Added and used a specialized exception for continued fraction convergence errors

git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@506591 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2007-02-12 19:23:17 +00:00
parent ee71801e77
commit 21a95478c2
2 changed files with 507 additions and 486 deletions

View File

@ -1,486 +1,485 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.fraction;
import java.math.BigInteger;
import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.util.MathUtils;
/**
* Representation of a rational number.
*
* @since 1.1
* @version $Revision$ $Date$
*/
public class Fraction extends Number implements Comparable {
/** A fraction representing "1 / 1". */
public static final Fraction ONE = new Fraction(1, 1);
/** A fraction representing "0 / 1". */
public static final Fraction ZERO = new Fraction(0, 1);
/** Serializable version identifier */
private static final long serialVersionUID = 65382027393090L;
/** The denominator. */
private int denominator;
/** The numerator. */
private int numerator;
/**
* Create a fraction given the double value.
* @param value the double value to convert to a fraction.
* @throws ConvergenceException if the continued fraction failed to
* converge.
*/
public Fraction(double value) throws ConvergenceException {
this(value, 1.0e-5, 100);
}
/**
* Create a fraction given the double value.
* <p>
* References:
* <ul>
* <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
* Continued Fraction</a> equations (11) and (22)-(26)</li>
* </ul>
* </p>
* @param value the double value to convert to a fraction.
* @param epsilon maximum error allowed. The resulting fraction is within
* <code>epsilon</code> of <code>value</code>, in absolute terms.
* @param maxIterations maximum number of convergents
* @throws ConvergenceException if the continued fraction failed to
* converge.
*/
public Fraction(double value, double epsilon, int maxIterations)
throws ConvergenceException
{
double r0 = value;
int a0 = (int)Math.floor(r0);
// check for (almost) integer arguments, which should not go
// to iterations.
if (Math.abs(a0 - value) < epsilon) {
this.numerator = a0;
this.denominator = 1;
return;
}
int p0 = 1;
int q0 = 0;
int p1 = a0;
int q1 = 1;
int p2 = 0;
int q2 = 1;
int n = 0;
boolean stop = false;
do {
++n;
double r1 = 1.0 / (r0 - a0);
int a1 = (int)Math.floor(r1);
p2 = (a1 * p1) + p0;
q2 = (a1 * q1) + q0;
double convergent = (double)p2 / (double)q2;
if (n < maxIterations && Math.abs(convergent - value) > epsilon) {
p0 = p1;
p1 = p2;
q0 = q1;
q1 = q2;
a0 = a1;
r0 = r1;
} else {
stop = true;
}
} while (!stop);
if (n >= maxIterations) {
throw new ConvergenceException(
"Unable to convert double to fraction");
}
this.numerator = p2;
this.denominator = q2;
reduce();
}
/**
* Create a fraction given the numerator and denominator. The fraction is
* reduced to lowest terms.
* @param num the numerator.
* @param den the denominator.
* @throws ArithmeticException if the denomiator is <code>zero</code>
*/
public Fraction(int num, int den) {
super();
if (den == 0) {
throw new ArithmeticException("The denominator must not be zero");
}
if (den < 0) {
if (num == Integer.MIN_VALUE ||
den == Integer.MIN_VALUE) {
throw new ArithmeticException("overflow: can't negate");
}
num = -num;
den = -den;
}
this.numerator = num;
this.denominator = den;
reduce();
}
/**
* Returns the absolute value of this fraction.
* @return the absolute value.
*/
public Fraction abs() {
Fraction ret;
if (numerator >= 0) {
ret = this;
} else {
ret = negate();
}
return ret;
}
/**
* Compares this object to another based on size.
* @param object the object to compare to
* @return -1 if this is less than <tt>object</tt>, +1 if this is greater
* than <tt>object</tt>, 0 if they are equal.
*/
public int compareTo(Object object) {
int ret = 0;
if (this != object) {
Fraction other = (Fraction)object;
double first = doubleValue();
double second = other.doubleValue();
if (first < second) {
ret = -1;
} else if (first > second) {
ret = 1;
}
}
return ret;
}
/**
* Gets the fraction as a <tt>double</tt>. This calculates the fraction as
* the numerator divided by denominator.
