Added and used a specialized exception for continued fraction convergence errors
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@506591 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
ee71801e77
commit
21a95478c2
|
@ -1,486 +1,485 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math.fraction;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import org.apache.commons.math.ConvergenceException;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
|
||||
/**
|
||||
* Representation of a rational number.
|
||||
*
|
||||
* @since 1.1
|
||||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public class Fraction extends Number implements Comparable {
|
||||
|
||||
/** A fraction representing "1 / 1". */
|
||||
public static final Fraction ONE = new Fraction(1, 1);
|
||||
|
||||
/** A fraction representing "0 / 1". */
|
||||
public static final Fraction ZERO = new Fraction(0, 1);
|
||||
|
||||
/** Serializable version identifier */
|
||||
private static final long serialVersionUID = 65382027393090L;
|
||||
|
||||
/** The denominator. */
|
||||
private int denominator;
|
||||
|
||||
/** The numerator. */
|
||||
private int numerator;
|
||||
|
||||
/**
|
||||
* Create a fraction given the double value.
|
||||
* @param value the double value to convert to a fraction.
|
||||
* @throws ConvergenceException if the continued fraction failed to
|
||||
* converge.
|
||||
*/
|
||||
public Fraction(double value) throws ConvergenceException {
|
||||
this(value, 1.0e-5, 100);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a fraction given the double value.
|
||||
* <p>
|
||||
* References:
|
||||
* <ul>
|
||||
* <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
|
||||
* Continued Fraction</a> equations (11) and (22)-(26)</li>
|
||||
* </ul>
|
||||
* </p>
|
||||
* @param value the double value to convert to a fraction.
|
||||
* @param epsilon maximum error allowed. The resulting fraction is within
|
||||
* <code>epsilon</code> of <code>value</code>, in absolute terms.
|
||||
* @param maxIterations maximum number of convergents
|
||||
* @throws ConvergenceException if the continued fraction failed to
|
||||
* converge.
|
||||
*/
|
||||
public Fraction(double value, double epsilon, int maxIterations)
|
||||
throws ConvergenceException
|
||||
{
|
||||
double r0 = value;
|
||||
int a0 = (int)Math.floor(r0);
|
||||
|
||||
// check for (almost) integer arguments, which should not go
|
||||
// to iterations.
|
||||
if (Math.abs(a0 - value) < epsilon) {
|
||||
this.numerator = a0;
|
||||
this.denominator = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
int p0 = 1;
|
||||
int q0 = 0;
|
||||
int p1 = a0;
|
||||
int q1 = 1;
|
||||
|
||||
int p2 = 0;
|
||||
int q2 = 1;
|
||||
|
||||
int n = 0;
|
||||
boolean stop = false;
|
||||
do {
|
||||
++n;
|
||||
double r1 = 1.0 / (r0 - a0);
|
||||
int a1 = (int)Math.floor(r1);
|
||||
p2 = (a1 * p1) + p0;
|
||||
q2 = (a1 * q1) + q0;
|
||||
|
||||
double convergent = (double)p2 / (double)q2;
|
||||
if (n < maxIterations && Math.abs(convergent - value) > epsilon) {
|
||||
p0 = p1;
|
||||
p1 = p2;
|
||||
q0 = q1;
|
||||
q1 = q2;
|
||||
a0 = a1;
|
||||
r0 = r1;
|
||||
} else {
|
||||
stop = true;
|
||||
}
|
||||
} while (!stop);
|
||||
|
||||
if (n >= maxIterations) {
|
||||
throw new ConvergenceException(
|
||||
"Unable to convert double to fraction");
|
||||
}
|
||||
|
||||
this.numerator = p2;
|
||||
this.denominator = q2;
|
||||
reduce();
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a fraction given the numerator and denominator. The fraction is
|
||||
* reduced to lowest terms.
|
||||
* @param num the numerator.
|
||||
* @param den the denominator.
