minor code cleanups

(error messages, javadoc, avoiding array copies, final attributes ...)

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@747544 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2009-02-24 20:59:41 +00:00
parent fafe306ce7
commit 1fe117edf0
3 changed files with 167 additions and 145 deletions

View File

@ -69,6 +69,7 @@ public class MessagesResources_fr
"Nombre maximal d''it\u00e9rations ({0}) d\u00e9pass\u00e9" }, "Nombre maximal d''it\u00e9rations ({0}) d\u00e9pass\u00e9" },
// org.apache.commons.math.DimensionMismatchException // org.apache.commons.math.DimensionMismatchException
// org.apache.commons.math.optimization.LeastSquaresConverter
{ "dimension mismatch {0} != {1}", { "dimension mismatch {0} != {1}",
"dimensions incompatibles {0} != {1}" }, "dimensions incompatibles {0} != {1}" },
@ -105,7 +106,7 @@ public class MessagesResources_fr
{ "Conversion Exception in Transformation: {0}", { "Conversion Exception in Transformation: {0}",
"Exception de conversion dans une transformation : {0}" }, "Exception de conversion dans une transformation : {0}" },
// org.apache.commons.math.estimation.AbstractEstimator // org.apache.commons.math.optimization.general.AbstractEstimator
{ "maximal number of evaluations exceeded ({0})", { "maximal number of evaluations exceeded ({0})",
"nombre maximal d''\u00e9valuations d\u00e9pass\u00e9 ({0})" }, "nombre maximal d''\u00e9valuations d\u00e9pass\u00e9 ({0})" },
{ "unable to compute covariances: singular problem", { "unable to compute covariances: singular problem",
@ -113,11 +114,11 @@ public class MessagesResources_fr
{ "no degrees of freedom ({0} measurements, {1} parameters)", { "no degrees of freedom ({0} measurements, {1} parameters)",
"aucun degr\u00e9 de libert\u00e9 ({0} mesures, {1} param\u00e8tres)" }, "aucun degr\u00e9 de libert\u00e9 ({0} mesures, {1} param\u00e8tres)" },
// org.apache.commons.math.estimation.GaussNewtonEstimator // org.apache.commons.math.optimization.general.GaussNewtonEstimator
{ "unable to solve: singular problem", { "unable to solve: singular problem",
"r\u00e9solution impossible : probl\u00e8me singulier" }, "r\u00e9solution impossible : probl\u00e8me singulier" },
// org.apache.commons.math.estimation.LevenbergMarquardtEstimator // org.apache.commons.math.optimization.general.LevenbergMarquardtEstimator
{ "cost relative tolerance is too small ({0}), no further reduction in the sum of squares is possible", { "cost relative tolerance is too small ({0}), no further reduction in the sum of squares is possible",
"trop petite tol\u00e9rance relative sur le co\u00fbt ({0}), aucune r\u00e9duction de la somme des carr\u00e9s n''est possible" }, "trop petite tol\u00e9rance relative sur le co\u00fbt ({0}), aucune r\u00e9duction de la somme des carr\u00e9s n''est possible" },
{ "parameters relative tolerance is too small ({0}), no further improvement in the approximate solution is possible", { "parameters relative tolerance is too small ({0}), no further improvement in the approximate solution is possible",
@ -167,11 +168,11 @@ public class MessagesResources_fr
"intervalle d''int\u00e9gration trop petit : {0}" }, "intervalle d''int\u00e9gration trop petit : {0}" },
// org.apache.commons.math.ode.ContinuousOutputModel // org.apache.commons.math.ode.ContinuousOutputModel
// org.apache.commons.math.optimization.DirectSearchOptimizer // org.apache.commons.math.optimization.direct.DirectSearchOptimizer
{ "unexpected exception caught", { "unexpected exception caught",
"exception inattendue lev\u00e9e" }, "exception inattendue lev\u00e9e" },
