Added field-based continuous output throughout integration range.
This commit is contained in:
parent
c83289781a
commit
213cb76f59
|
@ -0,0 +1,346 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.ode;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math4.RealFieldElement;
|
||||
import org.apache.commons.math4.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math4.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math4.exception.MaxCountExceededException;
|
||||
import org.apache.commons.math4.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math4.ode.sampling.FieldStepHandler;
|
||||
import org.apache.commons.math4.ode.sampling.FieldStepInterpolator;
|
||||
import org.apache.commons.math4.util.FastMath;
|
||||
|
||||
/**
|
||||
* This class stores all information provided by an ODE integrator
|
||||
* during the integration process and build a continuous model of the
|
||||
* solution from this.
|
||||
*
|
||||
* <p>This class act as a step handler from the integrator point of
|
||||
* view. It is called iteratively during the integration process and
|
||||
* stores a copy of all steps information in a sorted collection for
|
||||
* later use. Once the integration process is over, the user can use
|
||||
* the {@link #setInterpolatedTime setInterpolatedTime} and {@link
|
||||
* #getInterpolatedState getInterpolatedState} to retrieve this
|
||||
* information at any time. It is important to wait for the
|
||||
* integration to be over before attempting to call {@link
|
||||
* #setInterpolatedTime setInterpolatedTime} because some internal
|
||||
* variables are set only once the last step has been handled.</p>
|
||||
*
|
||||
* <p>This is useful for example if the main loop of the user
|
||||
* application should remain independent from the integration process
|
||||
* or if one needs to mimic the behaviour of an analytical model
|
||||
* despite a numerical model is used (i.e. one needs the ability to
|
||||
* get the model value at any time or to navigate through the
|
||||
* data).</p>
|
||||
*
|
||||
* <p>If problem modeling is done with several separate
|
||||
* integration phases for contiguous intervals, the same
|
||||
* ContinuousOutputModel can be used as step handler for all
|
||||
* integration phases as long as they are performed in order and in
|
||||
* the same direction. As an example, one can extrapolate the
|
||||
* trajectory of a satellite with one model (i.e. one set of
|
||||
* differential equations) up to the beginning of a maneuver, use
|
||||
* another more complex model including thrusters modeling and
|
||||
* accurate attitude control during the maneuver, and revert to the
|
||||
* first model after the end of the maneuver. If the same continuous
|
||||
* output model handles the steps of all integration phases, the user
|
||||
* do not need to bother when the maneuver begins or ends, he has all
|
||||
* the data available in a transparent manner.</p>
|
||||
*
|
||||
* <p>One should be aware that the amount of data stored in a
|
||||
* ContinuousOutputFieldModel instance can be important if the state vector
|
||||
* is large, if the integration interval is long or if the steps are
|
||||
* small (which can result from small tolerance settings in {@link
|
||||
* org.apache.commons.math4.ode.nonstiff.AdaptiveStepsizeFieldIntegrator adaptive
|
||||
* step size integrators}).</p>
|
||||
*
|
||||
* @see FieldStepHandler
|
||||
* @see FieldStepInterpolator
|
||||
* @param <T> the type of the field elements
|
||||
* @since 3.6
|
||||
*/
|
||||
|
||||
public class ContinuousOutputFieldModel<T extends RealFieldElement<T>>
|
||||
implements FieldStepHandler<T> {
|
||||
|
||||
/** Initial integration time. */
|
||||
private T initialTime;
|
||||
|
||||
/** Final integration time. */
|
||||
private T finalTime;
|
||||
|
||||
/** Integration direction indicator. */
|
||||
private boolean forward;
|
||||
|
||||
/** Current interpolator index. */
|
||||
private int index;
|
||||
|
||||
/** Steps table. */
|
||||
private List<FieldStepInterpolator<T>> steps;
|
||||
|
||||
/** Simple constructor.
|
||||
* Build an empty continuous output model.