|
||||
* @throws ArithmeticException if the denomiator is <code>zero</code>
|
||||
*/
|
||||
public Fraction(int num, int den) {
|
||||
super();
|
||||
if (den == 0) {
|
||||
throw new ArithmeticException("The denominator must not be zero");
|
||||
}
|
||||
if (den < 0) {
|
||||
if (num == Integer.MIN_VALUE ||
|
||||
den == Integer.MIN_VALUE) {
|
||||
throw new ArithmeticException("overflow: can't negate");
|
||||
}
|
||||
num = -num;
|
||||
den = -den;
|
||||
}
|
||||
this.numerator = num;
|
||||
this.denominator = den;
|
||||
reduce();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the absolute value of this fraction.
|
||||
* @return the absolute value.
|
||||
*/
|
||||
public Fraction abs() {
|
||||
Fraction ret;
|
||||
if (numerator >= 0) {
|
||||
ret = this;
|
||||
} else {
|
||||
ret = negate();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compares this object to another based on size.
|
||||
* @param object the object to compare to
|
||||
* @return -1 if this is less than <tt>object</tt>, +1 if this is greater
|
||||
* than <tt>object</tt>, 0 if they are equal.
|
||||
*/
|
||||
public int compareTo(Object object) {
|
||||
int ret = 0;
|
||||
|
||||
if (this != object) {
|
||||
Fraction other = (Fraction)object;
|
||||
double first = doubleValue();
|
||||
double second = other.doubleValue();
|
||||
|
||||
if (first < second) {
|
||||
ret = -1;
|
||||
} else if (first > second) {
|
||||
ret = 1;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fraction as a <tt>double</tt>. This calculates the fraction as
|
||||
* the numerator divided by denominator.
|
||||
* @return the fraction as a <tt>double</tt>
|
||||
*/
|
||||
public double doubleValue() {
|
||||
return (double)numerator / (double)denominator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for the equality of two fractions. If the lowest term
|
||||
* numerator and denominators are the same for both fractions, the two
|
||||
* fractions are considered to be equal.
|
||||
* @param other fraction to test for equality to this fraction
|
||||
* @return true if two fractions are equal, false if object is
|
||||
* <tt>null</tt>, not an instance of {@link Fraction}, or not equal
|
||||
* to this fraction instance.
|
||||
*/
|
||||
public boolean equals(Object other) {
|
||||
boolean ret;
|
||||
|
||||
if (this == other) {
|
||||
ret = true;
|
||||
} else if (other == null) {
|
||||
ret = false;
|
||||
} else {
|
||||
try {
|
||||
// since fractions are always in lowest terms, numerators and
|
||||
// denominators can be compared directly for equality.
|
||||
Fraction rhs = (Fraction)other;
|
||||
ret = (numerator == rhs.numerator) &&
|
||||
(denominator == rhs.denominator);
|
||||
} catch (ClassCastException ex) {
|
||||
// ignore exception
|
||||
ret = false;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fraction as a <tt>float</tt>. This calculates the fraction as
|
||||
* the numerator divided by denominator.
|
||||
* @return the fraction as a <tt>float</tt>
|
||||
*/
|
||||
public float floatValue() {
|
||||
return (float)doubleValue();
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the denominator.
|
||||
* @return the denominator.
|
||||
*/
|
||||
public int getDenominator() {
|
||||
return denominator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the numerator.
|
||||
* @return the numerator.
|
||||
*/
|
||||
public int getNumerator() {
|
||||
return numerator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a hashCode for the fraction.
|
||||
* @return a hash code value for this object
|
||||
*/
|
||||
public int hashCode() {
|
||||
return 37 * (37 * 17 + getNumerator()) + getDenominator();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fraction as an <tt>int</tt>. This returns the whole number part
|
||||
* of the fraction.
|
||||
* @return the whole number fraction part
|
||||
*/
|
||||
public int intValue() {
|
||||
return (int)doubleValue();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fraction as a <tt>long</tt>. This returns the whole number part
|
||||
* of the fraction.
|
||||
* @return the whole number fraction part
|
||||
*/
|
||||
public long longValue() {
|
||||
return (long)doubleValue();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the additive inverse of this fraction.
|
||||
* @return the negation of this fraction.