// org.apache.commons.math.optimization.DirectSearchOptimizer // org.apache.commons.math.optimization.direct.DirectSearchOptimizer
{ "none of the {0} start points lead to convergence", { "none of the {0} start points lead to convergence",
"aucun des {0} points de d\u00e9part n''aboutit \u00e0 une convergence" }, "aucun des {0} points de d\u00e9part n''aboutit \u00e0 une convergence" },
@ -198,14 +199,27 @@ public class MessagesResources_fr
// org.apache.commons.math.linear.decomposition.LUDecompositionImpl // org.apache.commons.math.linear.decomposition.LUDecompositionImpl
// org.apache.commons.math.linear.decomposition.QRDecompositionImpl // org.apache.commons.math.linear.decomposition.QRDecompositionImpl
// org.apache.commons.math.linear.decomposition.SingularValueDecompositionImpl // org.apache.commons.math.linear.decomposition.SingularValueDecompositionImpl
{ "vector length mismatch: got {0} but expected {1}",
"dimension de vecteur erronn\u00e9e : {0} \u00e0 la place de {1}" },
{ "dimensions mismatch: got {0}x{1} but expected {2}x{3}", { "dimensions mismatch: got {0}x{1} but expected {2}x{3}",
"dimensions erronn\u00e9es : {0}x{1} \u00e0 la place de {2}x{3}" }, "dimensions erronn\u00e9es : {0}x{1} \u00e0 la place de {2}x{3}" },
// org.apache.commons.math.linear.decomposition.CholeskyDecompositionImpl
// org.apache.commons.math.linear.decomposition.EigenDecompositionImpl
// org.apache.commons.math.linear.decomposition.LUDecompositionImpl
// org.apache.commons.math.linear.decomposition.QRDecompositionImpl
// org.apache.commons.math.linear.decomposition.SingularValueDecompositionImpl
// org.apache.commons.math.linear.RealVectorImpl // org.apache.commons.math.linear.RealVectorImpl
// org.apache.commons.math.linear.SparseRealVector
{ "vector length mismatch: got {0} but expected {1}",
"dimension de vecteur erronn\u00e9e : {0} \u00e0 la place de {1}" },
// org.apache.commons.math.linear.RealVectorImpl
// org.apache.commons.math.linear.SparseRealVector
{ "index {0} out of allowed range [{1}, {2}]", { "index {0} out of allowed range [{1}, {2}]",
"index {0} hors de la plage autoris\u00e9e [{1}, {2}]" }, "index {0} hors de la plage autoris\u00e9e [{1}, {2}]" },
{ "vector must have at least one element",
"un vecteur doit comporter au moins un \u00e9l\u00e9ment" },
{ "position {0} and size {1} don't fit to the size of the input array {2}",
"la position {0} et la taille {1} sont incompatibles avec la taille du tableau d''entr\u00e9e {2}"},
// org.apache.commons.math.linear.AbstractRealMatrix // org.apache.commons.math.linear.AbstractRealMatrix
{ "invalid row dimension: {0} (must be positive)", { "invalid row dimension: {0} (must be positive)",

View File

@ -98,7 +98,7 @@ public class RealVectorImpl implements RealVector, Serializable {
throw new NullPointerException(); throw new NullPointerException();
} }
if (d.length == 0) { if (d.length == 0) {
throw new IllegalArgumentException("Vector must have at least one element."); throw MathRuntimeException.createIllegalArgumentException("vector must have at least one element");
} }
data = copyArray ? d.clone() : d; data = copyArray ? d.clone() : d;
} }
@ -111,9 +111,9 @@ public class RealVectorImpl implements RealVector, Serializable {
*/ */
public RealVectorImpl(double[] d, int pos, int size) { public RealVectorImpl(double[] d, int pos, int size) {
if (d.length < pos + size) { if (d.length < pos + size) {
throw new IllegalArgumentException("Position " + pos + " and size " + size + throw MathRuntimeException.createIllegalArgumentException(
" don't fit to the size of the input array " + "position {0} and size {1} don't fit to the size of the input array {2}",