|
||||
*/
|
||||
public ContinuousOutputFieldModel() {
|
||||
steps = new ArrayList<FieldStepInterpolator<T>>();
|
||||
initialTime = null;
|
||||
finalTime = null;
|
||||
forward = true;
|
||||
index = 0;
|
||||
}
|
||||
|
||||
/** Append another model at the end of the instance.
|
||||
* @param model model to add at the end of the instance
|
||||
* @exception MathIllegalArgumentException if the model to append is not
|
||||
* compatible with the instance (dimension of the state vector,
|
||||
* propagation direction, hole between the dates)
|
||||
* @exception DimensionMismatchException if the dimensions of the states or
|
||||
* the number of secondary states do not match
|
||||
* @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
||||
* during step finalization
|
||||
*/
|
||||
public void append(final ContinuousOutputFieldModel<T> model)
|
||||
throws MathIllegalArgumentException, MaxCountExceededException {
|
||||
|
||||
if (model.steps.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (steps.size() == 0) {
|
||||
initialTime = model.initialTime;
|
||||
forward = model.forward;
|
||||
} else {
|
||||
|
||||
// safety checks
|
||||
final FieldODEStateAndDerivative<T> s1 = steps.get(0).getPreviousState();
|
||||
final FieldODEStateAndDerivative<T> s2 = model.steps.get(0).getPreviousState();
|
||||
checkDimensionsEquality(s1.getStateDimension(), s2.getStateDimension());
|
||||
checkDimensionsEquality(s1.getNumberOfSecondaryStates(), s2.getNumberOfSecondaryStates());
|
||||
for (int i = 0; i < s1.getNumberOfSecondaryStates(); ++i) {
|
||||
checkDimensionsEquality(s1.getSecondaryStateDimension(i), s2.getSecondaryStateDimension(i));
|
||||
}
|
||||
|
||||
if (forward ^ model.forward) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH);
|
||||
}
|
||||
|
||||
final FieldStepInterpolator<T> lastInterpolator = steps.get(index);
|
||||
final T current = lastInterpolator.getCurrentState().getTime();
|
||||
final T previous = lastInterpolator.getPreviousState().getTime();
|
||||
final T step = current.subtract(previous);
|
||||
final T gap = model.getInitialTime().subtract(current);
|
||||
if (gap.abs().subtract(step.abs().multiply(1.0e-3)).getReal() > 0) {
|
||||
throw new MathIllegalArgumentException(LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES,
|
||||
gap.abs().getReal());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
for (FieldStepInterpolator<T> interpolator : model.steps) {
|
||||
steps.add(interpolator.copy());
|
||||
}
|
||||
|
||||
index = steps.size() - 1;
|
||||
finalTime = (steps.get(index)).getCurrentState().getTime();
|
||||
|
||||
}
|
||||
|
||||
/** Check dimensions equality.
|
||||
* @param d1 first dimension
|
||||
* @param d2 second dimansion
|
||||
* @exception DimensionMismatchException if dimensions do not match
|
||||
*/
|
||||
private void checkDimensionsEquality(final int d1, final int d2)
|
||||
throws DimensionMismatchException {
|
||||
if (d1 != d2) {
|
||||
throw new DimensionMismatchException(d2, d1);
|
||||
}
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public void init(final FieldODEStateAndDerivative<T> initialState, final T t) {
|
||||
initialTime = initialState.getTime();
|
||||
finalTime = t;
|
||||
forward = true;
|
||||
index = 0;
|
||||
steps.clear();
|
||||
}
|
||||
|
||||
/** Handle the last accepted step.
|
||||
* A copy of the information provided by the last step is stored in
|
||||
* the instance for later use.
|
||||
* @param interpolator interpolator for the last accepted step.