|
||||
*/
|
||||
public Fraction negate() {
|
||||
if (numerator==Integer.MIN_VALUE) {
|
||||
throw new ArithmeticException("overflow: too large to negate");
|
||||
}
|
||||
return new Fraction(-numerator, denominator);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the multiplicative inverse of this fraction.
|
||||
* @return the reciprocal fraction
|
||||
*/
|
||||
public Fraction reciprocal() {
|
||||
return new Fraction(denominator, numerator);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Adds the value of this fraction to another, returning the result in reduced form.
|
||||
* The algorithm follows Knuth, 4.5.1.</p>
|
||||
*
|
||||
* @param fraction the fraction to add, must not be <code>null</code>
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the resulting numerator or denominator exceeds
|
||||
* <code>Integer.MAX_VALUE</code>
|
||||
*/
|
||||
public Fraction add(Fraction fraction) {
|
||||
return addSub(fraction, true /* add */);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Subtracts the value of another fraction from the value of this one,
|
||||
* returning the result in reduced form.</p>
|
||||
*
|
||||
* @param fraction the fraction to subtract, must not be <code>null</code>
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the resulting numerator or denominator
|
||||
* cannot be represented in an <code>int</code>.
|
||||
*/
|
||||
public Fraction subtract(Fraction fraction) {
|
||||
return addSub(fraction, false /* subtract */);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implement add and subtract using algorithm described in Knuth 4.5.1.
|
||||
*
|
||||
* @param fraction the fraction to subtract, must not be <code>null</code>
|
||||
* @param isAdd true to add, false to subtract
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the resulting numerator or denominator
|
||||
* cannot be represented in an <code>int</code>.
|
||||
*/
|
||||
private Fraction addSub(Fraction fraction, boolean isAdd) {
|
||||
if (fraction == null) {
|
||||
throw new IllegalArgumentException("The fraction must not be null");
|
||||
}
|
||||
// zero is identity for addition.
|
||||
if (numerator == 0) {
|
||||
return isAdd ? fraction : fraction.negate();
|
||||
}
|
||||
if (fraction.numerator == 0) {
|
||||
return this;
|
||||
}
|
||||
// if denominators are randomly distributed, d1 will be 1 about 61%
|
||||
// of the time.
|
||||
int d1 = MathUtils.gcd(denominator, fraction.denominator);
|
||||
if (d1==1) {
|
||||
// result is ( (u*v' +/- u'v) / u'v')
|
||||
int uvp = MathUtils.mulAndCheck(numerator, fraction.denominator);
|
||||
int upv = MathUtils.mulAndCheck(fraction.numerator, denominator);
|
||||
return new Fraction
|
||||
(isAdd ? MathUtils.addAndCheck(uvp, upv) :
|
||||
MathUtils.subAndCheck(uvp, upv),
|
||||
MathUtils.mulAndCheck(denominator, fraction.denominator));
|
||||
}
|
||||
// the quantity 't' requires 65 bits of precision; see knuth 4.5.1
|
||||
// exercise 7. we're going to use a BigInteger.
|
||||
// t = u(v'/d1) +/- v(u'/d1)
|
||||
BigInteger uvp = BigInteger.valueOf(numerator)
|
||||
.multiply(BigInteger.valueOf(fraction.denominator/d1));
|
||||
BigInteger upv = BigInteger.valueOf(fraction.numerator)
|
||||
.multiply(BigInteger.valueOf(denominator/d1));
|
||||
BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
|
||||
// but d2 doesn't need extra precision because
|
||||
// d2 = gcd(t,d1) = gcd(t mod d1, d1)
|
||||
int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
|
||||
int d2 = (tmodd1==0)?d1:MathUtils.gcd(tmodd1, d1);
|
||||
|
||||
// result is (t/d2) / (u'/d1)(v'/d2)
|
||||
BigInteger w = t.divide(BigInteger.valueOf(d2));
|
||||
if (w.bitLength() > 31) {
|
||||
throw new ArithmeticException
|
||||
("overflow: numerator too large after multiply");
|
||||
}
|
||||
return new Fraction (w.intValue(),
|
||||
MathUtils.mulAndCheck(denominator/d1,
|
||||
fraction.denominator/d2));
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Multiplies the value of this fraction by another, returning the
|
||||
* result in reduced form.</p>
|
||||
*
|
||||
* @param fraction the fraction to multiply by, must not be <code>null</code>
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the resulting numerator or denominator exceeds
|
||||
* <code>Integer.MAX_VALUE</code>
|
||||
*/
|
||||
public Fraction multiply(Fraction fraction) {
|
||||
if (fraction == null) {
|
||||
throw new IllegalArgumentException("The fraction must not be null");
|
||||
}
|
||||
if (numerator == 0 || fraction.numerator == 0) {
|
||||
return ZERO;
|
||||
}
|
||||
// knuth 4.5.1
|
||||
// make sure we don't overflow unless the result *must* overflow.