d.length); pos, size, d.length);
} }
data = new double[size]; data = new double[size];
System.arraycopy(d, pos, data, 0, size); System.arraycopy(d, pos, data, 0, size);
@ -138,9 +138,9 @@ public class RealVectorImpl implements RealVector, Serializable {
*/ */
public RealVectorImpl(Double[] d, int pos, int size) { public RealVectorImpl(Double[] d, int pos, int size) {
if (d.length < pos + size) { if (d.length < pos + size) {
throw new IllegalArgumentException("Position " + pos + " and size " + size + throw MathRuntimeException.createIllegalArgumentException(
" don't fit to the size of the input array " + "position {0} and size {1} don't fit to the size of the input array {2}",
d.length); pos, size, d.length);
} }
data = new double[size]; data = new double[size];
for (int i = pos; i < pos + size; i++) { for (int i = pos; i < pos + size; i++) {
@ -1284,8 +1284,9 @@ public class RealVectorImpl implements RealVector, Serializable {
protected void checkVectorDimensions(int n) protected void checkVectorDimensions(int n)
throws IllegalArgumentException { throws IllegalArgumentException {
if (data.length != n) { if (data.length != n) {
throw new IllegalArgumentException("vector dimension is " + data.length + throw MathRuntimeException.createIllegalArgumentException(
", not " + n + " as expected"); "vector length mismatch: got {0} but expected {1}",
data.length, n);
} }
} }

View File

@ -27,14 +27,17 @@ import org.apache.commons.math.util.OpenIntToDoubleHashMap.Iterator;
*/ */
public class SparseRealVector implements RealVector { public class SparseRealVector implements RealVector {
/** Default Tolerance for having a value considered zero. */
public static final double DEFAULT_ZERO_TOLERANCE = 1.0e-12;
/** Entries of the vector. */ /** Entries of the vector. */
private OpenIntToDoubleHashMap entries; private final OpenIntToDoubleHashMap entries;
/** Dimension of the vector. */ /** Dimension of the vector. */
private final int virtualSize; private final int virtualSize;
/** Tolerance for having a value considered zero. */ /** Tolerance for having a value considered zero. */
private double epsilon = 1.0e-12; private double epsilon;
/** /**
* Build a 0-length vector. * Build a 0-length vector.
@ -46,8 +49,7 @@ public class SparseRealVector implements RealVector {
* into this vector.</p> * into this vector.</p>
*/ */
public SparseRealVector() { public SparseRealVector() {
virtualSize = 0; this(0, DEFAULT_ZERO_TOLERANCE);
entries = new OpenIntToDoubleHashMap(0.0);
} }
/** /**
@ -55,48 +57,47 @@ public class SparseRealVector implements RealVector {
* @param dimension size of the vector * @param dimension size of the vector
*/ */
public SparseRealVector(int dimension) { public SparseRealVector(int dimension) {
virtualSize = dimension; this(dimension, DEFAULT_ZERO_TOLERANCE);
entries = new OpenIntToDoubleHashMap(0.0);
} }
/** /**
* Construct a (dimension)-length vector of zeros, specifying zero tolerance * Construct a (dimension)-length vector of zeros, specifying zero tolerance.
* @param dimension Size of the vector * @param dimension Size of the vector
* @param epsilon The tolerance for having a value considered zero * @param epsilon The tolerance for having a value considered zero
*/ */
public SparseRealVector(int dimension, double epsilon){ public SparseRealVector(int dimension, double epsilon) {
virtualSize = dimension; virtualSize = dimension;
entries = new OpenIntToDoubleHashMap(0.0); entries = new OpenIntToDoubleHashMap(0.0);
this.epsilon = epsilon; this.epsilon = epsilon;
} }
/** /**
* Resize the vector, for use with append * Build a resized vector, for use with append.
