test serves to cover the part of the code of "guessAOmega"
|
||||
|
@ -110,7 +110,7 @@ public class HarmonicCurveFitterTest {
|
|||
points.add(1, x, f.value(x) + 0.01 * randomizer.nextGaussian());
|
||||
}
|
||||
|
||||
final HarmonicCurveFitter fitter = HarmonicCurveFitter.create()
|
||||
final SimpleCurveFitter fitter = HarmonicCurveFitter.create()
|
||||
.withStartPoint(new double[] { 0.15, 3.6, 4.5 });
|
||||
final double[] fitted = fitter.fit(points.toList());
|
||||
Assert.assertEquals(a, fitted[0], 1.2e-3);
|
||||
|
@ -153,7 +153,7 @@ public class HarmonicCurveFitterTest {
|
|||
points.add(1, xTab[i], yTab[i]);
|
||||
}
|
||||
|
||||
final HarmonicCurveFitter fitter = HarmonicCurveFitter.create();
|
||||
final SimpleCurveFitter fitter = HarmonicCurveFitter.create();
|
||||
final double[] fitted = fitter.fit(points.toList());
|
||||
Assert.assertEquals(a, fitted[0], 7.6e-4);
|
||||
Assert.assertEquals(w, fitted[1], 3.5e-3);
|
||||
|
@ -177,6 +177,6 @@ public class HarmonicCurveFitterTest {
|
|||
// and period 12, and all sample points are taken at integer abscissae
|
||||
// so function values all belong to the integer subset {-3, -2, -1, 0,
|
||||
// 1, 2, 3}.
|
||||
new HarmonicCurveFitter.ParameterGuesser(points);
|
||||
new HarmonicCurveFitter.ParameterGuesser().guess(points);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -48,7 +48,7 @@ public class PolynomialCurveFitterTest {
|
|||
}
|
||||
|
||||
// Start fit from initial guesses that are far from the optimal values.
|
||||
final PolynomialCurveFitter fitter
|
||||
final SimpleCurveFitter fitter
|
||||
= PolynomialCurveFitter.create(0).withStartPoint(new double[] { -1e-20, 3e15, -5e25 });
|
||||
final double[] best = fitter.fit(obs.toList());
|
||||
|
||||
|
@ -60,7 +60,7 @@ public class PolynomialCurveFitterTest {
|
|||
final Random randomizer = new Random(64925784252l);
|
||||
for (int degree = 1; degree < 10; ++degree) {
|
||||
final PolynomialFunction p = buildRandomPolynomial(degree, randomizer);
|
||||
final PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree);
|
||||
final SimpleCurveFitter fitter = PolynomialCurveFitter.create(degree);
|
||||
|
||||
final WeightedObservedPoints obs = new WeightedObservedPoints();
|
||||
for (int i = 0; i <= degree; ++i) {
|
||||
|
@ -83,7 +83,7 @@ public class PolynomialCurveFitterTest {
|
|||
double maxError = 0;
|
||||
for (int degree = 0; degree < 10; ++degree) {
|
||||
final PolynomialFunction p = buildRandomPolynomial(degree, randomizer);
|
||||
final PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree);
|
||||
final SimpleCurveFitter fitter = PolynomialCurveFitter.create(degree);
|
||||
|
||||
final WeightedObservedPoints obs = new WeightedObservedPoints();
|
||||
for (double x = -1.0; x < 1.0; x += 0.01) {
|
||||
|
@ -114,7 +114,7 @@ public class PolynomialCurveFitterTest {
|
|||
double maxError = 0;
|
||||
for (int degree = 0; degree < 10; ++degree) {
|
||||
final PolynomialFunction p = buildRandomPolynomial(degree, randomizer);
|
||||
final PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree);
|
||||
final SimpleCurveFitter fitter = PolynomialCurveFitter.create(degree);
|
||||
|
||||
final WeightedObservedPoints obs = new WeightedObservedPoints();
|
||||
for (int i = 0; i < 40000; ++i) {
|
||||
|
@ -138,7 +138,7 @@ public class PolynomialCurveFitterTest {
|
|||
|
||||
for (int degree = 0; degree < 10; ++degree) {
|
||||
final PolynomialFunction p = buildRandomPolynomial(degree, randomizer);
|
||||
final PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree);
|
||||
final SimpleCurveFitter fitter = PolynomialCurveFitter.create(degree);
|
||||
final WeightedObservedPoints obs = new WeightedObservedPoints();
|
||||
// reusing the same point over and over again does not bring
|
||||
// information, the problem cannot be solved in this case for
|
||||
|
|
Loading…
Reference in New Issue