|
||||
int d1 = MathUtils.gcd(numerator, fraction.denominator);
|
||||
int d2 = MathUtils.gcd(fraction.numerator, denominator);
|
||||
return getReducedFraction
|
||||
(MathUtils.mulAndCheck(numerator/d1, fraction.numerator/d2),
|
||||
MathUtils.mulAndCheck(denominator/d2, fraction.denominator/d1));
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Divide the value of this fraction by another.</p>
|
||||
*
|
||||
* @param fraction the fraction to divide by, must not be <code>null</code>
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the fraction to divide by is zero
|
||||
* @throws ArithmeticException if the resulting numerator or denominator exceeds
|
||||
* <code>Integer.MAX_VALUE</code>
|
||||
*/
|
||||
public Fraction divide(Fraction fraction) {
|
||||
if (fraction == null) {
|
||||
throw new IllegalArgumentException("The fraction must not be null");
|
||||
}
|
||||
if (fraction.numerator == 0) {
|
||||
throw new ArithmeticException("The fraction to divide by must not be zero");
|
||||
}
|
||||
return multiply(fraction.reciprocal());
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Creates a <code>Fraction</code> instance with the 2 parts
|
||||
* of a fraction Y/Z.</p>
|
||||
*
|
||||
* <p>Any negative signs are resolved to be on the numerator.</p>
|
||||
*
|
||||
* @param numerator the numerator, for example the three in 'three sevenths'
|
||||
* @param denominator the denominator, for example the seven in 'three sevenths'
|
||||
* @return a new fraction instance, with the numerator and denominator reduced
|
||||
* @throws ArithmeticException if the denominator is <code>zero</code>
|
||||
*/
|
||||
public static Fraction getReducedFraction(int numerator, int denominator) {
|
||||
if (denominator == 0) {
|
||||
throw new ArithmeticException("The denominator must not be zero");
|
||||
}
|
||||
if (numerator==0) {
|
||||
return ZERO; // normalize zero.
|
||||
}
|
||||
// allow 2^k/-2^31 as a valid fraction (where k>0)
|
||||
if (denominator==Integer.MIN_VALUE && (numerator&1)==0) {
|
||||
numerator/=2; denominator/=2;
|
||||
}
|
||||
if (denominator < 0) {
|
||||
if (numerator==Integer.MIN_VALUE ||
|
||||
denominator==Integer.MIN_VALUE) {
|
||||
throw new ArithmeticException("overflow: can't negate");
|
||||
}
|
||||
numerator = -numerator;
|
||||
denominator = -denominator;
|
||||
}
|
||||
// simplify fraction.
|
||||
int gcd = MathUtils.gcd(numerator, denominator);
|
||||
numerator /= gcd;
|
||||
denominator /= gcd;
|
||||
return new Fraction(numerator, denominator);
|
||||
}
|
||||
|
||||
/**
|
||||
* Reduce this fraction to lowest terms. This is accomplished by dividing
|
||||
* both numerator and denominator by their greatest common divisor.
|
||||
*/
|
||||
private void reduce() {
|
||||
// reduce numerator and denominator by greatest common denominator.
|
||||
int d = MathUtils.gcd(numerator, denominator);
|
||||
if (d > 1) {
|
||||
numerator /= d;
|
||||
denominator /= d;
|
||||
}
|
||||
|
||||
// move sign to numerator.