* @return the fraction as a <tt>double</tt>
*/
public double doubleValue() {
return (double)numerator / (double)denominator;
}
/**
* Test for the equality of two fractions. If the lowest term
* numerator and denominators are the same for both fractions, the two
* fractions are considered to be equal.
* @param other fraction to test for equality to this fraction
* @return true if two fractions are equal, false if object is
* <tt>null</tt>, not an instance of {@link Fraction}, or not equal
* to this fraction instance.
*/
public boolean equals(Object other) {
boolean ret;
if (this == other) {
ret = true;
} else if (other == null) {
ret = false;
} else {
try {
// since fractions are always in lowest terms, numerators and
// denominators can be compared directly for equality.
Fraction rhs = (Fraction)other;
ret = (numerator == rhs.numerator) &&
(denominator == rhs.denominator);
} catch (ClassCastException ex) {
// ignore exception
ret = false;
}
}
return ret;
}
/**
* Gets the fraction as a <tt>float</tt>. This calculates the fraction as
* the numerator divided by denominator.
* @return the fraction as a <tt>float</tt>
*/
public float floatValue() {
return (float)doubleValue();
}
/**
* Access the denominator.
* @return the denominator.
*/
public int getDenominator() {
return denominator;
}
/**
* Access the numerator.
* @return the numerator.
*/
public int getNumerator() {
return numerator;
}
/**
* Gets a hashCode for the fraction.
* @return a hash code value for this object
*/
public int hashCode() {
return 37 * (37 * 17 + getNumerator()) + getDenominator();
}
/**
* Gets the fraction as an <tt>int</tt>. This returns the whole number part
* of the fraction.
* @return the whole number fraction part
*/
public int intValue() {
return (int)doubleValue();
}
/**
* Gets the fraction as a <tt>long</tt>. This returns the whole number part
* of the fraction.
* @return the whole number fraction part
*/
public long longValue() {
return (long)doubleValue();
}
/**
* Return the additive inverse of this fraction.
* @return the negation of this fraction.
*/
public Fraction negate() {
if (numerator==Integer.MIN_VALUE) {
throw new ArithmeticException("overflow: too large to negate");
}
return new Fraction(-numerator, denominator);
}
/**
* Return the multiplicative inverse of this fraction.
* @return the reciprocal fraction
*/
public Fraction reciprocal() {
return new Fraction(denominator, numerator);
}
/**
* <p>Adds the value of this fraction to another, returning the result in reduced form.
* The algorithm follows Knuth, 4.5.1.</p>
*
* @param fraction the fraction to add, must not be <code>null</code>
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* <code>Integer.MAX_VALUE</code>
*/
public Fraction add(Fraction fraction) {
return addSub(fraction, true /* add */);
}
/**
* <p>Subtracts the value of another fraction from the value of this one,
* returning the result in reduced form.</p>
*
* @param fraction the fraction to subtract, must not be <code>null</code>
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the resulting numerator or denominator
* cannot be represented in an <code>int</code>.
*/
public Fraction subtract(Fraction fraction) {
return addSub(fraction, false /* subtract */);
}
/**
* Implement add and subtract using algorithm described in Knuth 4.5.1.
*
* @param fraction the fraction to subtract, must not be <code>null</code>
* @param isAdd true to add, false to subtract
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the resulting numerator or denominator
* cannot be represented in an <code>int</code>.
*/
private Fraction addSub(Fraction fraction, boolean isAdd) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
// zero is identity for addition.
if (numerator == 0) {
return isAdd ? fraction : fraction.negate();
}
if (fraction.numerator == 0) {
return this;
}
// if denominators are randomly distributed, d1 will be 1 about 61%
// of the time.
int d1 = MathUtils.gcd(denominator, fraction.denominator);
if (d1==1) {
// result is ( (u*v' +/- u'v) / u'v')
int uvp = MathUtils.mulAndCheck(numerator, fraction.denominator);
int upv = MathUtils.mulAndCheck(fraction.numerator, denominator);
return new Fraction
(isAdd ? MathUtils.addAndCheck(uvp, upv) :
MathUtils.subAndCheck(uvp, upv),
MathUtils.mulAndCheck(denominator, fraction.denominator));
}
// the quantity 't' requires 65 bits of precision; see knuth 4.5.1
// exercise 7. we're going to use a BigInteger.