* @param v The original vector * @param v The original vector
* @param resize The amount to resize it * @param resize The amount to resize it
*/ */
protected SparseRealVector(SparseRealVector v, int resize) { protected SparseRealVector(SparseRealVector v, int resize) {
virtualSize = v.getDimension() + resize; virtualSize = v.getDimension() + resize;
entries = new OpenIntToDoubleHashMap(v.entries); entries = new OpenIntToDoubleHashMap(v.entries);
epsilon = DEFAULT_ZERO_TOLERANCE;
} }
/** /**
* For advanced use, when you know the sparseness * Build a vector with known the sparseness (for advanced use only).
* @param dimension The size of the vector * @param dimension The size of the vector
* @param expectedSize The excpected number of non-zero entries * @param expectedSize The expected number of non-zero entries
*/ */
public SparseRealVector(int dimension, int expectedSize) { public SparseRealVector(int dimension, int expectedSize) {
entries = new OpenIntToDoubleHashMap(expectedSize, 0.0); this(dimension, expectedSize, DEFAULT_ZERO_TOLERANCE);
virtualSize = dimension;
} }
/** /**
* For advanced use, when you know the sparseness and want to specify zero tolerance * Build a vector with known the sparseness and zero tolerance setting (for advanced use only).
* @param dimension The size of the vector * @param dimension The size of the vector
* @param expectedSize The expected number of non-zero entries * @param expectedSize The expected number of non-zero entries
* @param epsilon The tolerance for having a value considered zero * @param epsilon The tolerance for having a value considered zero
*/ */
public SparseRealVector(int dimension, int expectedSize, double epsilon){ public SparseRealVector(int dimension, int expectedSize, double epsilon) {
virtualSize = dimension; virtualSize = dimension;
entries = new OpenIntToDoubleHashMap(expectedSize, 0.0); entries = new OpenIntToDoubleHashMap(expectedSize, 0.0);
this.epsilon = epsilon; this.epsilon = epsilon;
@ -108,8 +109,7 @@ public class SparseRealVector implements RealVector {
* @param values The set of values to create from * @param values The set of values to create from
*/ */
public SparseRealVector(double[] values) { public SparseRealVector(double[] values) {
virtualSize = values.length; this(values, DEFAULT_ZERO_TOLERANCE);
fromDoubleArray(values);
} }
/** /**
@ -118,10 +118,16 @@ public class SparseRealVector implements RealVector {
* @param values The set of values to create from * @param values The set of values to create from
* @param epsilon The tolerance for having a value considered zero * @param epsilon The tolerance for having a value considered zero
*/ */
public SparseRealVector(double [] values, double epsilon){ public SparseRealVector(double[] values, double epsilon) {
virtualSize = values.length; virtualSize = values.length;
entries = new OpenIntToDoubleHashMap(0.0);
for (int key = 0; key < values.length; key++) {
double value = values[key];
if (!isZero(value)) {
entries.put(key, value);
}
}
this.epsilon = epsilon; this.epsilon = epsilon;
fromDoubleArray(values);
} }
/** /**
@ -129,13 +135,8 @@ public class SparseRealVector implements RealVector {
* Only non-zero entries will be stored * Only non-zero entries will be stored
* @param values The set of values to create from * @param values The set of values to create from
*/ */
public SparseRealVector(Double [] values) { public SparseRealVector(Double[] values) {
virtualSize = values.length; this(values, DEFAULT_ZERO_TOLERANCE);
double[] vals = new double[values.length];
for(int i=0; i < values.length; i++){
vals[i] = values[i].doubleValue();
}
fromDoubleArray(vals);
} }
/** /**
@ -144,61 +145,54 @@ public class SparseRealVector implements RealVector {
* @param values The set of values to create from * @param values The set of values to create from
* @param epsilon The tolerance for having a value considered zero * @param epsilon The tolerance for having a value considered zero
*/ */
public SparseRealVector(Double [] values, double epsilon){ public SparseRealVector(Double[] values, double epsilon) {
virtualSize = values.length; virtualSize = values.length;
this.epsilon = epsilon;
double[] vals = new double[values.length];
for(int i=0; i < values.length; i++){
vals[i] = values[i].doubleValue();
}
fromDoubleArray(vals);
}
/**
* Copy constructer
* @param v The instance to copy from
*/
public SparseRealVector(SparseRealVector v){
virtualSize = v.getDimension();
epsilon = v.getEpsilon();
entries = new OpenIntToDoubleHashMap(v.getEntries());
}
/**
* Generic copy constructer
* @param v The instance to copy from
*/
public SparseRealVector(RealVector v) {
virtualSize = v.getDimension();
fromDoubleArray(v.getData());
}
/**
* Fill in the values from a double array
* @param values The set of values to use
*/
private void fromDoubleArray(double[] values) {
entries = new OpenIntToDoubleHashMap(0.0); entries = new OpenIntToDoubleHashMap(0.0);
for (int key = 0; key < values.length; key++) { for (int key = 0; key < values.length; key++) {
double value = values[key]; double value = values[key].doubleValue();
if (!isZero(value)) { if (!isZero(value)) {
entries.put(key, value); entries.put(key, value);
} }
} }
this.epsilon = epsilon;
} }
/** /**
* * Copy constructor.