|
||||
if (denominator < 0) {
|
||||
numerator *= -1;
|
||||
denominator *= -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math.fraction;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import org.apache.commons.math.util.MathUtils;
|
||||
|
||||
/**
|
||||
* Representation of a rational number.
|
||||
*
|
||||
* @since 1.1
|
||||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public class Fraction extends Number implements Comparable {
|
||||
|
||||
/** A fraction representing "1 / 1". */
|
||||
public static final Fraction ONE = new Fraction(1, 1);
|
||||
|
||||
/** A fraction representing "0 / 1". */
|
||||
public static final Fraction ZERO = new Fraction(0, 1);
|
||||
|
||||
/** Serializable version identifier */
|
||||
private static final long serialVersionUID = 6222990762865980424L;
|
||||
|
||||
|
||||
/** The denominator. */
|
||||
private int denominator;
|
||||
|
||||
/** The numerator. */
|
||||
private int numerator;
|
||||
|
||||
/**
|
||||
* Create a fraction given the double value.
|
||||
* @param value the double value to convert to a fraction.
|
||||
* @throws FractionConversionException if the continued fraction failed to
|
||||
* converge.
|
||||
*/
|
||||
public Fraction(double value) throws FractionConversionException {
|
||||
this(value, 1.0e-5, 100);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a fraction given the double value.
|
||||
* <p>
|
||||
* References:
|
||||
* <ul>
|
||||
* <li><a href="http://mathworld.wolfram.com/ContinuedFraction.html">
|
||||
* Continued Fraction</a> equations (11) and (22)-(26)</li>
|
||||
* </ul>
|
||||
* </p>
|
||||
* @param value the double value to convert to a fraction.
|
||||
* @param epsilon maximum error allowed. The resulting fraction is within
|
||||
* <code>epsilon</code> of <code>value</code>, in absolute terms.
|
||||
* @param maxIterations maximum number of convergents
|
||||
* @throws FractionConversionException if the continued fraction failed to
|
||||
* converge.
|
||||
*/
|
||||
public Fraction(double value, double epsilon, int maxIterations)
|
||||
throws FractionConversionException
|
||||
{
|
||||
double r0 = value;
|
||||
int a0 = (int)Math.floor(r0);
|
||||
|
||||
// check for (almost) integer arguments, which should not go
|
||||
// to iterations.
|
||||
if (Math.abs(a0 - value) < epsilon) {
|
||||
this.numerator = a0;
|
||||
this.denominator = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
int p0 = 1;
|
||||
int q0 = 0;
|
||||
int p1 = a0;
|
||||
int q1 = 1;
|
||||
|
||||
int p2 = 0;
|
||||
int q2 = 1;
|
||||
|
||||
int n = 0;
|
||||
boolean stop = false;
|
||||
do {
|
||||
++n;
|
||||
double r1 = 1.0 / (r0 - a0);
|
||||
int a1 = (int)Math.floor(r1);
|
||||
p2 = (a1 * p1) + p0;
|
||||
q2 = (a1 * q1) + q0;
|
||||
|
||||
double convergent = (double)p2 / (double)q2;
|
||||
if (n < maxIterations && Math.abs(convergent - value) > epsilon) {
|
||||
p0 = p1;
|
||||
p1 = p2;
|
||||
q0 = q1;
|
||||
q1 = q2;
|
||||
a0 = a1;
|
||||
r0 = r1;
|
||||
} else {
|
||||
stop = true;
|
||||
}
|
||||
} while (!stop);
|
||||
|
||||
if (n >= maxIterations) {
|
||||
throw new FractionConversionException(value, maxIterations);
|
||||
}
|
||||
|
||||
this.numerator = p2;
|
||||
this.denominator = q2;
|
||||
reduce();
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a fraction given the numerator and denominator. The fraction is
|
||||
* reduced to lowest terms.
|
||||
* @param num the numerator.
|
||||
* @param den the denominator.