// t = u(v'/d1) +/- v(u'/d1)
BigInteger uvp = BigInteger.valueOf(numerator)
.multiply(BigInteger.valueOf(fraction.denominator/d1));
BigInteger upv = BigInteger.valueOf(fraction.numerator)
.multiply(BigInteger.valueOf(denominator/d1));
BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
// but d2 doesn't need extra precision because
// d2 = gcd(t,d1) = gcd(t mod d1, d1)
int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
int d2 = (tmodd1==0)?d1:MathUtils.gcd(tmodd1, d1);
// result is (t/d2) / (u'/d1)(v'/d2)
BigInteger w = t.divide(BigInteger.valueOf(d2));
if (w.bitLength() > 31) {
throw new ArithmeticException
("overflow: numerator too large after multiply");
}
return new Fraction (w.intValue(),
MathUtils.mulAndCheck(denominator/d1,
fraction.denominator/d2));
}
/**
* <p>Multiplies the value of this fraction by another, returning the
* result in reduced form.</p>
*
* @param fraction the fraction to multiply by, must not be <code>null</code>
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* <code>Integer.MAX_VALUE</code>
*/
public Fraction multiply(Fraction fraction) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
if (numerator == 0 || fraction.numerator == 0) {
return ZERO;
}
// knuth 4.5.1
// make sure we don't overflow unless the result *must* overflow.
int d1 = MathUtils.gcd(numerator, fraction.denominator);
int d2 = MathUtils.gcd(fraction.numerator, denominator);
return getReducedFraction
(MathUtils.mulAndCheck(numerator/d1, fraction.numerator/d2),
MathUtils.mulAndCheck(denominator/d2, fraction.denominator/d1));
}
/**
* <p>Divide the value of this fraction by another.</p>
*
* @param fraction the fraction to divide by, must not be <code>null</code>
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the fraction to divide by is zero
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* <code>Integer.MAX_VALUE</code>
*/
public Fraction divide(Fraction fraction) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
if (fraction.numerator == 0) {
throw new ArithmeticException("The fraction to divide by must not be zero");
}
return multiply(fraction.reciprocal());
}
/**
* <p>Creates a <code>Fraction</code> instance with the 2 parts
* of a fraction Y/Z.</p>
*
* <p>Any negative signs are resolved to be on the numerator.</p>
*
* @param numerator the numerator, for example the three in 'three sevenths'
* @param denominator the denominator, for example the seven in 'three sevenths'
* @return a new fraction instance, with the numerator and denominator reduced
* @throws ArithmeticException if the denominator is <code>zero</code>
*/
public static Fraction getReducedFraction(int numerator, int denominator) {
if (denominator == 0) {
throw new ArithmeticException("The denominator must not be zero");
}
if (numerator==0) {
return ZERO; // normalize zero.
}
// allow 2^k/-2^31 as a valid fraction (where k>0)
if (denominator==Integer.MIN_VALUE && (numerator&1)==0) {
numerator/=2; denominator/=2;
}
if (denominator < 0) {
if (numerator==Integer.MIN_VALUE ||
denominator==Integer.MIN_VALUE) {
throw new ArithmeticException("overflow: can't negate");
}
numerator = -numerator;
denominator = -denominator;
}
// simplify fraction.
int gcd = MathUtils.gcd(numerator, denominator);
numerator /= gcd;
denominator /= gcd;
return new Fraction(numerator, denominator);
}
/**
* Reduce this fraction to lowest terms. This is accomplished by dividing
* both numerator and denominator by their greatest common divisor.
*/
private void reduce() {
// reduce numerator and denominator by greatest common denominator.
int d = MathUtils.gcd(numerator, denominator);
if (d > 1) {
numerator /= d;
denominator /= d;
}
// move sign to numerator.
if (denominator < 0) {
numerator *= -1;
denominator *= -1;
}
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.fraction;
import java.math.BigInteger;
import org.apache.commons.math.util.MathUtils;
/**
* Representation of a rational number.