* @return The entries of this instance * @param v The instance to copy from
*/
public SparseRealVector(SparseRealVector v) {
virtualSize = v.getDimension();
entries = new OpenIntToDoubleHashMap(v.getEntries());
epsilon = v.getEpsilon();
}
/**
* Generic copy constructor.
* @param v The instance to copy from
*/
public SparseRealVector(RealVector v) {
virtualSize = v.getDimension();
entries = new OpenIntToDoubleHashMap(0.0);
for (int key = 0; key < virtualSize; key++) {
double value = v.getEntry(key);
if (!isZero(value)) {
entries.put(key, value);
}
}
epsilon = DEFAULT_ZERO_TOLERANCE;
}
/**
* Get the entries of this instance.
* @return entries of this instance
*/ */
private OpenIntToDoubleHashMap getEntries() { private OpenIntToDoubleHashMap getEntries() {
return entries; return entries;
} }
/** /**
* Determine if this value is zero * Determine if this value is zero.
* @param value The value to test * @param value The value to test
* @return <code>true</code> if this value is zero, <code>false</code> otherwise * @return <code>true</code> if this value is zero, <code>false</code> otherwise
*/ */
@ -207,7 +201,7 @@ public class SparseRealVector implements RealVector {
} }
/** /**
* * Get the tolerance for having a value considered zero.
* @return The test range for testing if a value is zero * @return The test range for testing if a value is zero
*/ */
public double getEpsilon() { public double getEpsilon() {
@ -215,7 +209,7 @@ public class SparseRealVector implements RealVector {
} }
/** /**
* * Set the tolerance for having a value considered zero.
* @param epsilon The test range for testing if a value is zero * @param epsilon The test range for testing if a value is zero
*/ */
public void setEpsilon(double epsilon) { public void setEpsilon(double epsilon) {
@ -225,14 +219,14 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public RealVector add(RealVector v) throws IllegalArgumentException { public RealVector add(RealVector v) throws IllegalArgumentException {
checkVectorDimensions(v.getDimension()); checkVectorDimensions(v.getDimension());
if (v instanceof SparseRealVector) if (v instanceof SparseRealVector) {
return add((SparseRealVector) v); return add((SparseRealVector) v);
}
return add(v.getData()); return add(v.getData());
} }
/** /**
* Optimized method to add two SparseRealVectors * Optimized method to add two SparseRealVectors.
* @param v Vector to add with * @param v Vector to add with
* @return The sum of <code>this</code> with <code>v</code> * @return The sum of <code>this</code> with <code>v</code>
* @throws IllegalArgumentException If the dimensions don't match * @throws IllegalArgumentException If the dimensions don't match
@ -264,7 +258,7 @@ public class SparseRealVector implements RealVector {
} }
/** /**
* Optimized method to append a SparseRealVector * Optimized method to append a SparseRealVector.