|
||||
* @throws ArithmeticException if the denomiator is <code>zero</code>
|
||||
*/
|
||||
public Fraction(int num, int den) {
|
||||
super();
|
||||
if (den == 0) {
|
||||
throw new ArithmeticException("The denominator must not be zero");
|
||||
}
|
||||
if (den < 0) {
|
||||
if (num == Integer.MIN_VALUE ||
|
||||
den == Integer.MIN_VALUE) {
|
||||
throw new ArithmeticException("overflow: can't negate");
|
||||
}
|
||||
num = -num;
|
||||
den = -den;
|
||||
}
|
||||
this.numerator = num;
|
||||
this.denominator = den;
|
||||
reduce();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the absolute value of this fraction.
|
||||
* @return the absolute value.
|
||||
*/
|
||||
public Fraction abs() {
|
||||
Fraction ret;
|
||||
if (numerator >= 0) {
|
||||
ret = this;
|
||||
} else {
|
||||
ret = negate();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compares this object to another based on size.
|
||||
* @param object the object to compare to
|
||||
* @return -1 if this is less than <tt>object</tt>, +1 if this is greater
|
||||
* than <tt>object</tt>, 0 if they are equal.
|
||||
*/
|
||||
public int compareTo(Object object) {
|
||||
int ret = 0;
|
||||
|
||||
if (this != object) {
|
||||
Fraction other = (Fraction)object;
|
||||
double first = doubleValue();
|
||||
double second = other.doubleValue();
|
||||
|
||||
if (first < second) {
|
||||
ret = -1;
|
||||
} else if (first > second) {
|
||||
ret = 1;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fraction as a <tt>double</tt>. This calculates the fraction as
|
||||
* the numerator divided by denominator.
|
||||
* @return the fraction as a <tt>double</tt>
|
||||
*/
|
||||
public double doubleValue() {
|
||||
return (double)numerator / (double)denominator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for the equality of two fractions. If the lowest term
|
||||
* numerator and denominators are the same for both fractions, the two
|
||||
* fractions are considered to be equal.
|
||||
* @param other fraction to test for equality to this fraction
|
||||
* @return true if two fractions are equal, false if object is
|
||||
* <tt>null</tt>, not an instance of {@link Fraction}, or not equal
|
||||
* to this fraction instance.
|
||||
*/
|
||||
public boolean equals(Object other) {
|
||||
boolean ret;
|
||||
|
||||
if (this == other) {
|
||||
ret = true;
|
||||
} else if (other == null) {
|
||||
ret = false;
|
||||
} else {
|
||||
try {
|
||||
// since fractions are always in lowest terms, numerators and
|
||||
// denominators can be compared directly for equality.
|
||||
Fraction rhs = (Fraction)other;
|
||||
ret = (numerator == rhs.numerator) &&
|
||||
(denominator == rhs.denominator);
|
||||
} catch (ClassCastException ex) {
|
||||
// ignore exception
|
||||
ret = false;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fraction as a <tt>float</tt>. This calculates the fraction as
|
||||
* the numerator divided by denominator.
|
||||
* @return the fraction as a <tt>float</tt>
|
||||
*/
|
||||
public float floatValue() {
|
||||
return (float)doubleValue();
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the denominator.
|
||||
* @return the denominator.
|
||||
*/
|
||||
public int getDenominator() {
|
||||
return denominator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Access the numerator.
|
||||
* @return the numerator.
|
||||
*/
|
||||
public int getNumerator() {
|
||||
return numerator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a hashCode for the fraction.
|
||||
* @return a hash code value for this object
|
||||
*/
|
||||
public int hashCode() {
|
||||
return 37 * (37 * 17 + getNumerator()) + getDenominator();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fraction as an <tt>int</tt>. This returns the whole number part
|
||||
* of the fraction.
|
||||
* @return the whole number fraction part
|
||||
*/
|
||||
public int intValue() {
|
||||
return (int)doubleValue();
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the fraction as a <tt>long</tt>. This returns the whole number part
|
||||
* of the fraction.
|
||||
* @return the whole number fraction part
|
||||
*/
|
||||
public long longValue() {
|
||||
return (long)doubleValue();
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the additive inverse of this fraction.
|
||||
* @return the negation of this fraction.
|
||||
*/
|
||||
public Fraction negate() {
|
||||
if (numerator==Integer.MIN_VALUE) {
|
||||
throw new ArithmeticException("overflow: too large to negate");
|
||||
}
|
||||
return new Fraction(-numerator, denominator);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the multiplicative inverse of this fraction.