*
* @since 1.1
* @version $Revision$ $Date$
*/
public class Fraction extends Number implements Comparable {
/** A fraction representing "1 / 1". */
public static final Fraction ONE = new Fraction(1, 1);
/** A fraction representing "0 / 1". */
public static final Fraction ZERO = new Fraction(0, 1);
/** Serializable version identifier */
private static final long serialVersionUID = 6222990762865980424L;
/** The denominator. */
private int denominator;
/** The numerator. */
private int numerator;
/**
* Create a fraction given the double value.
* @param value the double value to convert to a fraction.
* @throws FractionConversionException if the continued fraction failed to
* converge.
*/
public Fraction(double value) throws FractionConversionException {
this(value, 1.0e-5, 100);
}
/**
* Create a fraction given the double value.
* <p>
* References:
* <ul>
* <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
* Continued Fraction</a> equations (11) and (22)-(26)</li>
* </ul>
* </p>
* @param value the double value to convert to a fraction.
* @param epsilon maximum error allowed. The resulting fraction is within
* <code>epsilon</code> of <code>value</code>, in absolute terms.
* @param maxIterations maximum number of convergents
* @throws FractionConversionException if the continued fraction failed to
* converge.
*/
public Fraction(double value, double epsilon, int maxIterations)
throws FractionConversionException
{
double r0 = value;
int a0 = (int)Math.floor(r0);
// check for (almost) integer arguments, which should not go
// to iterations.
if (Math.abs(a0 - value) < epsilon) {
this.numerator = a0;
this.denominator = 1;
return;
}
int p0 = 1;
int q0 = 0;
int p1 = a0;
int q1 = 1;
int p2 = 0;
int q2 = 1;
int n = 0;
boolean stop = false;
do {
++n;
double r1 = 1.0 / (r0 - a0);
int a1 = (int)Math.floor(r1);
p2 = (a1 * p1) + p0;
q2 = (a1 * q1) + q0;
double convergent = (double)p2 / (double)q2;
if (n < maxIterations && Math.abs(convergent - value) > epsilon) {
p0 = p1;
p1 = p2;
q0 = q1;
q1 = q2;
a0 = a1;
r0 = r1;
} else {
stop = true;
}
} while (!stop);
if (n >= maxIterations) {
throw new FractionConversionException(value, maxIterations);
}
this.numerator = p2;
this.denominator = q2;
reduce();
}
/**
* Create a fraction given the numerator and denominator. The fraction is
* reduced to lowest terms.
* @param num the numerator.
* @param den the denominator.
* @throws ArithmeticException if the denomiator is <code>zero</code>
*/
public Fraction(int num, int den) {
super();
if (den == 0) {
throw new ArithmeticException("The denominator must not be zero");
}
if (den < 0) {
if (num == Integer.MIN_VALUE ||
den == Integer.MIN_VALUE) {
throw new ArithmeticException("overflow: can't negate");
}
num = -num;
den = -den;
}
this.numerator = num;
this.denominator = den;
reduce();
}
/**
* Returns the absolute value of this fraction.
* @return the absolute value.
*/
public Fraction abs() {
Fraction ret;
if (numerator >= 0) {
ret = this;
} else {
ret = negate();
}
return ret;
}
/**
* Compares this object to another based on size.
* @param object the object to compare to
* @return -1 if this is less than <tt>object</tt>, +1 if this is greater
* than <tt>object</tt>, 0 if they are equal.
*/
public int compareTo(Object object) {
int ret = 0;
if (this != object) {
Fraction other = (Fraction)object;
double first = doubleValue();
double second = other.doubleValue();
if (first < second) {
ret = -1;
} else if (first > second) {
ret = 1;
}
}
return ret;
}
/**
* Gets the fraction as a <tt>double</tt>. This calculates the fraction as
* the numerator divided by denominator.
* @return the fraction as a <tt>double</tt>
*/
public double doubleValue() {
return (double)numerator / (double)denominator;
}
/**
* Test for the equality of two fractions. If the lowest term
* numerator and denominators are the same for both fractions, the two
* fractions are considered to be equal.
* @param other fraction to test for equality to this fraction
* @return true if two fractions are equal, false if object is
* <tt>null</tt>, not an instance of {@link Fraction}, or not equal
* to this fraction instance.
*/
public boolean equals(Object other) {
boolean ret;
if (this == other) {
ret = true;
} else if (other == null) {
ret = false;
} else {
try {
// since fractions are always in lowest terms, numerators and
// denominators can be compared directly for equality.