* @param v vector to append * @param v vector to append
* @return The result of appending <code>v</code> to self * @return The result of appending <code>v</code> to self
*/ */
@ -327,8 +321,9 @@ public class SparseRealVector implements RealVector {
while (iter.hasNext()) { while (iter.hasNext()) {
int idx = iter.key(); int idx = iter.key();
double value = 0; double value = 0;
if (idx < v.length) if (idx < v.length) {
value = v[idx]; value = v[idx];
}
res += value * iter.value(); res += value * iter.value();
} }
return res; return res;
@ -385,7 +380,7 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public RealVector getSubVector(int index, int n) throws MatrixIndexException { public RealVector getSubVector(int index, int n) throws MatrixIndexException {
checkIndex(index); checkIndex(index);
checkIndex(index+n-1); checkIndex(index + n - 1);
SparseRealVector res = new SparseRealVector(n); SparseRealVector res = new SparseRealVector(n);
int end = index + n; int end = index + n;
Iterator iter = entries.iterator(); Iterator iter = entries.iterator();
@ -416,7 +411,7 @@ public class SparseRealVector implements RealVector {
} }
/** /**
* Optimized method to compute distance * Optimized method to compute distance.
* @param v The vector to compute distance to * @param v The vector to compute distance to
* @return The distance from <code>this</code> and <code>v</code> * @return The distance from <code>this</code> and <code>v</code>
* @throws IllegalArgumentException If the dimensions don't match * @throws IllegalArgumentException If the dimensions don't match
@ -436,7 +431,8 @@ public class SparseRealVector implements RealVector {
iter.advance(); iter.advance();
int key = iter.key(); int key = iter.key();
if (!entries.containsKey(key)) { if (!entries.containsKey(key)) {
res += iter.value() * iter.value(); final double value = iter.value();
res += value * value;
} }
} }
return Math.sqrt(res); return Math.sqrt(res);
@ -521,7 +517,7 @@ public class SparseRealVector implements RealVector {
} }
/** /**
* Optimized method to compute LInfDistance * Optimized method to compute LInfDistance.
* @param v The vector to compute from * @param v The vector to compute from
* @return the LInfDistance * @return the LInfDistance
*/ */
@ -531,18 +527,20 @@ public class SparseRealVector implements RealVector {
while (iter.hasNext()) { while (iter.hasNext()) {
iter.advance(); iter.advance();
double delta = Math.abs(iter.value() - v.getEntry(iter.key())); double delta = Math.abs(iter.value() - v.getEntry(iter.key()));
if(delta > max) if (delta > max) {
max = delta; max = delta;
} }
}
iter = v.getEntries().iterator(); iter = v.getEntries().iterator();
while (iter.hasNext()) { while (iter.hasNext()) {
iter.advance(); iter.advance();
int key = iter.key(); int key = iter.key();
if (!entries.containsKey(key)) { if (!entries.containsKey(key)) {
if(iter.value() > max) if (iter.value() > max) {
max = iter.value(); max = iter.value();
} }
} }
}
return max; return max;
} }
@ -561,9 +559,10 @@ public class SparseRealVector implements RealVector {
double max = 0; double max = 0;
for (int i = 0; i < v.length; i++) { for (int i = 0; i < v.length; i++) {
double delta = Math.abs(getEntry(i) - v[i]); double delta = Math.abs(getEntry(i) - v[i]);
if(delta > max) if (delta > max) {
max = delta; max = delta;
} }
}
return max; return max;
} }
@ -594,9 +593,10 @@ public class SparseRealVector implements RealVector {
Iterator iter = entries.iterator(); Iterator iter = entries.iterator();
while (iter.hasNext()) { while (iter.hasNext()) {
iter.advance(); iter.advance();
if (Double.isInfinite(iter.value())) if (Double.isInfinite(iter.value())) {
return true; return true;
} }
}
return false; return false;