|
||||
* @return the reciprocal fraction
|
||||
*/
|
||||
public Fraction reciprocal() {
|
||||
return new Fraction(denominator, numerator);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Adds the value of this fraction to another, returning the result in reduced form.
|
||||
* The algorithm follows Knuth, 4.5.1.</p>
|
||||
*
|
||||
* @param fraction the fraction to add, must not be <code>null</code>
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the resulting numerator or denominator exceeds
|
||||
* <code>Integer.MAX_VALUE</code>
|
||||
*/
|
||||
public Fraction add(Fraction fraction) {
|
||||
return addSub(fraction, true /* add */);
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Subtracts the value of another fraction from the value of this one,
|
||||
* returning the result in reduced form.</p>
|
||||
*
|
||||
* @param fraction the fraction to subtract, must not be <code>null</code>
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the resulting numerator or denominator
|
||||
* cannot be represented in an <code>int</code>.
|
||||
*/
|
||||
public Fraction subtract(Fraction fraction) {
|
||||
return addSub(fraction, false /* subtract */);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implement add and subtract using algorithm described in Knuth 4.5.1.
|
||||
*
|
||||
* @param fraction the fraction to subtract, must not be <code>null</code>
|
||||
* @param isAdd true to add, false to subtract
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the resulting numerator or denominator
|
||||
* cannot be represented in an <code>int</code>.
|
||||
*/
|
||||
private Fraction addSub(Fraction fraction, boolean isAdd) {
|
||||
if (fraction == null) {
|
||||
throw new IllegalArgumentException("The fraction must not be null");
|
||||
}
|
||||
// zero is identity for addition.
|
||||
if (numerator == 0) {
|
||||
return isAdd ? fraction : fraction.negate();
|
||||
}
|
||||
if (fraction.numerator == 0) {
|
||||
return this;
|
||||
}
|
||||
// if denominators are randomly distributed, d1 will be 1 about 61%
|
||||
// of the time.
|
||||
int d1 = MathUtils.gcd(denominator, fraction.denominator);
|
||||
if (d1==1) {
|
||||
// result is ( (u*v' +/- u'v) / u'v')
|
||||
int uvp = MathUtils.mulAndCheck(numerator, fraction.denominator);
|
||||
int upv = MathUtils.mulAndCheck(fraction.numerator, denominator);
|
||||
return new Fraction
|
||||
(isAdd ? MathUtils.addAndCheck(uvp, upv) :
|
||||
MathUtils.subAndCheck(uvp, upv),
|
||||
MathUtils.mulAndCheck(denominator, fraction.denominator));
|
||||
}
|
||||
// the quantity 't' requires 65 bits of precision; see knuth 4.5.1
|
||||
// exercise 7. we're going to use a BigInteger.
|
||||
// t = u(v'/d1) +/- v(u'/d1)
|
||||
BigInteger uvp = BigInteger.valueOf(numerator)
|
||||
.multiply(BigInteger.valueOf(fraction.denominator/d1));
|
||||
BigInteger upv = BigInteger.valueOf(fraction.numerator)
|
||||
.multiply(BigInteger.valueOf(denominator/d1));
|
||||
BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
|
||||
// but d2 doesn't need extra precision because
|
||||
// d2 = gcd(t,d1) = gcd(t mod d1, d1)
|
||||
int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
|
||||
int d2 = (tmodd1==0)?d1:MathUtils.gcd(tmodd1, d1);
|
||||
|
||||
// result is (t/d2) / (u'/d1)(v'/d2)
|
||||
BigInteger w = t.divide(BigInteger.valueOf(d2));
|
||||
if (w.bitLength() > 31) {
|
||||
throw new ArithmeticException
|
||||
("overflow: numerator too large after multiply");
|
||||
}
|
||||
return new Fraction (w.intValue(),
|
||||
MathUtils.mulAndCheck(denominator/d1,
|
||||
fraction.denominator/d2));
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Multiplies the value of this fraction by another, returning the
|
||||
* result in reduced form.</p>
|
||||
*
|
||||
* @param fraction the fraction to multiply by, must not be <code>null</code>
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the resulting numerator or denominator exceeds
|
||||
* <code>Integer.MAX_VALUE</code>
|
||||
*/
|
||||
public Fraction multiply(Fraction fraction) {
|
||||
if (fraction == null) {
|
||||
throw new IllegalArgumentException("The fraction must not be null");
|
||||
}
|
||||
if (numerator == 0 || fraction.numerator == 0) {
|
||||
return ZERO;
|
||||
}
|
||||
// knuth 4.5.1
|
||||
// make sure we don't overflow unless the result *must* overflow.