Fraction rhs = (Fraction)other;
ret = (numerator == rhs.numerator) &&
(denominator == rhs.denominator);
} catch (ClassCastException ex) {
// ignore exception
ret = false;
}
}
return ret;
}
/**
* Gets the fraction as a <tt>float</tt>. This calculates the fraction as
* the numerator divided by denominator.
* @return the fraction as a <tt>float</tt>
*/
public float floatValue() {
return (float)doubleValue();
}
/**
* Access the denominator.
* @return the denominator.
*/
public int getDenominator() {
return denominator;
}
/**
* Access the numerator.
* @return the numerator.
*/
public int getNumerator() {
return numerator;
}
/**
* Gets a hashCode for the fraction.
* @return a hash code value for this object
*/
public int hashCode() {
return 37 * (37 * 17 + getNumerator()) + getDenominator();
}
/**
* Gets the fraction as an <tt>int</tt>. This returns the whole number part
* of the fraction.
* @return the whole number fraction part
*/
public int intValue() {
return (int)doubleValue();
}
/**
* Gets the fraction as a <tt>long</tt>. This returns the whole number part
* of the fraction.
* @return the whole number fraction part
*/
public long longValue() {
return (long)doubleValue();
}
/**
* Return the additive inverse of this fraction.
* @return the negation of this fraction.
*/
public Fraction negate() {
if (numerator==Integer.MIN_VALUE) {
throw new ArithmeticException("overflow: too large to negate");
}
return new Fraction(-numerator, denominator);
}
/**
* Return the multiplicative inverse of this fraction.
* @return the reciprocal fraction
*/
public Fraction reciprocal() {
return new Fraction(denominator, numerator);
}
/**
* <p>Adds the value of this fraction to another, returning the result in reduced form.
* The algorithm follows Knuth, 4.5.1.</p>
*
* @param fraction the fraction to add, must not be <code>null</code>
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* <code>Integer.MAX_VALUE</code>
*/
public Fraction add(Fraction fraction) {
return addSub(fraction, true /* add */);
}
/**
* <p>Subtracts the value of another fraction from the value of this one,
* returning the result in reduced form.</p>
*
* @param fraction the fraction to subtract, must not be <code>null</code>
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the resulting numerator or denominator
* cannot be represented in an <code>int</code>.
*/
public Fraction subtract(Fraction fraction) {
return addSub(fraction, false /* subtract */);
}
/**
* Implement add and subtract using algorithm described in Knuth 4.5.1.
*
* @param fraction the fraction to subtract, must not be <code>null</code>
* @param isAdd true to add, false to subtract
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the resulting numerator or denominator
* cannot be represented in an <code>int</code>.
*/
private Fraction addSub(Fraction fraction, boolean isAdd) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
// zero is identity for addition.
if (numerator == 0) {
return isAdd ? fraction : fraction.negate();
}
if (fraction.numerator == 0) {
return this;
}
// if denominators are randomly distributed, d1 will be 1 about 61%
// of the time.
int d1 = MathUtils.gcd(denominator, fraction.denominator);
if (d1==1) {
// result is ( (u*v' +/- u'v) / u'v')
int uvp = MathUtils.mulAndCheck(numerator, fraction.denominator);
int upv = MathUtils.mulAndCheck(fraction.numerator, denominator);
return new Fraction
(isAdd ? MathUtils.addAndCheck(uvp, upv) :
MathUtils.subAndCheck(uvp, upv),
MathUtils.mulAndCheck(denominator, fraction.denominator));
}
// the quantity 't' requires 65 bits of precision; see knuth 4.5.1
// exercise 7. we're going to use a BigInteger.