} }
@ -605,9 +605,10 @@ public class SparseRealVector implements RealVector {
Iterator iter = entries.iterator(); Iterator iter = entries.iterator();
while (iter.hasNext()) { while (iter.hasNext()) {
iter.advance(); iter.advance();
if (Double.isNaN(iter.value())) if (Double.isNaN(iter.value())) {
return true; return true;
} }
}
return false; return false;
} }
@ -633,7 +634,7 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public RealVector mapAcosToSelf() { public RealVector mapAcosToSelf() {
for(int i=0; i < virtualSize; i++){ for (int i = 0; i < virtualSize; i++) {
setEntry(i, Math.acos(getEntry(i))); setEntry(i, Math.acos(getEntry(i)));
} }
return this; return this;
@ -719,7 +720,7 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public RealVector mapCosToSelf() { public RealVector mapCosToSelf() {
for(int i=0; i < virtualSize; i++){ for (int i = 0; i < virtualSize; i++) {
setEntry(i, Math.cos(getEntry(i))); setEntry(i, Math.cos(getEntry(i)));
} }
return this; return this;
@ -732,7 +733,7 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public RealVector mapCoshToSelf() { public RealVector mapCoshToSelf() {
for(int i = 0; i < virtualSize; i++){ for (int i = 0; i < virtualSize; i++) {
setEntry(i, Math.cosh(getEntry(i))); setEntry(i, Math.cosh(getEntry(i)));
} }
return this; return this;
@ -803,7 +804,7 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public RealVector mapInvToSelf() { public RealVector mapInvToSelf() {
for(int i=0; i < virtualSize; i++){ for (int i = 0; i < virtualSize; i++) {
setEntry(i, 1.0/getEntry(i)); setEntry(i, 1.0/getEntry(i));
} }
return this; return this;
@ -821,7 +822,7 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public RealVector mapLog10ToSelf() { public RealVector mapLog10ToSelf() {
for(int i=0; i < virtualSize; i++){ for (int i = 0; i < virtualSize; i++) {
setEntry(i, Math.log10(getEntry(i))); setEntry(i, Math.log10(getEntry(i)));
} }
return this; return this;
@ -844,7 +845,7 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public RealVector mapLogToSelf() { public RealVector mapLogToSelf() {
for(int i=0; i < virtualSize; i++){ for (int i = 0; i < virtualSize; i++) {
setEntry(i, Math.log(getEntry(i))); setEntry(i, Math.log(getEntry(i)));
} }
return this; return this;
@ -1011,7 +1012,7 @@ public class SparseRealVector implements RealVector {
} }
/** /**
* Optimized method to compute the outer product * Optimized method to compute the outer product.
* @param v The vector to comput the outer product on * @param v The vector to comput the outer product on
* @return The outer product of <code>this</code> and <code>v</code> * @return The outer product of <code>this</code> and <code>v</code>
* @throws IllegalArgumentException If the dimensions don't match * @throws IllegalArgumentException If the dimensions don't match
@ -1020,10 +1021,10 @@ public class SparseRealVector implements RealVector {
checkVectorDimensions(v.getDimension()); checkVectorDimensions(v.getDimension());
SparseRealMatrix res = new SparseRealMatrix(virtualSize, virtualSize); SparseRealMatrix res = new SparseRealMatrix(virtualSize, virtualSize);
Iterator iter = entries.iterator(); Iterator iter = entries.iterator();
while(iter.hasNext()){ while (iter.hasNext()) {
iter.advance(); iter.advance();
Iterator iter2 = v.getEntries().iterator(); Iterator iter2 = v.getEntries().iterator();
while(iter2.hasNext()){ while (iter2.hasNext()) {
iter2.advance(); iter2.advance();
res.setEntry(iter.key(), iter2.key(), iter.value()*iter2.value()); res.setEntry(iter.key(), iter2.key(), iter.value()*iter2.value());
} }
@ -1035,15 +1036,15 @@ public class SparseRealVector implements RealVector {
public RealMatrix outerProduct(RealVector v) public RealMatrix outerProduct(RealVector v)