|
||||
* @param isLast true if the step is the last one
|
||||
* @exception MaxCountExceededException if the number of functions evaluations is exceeded
|
||||
* during step finalization
|
||||
*/
|
||||
public void handleStep(final FieldStepInterpolator<T> interpolator, final boolean isLast)
|
||||
throws MaxCountExceededException {
|
||||
|
||||
if (steps.size() == 0) {
|
||||
initialTime = interpolator.getPreviousState().getTime();
|
||||
forward = interpolator.isForward();
|
||||
}
|
||||
|
||||
steps.add(interpolator.copy());
|
||||
|
||||
if (isLast) {
|
||||
finalTime = interpolator.getCurrentState().getTime();
|
||||
index = steps.size() - 1;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the initial integration time.
|
||||
* @return initial integration time
|
||||
*/
|
||||
public T getInitialTime() {
|
||||
return initialTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the final integration time.
|
||||
* @return final integration time
|
||||
*/
|
||||
public T getFinalTime() {
|
||||
return finalTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the state at interpolated time.
|
||||
* @param time time of the interpolated point
|
||||
* @return state at interpolated time
|
||||
*/
|
||||
public FieldODEStateAndDerivative<T> getInterpolatedState(final T time) {
|
||||
|
||||
// initialize the search with the complete steps table
|
||||
int iMin = 0;
|
||||
final FieldStepInterpolator<T> sMin = steps.get(iMin);
|
||||
T tMin = sMin.getPreviousState().getTime().add(sMin.getCurrentState().getTime()).multiply(0.5);
|
||||
|
||||
int iMax = steps.size() - 1;
|
||||
final FieldStepInterpolator<T> sMax = steps.get(iMax);
|
||||
T tMax = sMax.getPreviousState().getTime().add(sMax.getCurrentState().getTime()).multiply(0.5);
|
||||
|
||||
// handle points outside of the integration interval
|
||||
// or in the first and last step
|
||||
if (locatePoint(time, sMin) <= 0) {
|
||||
index = iMin;
|
||||
return sMin.getInterpolatedState(time);
|
||||
}
|
||||
if (locatePoint(time, sMax) >= 0) {
|
||||
index = iMax;
|
||||
return sMax.getInterpolatedState(time);
|
||||
}
|
||||
|
||||
// reduction of the table slice size
|
||||
while (iMax - iMin > 5) {
|
||||
|
||||
// use the last estimated index as the splitting index
|
||||
final FieldStepInterpolator<T> si = steps.get(index);
|
||||
final int location = locatePoint(time, si);
|
||||
if (location < 0) {
|
||||
iMax = index;
|
||||
tMax = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
|
||||
} else if (location > 0) {
|
||||
iMin = index;
|
||||
tMin = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5);
|
||||
} else {
|
||||
// we have found the target step, no need to continue searching
|
||||
return si.getInterpolatedState(time);
|
||||
}
|
||||
|
||||
// compute a new estimate of the index in the reduced table slice
|
||||
final int iMed = (iMin + iMax) / 2;
|
||||
final FieldStepInterpolator<T> sMed = steps.get(iMed);
|
||||
final T tMed = sMed.getPreviousState().getTime().add(sMed.getCurrentState().getTime()).multiply(0.5);
|
||||
|
||||
if (tMed.subtract(tMin).abs().subtract(1.0e-6).getReal() < 0 ||
|
||||
tMax.subtract(tMed).abs().subtract(1.0e-6).getReal() < 0) {
|
||||
// too close to the bounds, we estimate using a simple dichotomy
|
||||
index = iMed;
|
||||
} else {
|
||||
// estimate the index using a reverse quadratic polynomial
|
||||
// (reverse means we have i = P(t), thus allowing to simply
|
||||
// compute index = P(time) rather than solving a quadratic equation)
|
||||
final T d12 = tMax.subtract(tMed);
|
||||
final T d23 = tMed.subtract(tMin);
|
||||
final T d13 = tMax.subtract(tMin);
|
||||
final T dt1 = time.subtract(tMax);
|
||||
final T dt2 = time.subtract(tMed);
|
||||
final T dt3 = time.subtract(tMin);
|
||||
final T iLagrange = dt2.multiply(dt3).multiply(d23).multiply(iMax).