// t = u(v'/d1) +/- v(u'/d1)
BigInteger uvp = BigInteger.valueOf(numerator)
.multiply(BigInteger.valueOf(fraction.denominator/d1));
BigInteger upv = BigInteger.valueOf(fraction.numerator)
.multiply(BigInteger.valueOf(denominator/d1));
BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
// but d2 doesn't need extra precision because
// d2 = gcd(t,d1) = gcd(t mod d1, d1)
int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
int d2 = (tmodd1==0)?d1:MathUtils.gcd(tmodd1, d1);
// result is (t/d2) / (u'/d1)(v'/d2)
BigInteger w = t.divide(BigInteger.valueOf(d2));
if (w.bitLength() > 31) {
throw new ArithmeticException
("overflow: numerator too large after multiply");
}
return new Fraction (w.intValue(),
MathUtils.mulAndCheck(denominator/d1,
fraction.denominator/d2));
}
/**
* <p>Multiplies the value of this fraction by another, returning the
* result in reduced form.</p>
*
* @param fraction the fraction to multiply by, must not be <code>null</code>
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* <code>Integer.MAX_VALUE</code>
*/
public Fraction multiply(Fraction fraction) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
if (numerator == 0 || fraction.numerator == 0) {
return ZERO;
}
// knuth 4.5.1
// make sure we don't overflow unless the result *must* overflow.
int d1 = MathUtils.gcd(numerator, fraction.denominator);
int d2 = MathUtils.gcd(fraction.numerator, denominator);
return getReducedFraction
(MathUtils.mulAndCheck(numerator/d1, fraction.numerator/d2),
MathUtils.mulAndCheck(denominator/d2, fraction.denominator/d1));
}
/**
* <p>Divide the value of this fraction by another.</p>
*
* @param fraction the fraction to divide by, must not be <code>null</code>
* @return a <code>Fraction</code> instance with the resulting values
* @throws IllegalArgumentException if the fraction is <code>null</code>
* @throws ArithmeticException if the fraction to divide by is zero
* @throws ArithmeticException if the resulting numerator or denominator exceeds
* <code>Integer.MAX_VALUE</code>
*/
public Fraction divide(Fraction fraction) {
if (fraction == null) {
throw new IllegalArgumentException("The fraction must not be null");
}
if (fraction.numerator == 0) {
throw new ArithmeticException("The fraction to divide by must not be zero");
}
return multiply(fraction.reciprocal());
}
/**
* <p>Creates a <code>Fraction</code> instance with the 2 parts
* of a fraction Y/Z.</p>
*
* <p>Any negative signs are resolved to be on the numerator.</p>
*
* @param numerator the numerator, for example the three in 'three sevenths'
* @param denominator the denominator, for example the seven in 'three sevenths'
* @return a new fraction instance, with the numerator and denominator reduced
* @throws ArithmeticException if the denominator is <code>zero</code>
*/
public static Fraction getReducedFraction(int numerator, int denominator) {
if (denominator == 0) {
throw new ArithmeticException("The denominator must not be zero");
}
if (numerator==0) {
return ZERO; // normalize zero.
}
// allow 2^k/-2^31 as a valid fraction (where k>0)
if (denominator==Integer.MIN_VALUE && (numerator&1)==0) {
numerator/=2; denominator/=2;
}
if (denominator < 0) {
if (numerator==Integer.MIN_VALUE ||
denominator==Integer.MIN_VALUE) {
throw new ArithmeticException("overflow: can't negate");
}
numerator = -numerator;
denominator = -denominator;
}
// simplify fraction.
int gcd = MathUtils.gcd(numerator, denominator);
numerator /= gcd;
denominator /= gcd;
return new Fraction(numerator, denominator);
}
/**
* Reduce this fraction to lowest terms. This is accomplished by dividing
* both numerator and denominator by their greatest common divisor.
*/
private void reduce() {
// reduce numerator and denominator by greatest common denominator.
int d = MathUtils.gcd(numerator, denominator);
if (d > 1) {
numerator /= d;
denominator /= d;
}
// move sign to numerator.
if (denominator < 0) {
numerator *= -1;
denominator *= -1;
}
}
}

View File

@ -0,0 +1,22 @@
package org.apache.commons.math.fraction;
import org.apache.commons.math.MaxIterationsExceededException;
public class FractionConversionException extends MaxIterationsExceededException {
/** Serializable version identifier. */
private static final long serialVersionUID = 4588659344016668813L;
/**
* Constructs an exception with specified formatted detail message.
* Message formatting is delegated to {@link java.text.MessageFormat}.
* @param value double value to convert
* @param maxIterations maximal number of iterations allowed
*/
public FractionConversionException(double value, int maxIterations) {
super(maxIterations,
"Unable to convert {0} to fraction after {1} iterations",
new Object[] { new Double(value), new Integer(maxIterations) });
}
}