throws IllegalArgumentException { throws IllegalArgumentException {
checkVectorDimensions(v.getDimension()); checkVectorDimensions(v.getDimension());
if(v instanceof SparseRealVector){ if (v instanceof SparseRealVector) {
return outerproduct((SparseRealVector)v); return outerproduct((SparseRealVector)v);
} }
RealMatrix res = new SparseRealMatrix(virtualSize, virtualSize); RealMatrix res = new SparseRealMatrix(virtualSize, virtualSize);
Iterator iter = entries.iterator(); Iterator iter = entries.iterator();
while(iter.hasNext()){ while (iter.hasNext()) {
iter.advance(); iter.advance();
int row = iter.key(); int row = iter.key();
for(int col=0; col < virtualSize; col++){ for (int col = 0; col < virtualSize; col++) {
res.setEntry(row, col, iter.value()*v.getEntry(col)); res.setEntry(row, col, iter.value()*v.getEntry(col));
} }
} }
@ -1106,13 +1107,13 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public void set(double value) { public void set(double value) {
for(int i=0; i < virtualSize; i++){ for (int i = 0; i < virtualSize; i++) {
setEntry(i, value); setEntry(i, value);
} }
} }
/** /**
* Optimized method to subtract SparseRealVectors * Optimized method to subtract SparseRealVectors.
* @param v The vector to subtract from <code>this</code> * @param v The vector to subtract from <code>this</code>
* @return The difference of <code>this</code> and <code>v</code> * @return The difference of <code>this</code> and <code>v</code>
* @throws IllegalArgumentException If the dimensions don't match * @throws IllegalArgumentException If the dimensions don't match
@ -1167,9 +1168,8 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
public void unitize() { public void unitize() {
double norm = getNorm(); double norm = getNorm();
if(isZero(norm)){ if (isZero(norm)) {
throw MathRuntimeException.createArithmeticException("cannot normalize a zero norm vector"); throw MathRuntimeException.createArithmeticException("cannot normalize a zero norm vector");
} }
Iterator iter = entries.iterator(); Iterator iter = entries.iterator();
while (iter.hasNext()) { while (iter.hasNext()) {
@ -1231,32 +1231,39 @@ public class SparseRealVector implements RealVector {
/** {@inheritDoc} */ /** {@inheritDoc} */
@Override @Override
public boolean equals(Object obj) { public boolean equals(Object obj) {
if (this == obj) if (this == obj) {
return true; return true;
if (obj == null) }
return false; if (obj == null) {
if (!(obj instanceof SparseRealVector))
return false;
SparseRealVector other = (SparseRealVector) obj;
if (virtualSize != other.virtualSize)
return false;
if (Double.doubleToLongBits(epsilon) != Double
.doubleToLongBits(other.epsilon))
return false;
Iterator iter = entries.iterator();
while(iter.hasNext()){
iter.advance();
double test = iter.value() - other.getEntry(iter.key());
if(Math.abs(test) > epsilon)
return false; return false;
} }
if (!(obj instanceof SparseRealVector)) {
return false;
}
SparseRealVector other = (SparseRealVector) obj;
if (virtualSize != other.virtualSize) {
return false;
}
if (Double.doubleToLongBits(epsilon) !=
Double.doubleToLongBits(other.epsilon)) {
return false;
}
Iterator iter = entries.iterator();
while (iter.hasNext()) {
iter.advance();
double test = iter.value() - other.getEntry(iter.key());
if (Math.abs(test) > epsilon) {
return false;
}
}
iter = other.getEntries().iterator(); iter = other.getEntries().iterator();
while(iter.hasNext()){ while (iter.hasNext()) {
iter.advance(); iter.advance();
double test = iter.value() - getEntry(iter.key()); double test = iter.value() - getEntry(iter.key());
if(!isZero(test)) if (!isZero(test)) {
return false; return false;
} }
}
return true; return true;
} }