|
||||
subtract(dt1.multiply(dt3).multiply(d13).multiply(iMed)).
|
||||
add( dt1.multiply(dt2).multiply(d12).multiply(iMin)).
|
||||
divide(d12.multiply(d23).multiply(d13));
|
||||
index = (int) FastMath.rint(iLagrange.getReal());
|
||||
}
|
||||
|
||||
// force the next size reduction to be at least one tenth
|
||||
final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
|
||||
final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
|
||||
if (index < low) {
|
||||
index = low;
|
||||
} else if (index > high) {
|
||||
index = high;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// now the table slice is very small, we perform an iterative search
|
||||
index = iMin;
|
||||
while (index <= iMax && locatePoint(time, steps.get(index)) > 0) {
|
||||
++index;
|
||||
}
|
||||
|
||||
return steps.get(index).getInterpolatedState(time);
|
||||
|
||||
}
|
||||
|
||||
/** Compare a step interval and a double.
|
||||
* @param time point to locate
|
||||
* @param interval step interval
|
||||
* @return -1 if the double is before the interval, 0 if it is in
|
||||
* the interval, and +1 if it is after the interval, according to
|
||||
* the interval direction
|
||||
*/
|
||||
private int locatePoint(final T time, final FieldStepInterpolator<T> interval) {
|
||||
if (forward) {
|
||||
if (time.subtract(interval.getPreviousState().getTime()).getReal() < 0) {
|
||||
return -1;
|
||||
} else if (time.subtract(interval.getCurrentState().getTime()).getReal() > 0) {
|
||||
return +1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if (time.subtract(interval.getPreviousState().getTime()).getReal() > 0) {
|
||||
return -1;
|
||||
} else if (time.subtract(interval.getCurrentState().getTime()).getReal() < 0) {
|
||||
return +1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
|
@ -95,6 +95,13 @@ public class FieldODEState<T extends RealFieldElement<T>> {
|
|||
return time;
|
||||
}
|
||||
|
||||
/** Get main state dimension.
|
||||
* @return main state dimension
|
||||
*/
|
||||
public int getStateDimension() {
|
||||
return state.length;
|
||||
}
|
||||
|
||||
/** Get main state at time.
|
||||
* @return main state at time
|
||||
*/
|
||||
|
@ -102,6 +109,22 @@ public class FieldODEState<T extends RealFieldElement<T>> {
|
|||
return state.clone();
|
||||
}
|
||||
|
||||
/** Get the number of secondary states.
|
||||
* @return number of secondary states.
|
||||
*/
|
||||
public int getNumberOfSecondaryStates() {
|
||||
return secondaryState.length;
|
||||
}
|
||||
|
||||
/** Get secondary state dimension.
|
||||
* @param index index of the secondary set as returned
|
||||
* by {@link FieldExpandableODE#addSecondaryEquations(FieldSecondaryEquations)}
|
||||
* @return secondary state dimension
|
||||
*/
|
||||
public int getSecondaryStateDimension(final int index) {
|
||||
return secondaryState[index].length;
|
||||
}
|
||||
|
||||
/** Get secondary state at time.
|
||||
* @param index index of the secondary set as returned
|
||||
* by {@link FieldExpandableODE#addSecondaryEquations(FieldSecondaryEquations)}
|
||||
|
|
|
@ -227,7 +227,7 @@ public abstract class AdaptiveStepsizeFieldIntegrator<T extends RealFieldElement
|
|||
|
||||
super.sanityChecks(eqn, t);
|
||||
|
||||
mainSetDimension = eqn.getState().length;
|
||||
mainSetDimension = eqn.getStateDimension();
|
||||
|
||||
if (vecAbsoluteTolerance != null && vecAbsoluteTolerance.length != mainSetDimension) {
|
||||
throw new DimensionMismatchException(mainSetDimension, vecAbsoluteTolerance.length);
|
||||
|
|
Loading…
Reference in New Issue