|
||||
int d1 = MathUtils.gcd(numerator, fraction.denominator);
|
||||
int d2 = MathUtils.gcd(fraction.numerator, denominator);
|
||||
return getReducedFraction
|
||||
(MathUtils.mulAndCheck(numerator/d1, fraction.numerator/d2),
|
||||
MathUtils.mulAndCheck(denominator/d2, fraction.denominator/d1));
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Divide the value of this fraction by another.</p>
|
||||
*
|
||||
* @param fraction the fraction to divide by, must not be <code>null</code>
|
||||
* @return a <code>Fraction</code> instance with the resulting values
|
||||
* @throws IllegalArgumentException if the fraction is <code>null</code>
|
||||
* @throws ArithmeticException if the fraction to divide by is zero
|
||||
* @throws ArithmeticException if the resulting numerator or denominator exceeds
|
||||
* <code>Integer.MAX_VALUE</code>
|
||||
*/
|
||||
public Fraction divide(Fraction fraction) {
|
||||
if (fraction == null) {
|
||||
throw new IllegalArgumentException("The fraction must not be null");
|
||||
}
|
||||
if (fraction.numerator == 0) {
|
||||
throw new ArithmeticException("The fraction to divide by must not be zero");
|
||||
}
|
||||
return multiply(fraction.reciprocal());
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>Creates a <code>Fraction</code> instance with the 2 parts
|
||||
* of a fraction Y/Z.</p>
|
||||
*
|
||||
* <p>Any negative signs are resolved to be on the numerator.</p>
|
||||
*
|
||||
* @param numerator the numerator, for example the three in 'three sevenths'
|
||||
* @param denominator the denominator, for example the seven in 'three sevenths'
|
||||
* @return a new fraction instance, with the numerator and denominator reduced
|
||||
* @throws ArithmeticException if the denominator is <code>zero</code>
|
||||
*/
|
||||
public static Fraction getReducedFraction(int numerator, int denominator) {
|
||||
if (denominator == 0) {
|
||||
throw new ArithmeticException("The denominator must not be zero");
|
||||
}
|
||||
if (numerator==0) {
|
||||
return ZERO; // normalize zero.
|
||||
}
|
||||
// allow 2^k/-2^31 as a valid fraction (where k>0)
|
||||
if (denominator==Integer.MIN_VALUE && (numerator&1)==0) {
|
||||
numerator/=2; denominator/=2;
|
||||
}
|
||||
if (denominator < 0) {
|
||||
if (numerator==Integer.MIN_VALUE ||
|
||||
denominator==Integer.MIN_VALUE) {
|
||||
throw new ArithmeticException("overflow: can't negate");
|
||||
}
|
||||
numerator = -numerator;
|
||||
denominator = -denominator;
|
||||
}
|
||||
// simplify fraction.
|
||||
int gcd = MathUtils.gcd(numerator, denominator);
|
||||
numerator /= gcd;
|
||||
denominator /= gcd;
|
||||
return new Fraction(numerator, denominator);
|
||||
}
|
||||
|
||||
/**
|
||||
* Reduce this fraction to lowest terms. This is accomplished by dividing
|
||||
* both numerator and denominator by their greatest common divisor.
|
||||
*/
|
||||
private void reduce() {
|
||||
// reduce numerator and denominator by greatest common denominator.
|
||||
int d = MathUtils.gcd(numerator, denominator);
|
||||
if (d > 1) {
|
||||
numerator /= d;
|
||||
denominator /= d;
|
||||
}
|
||||
|
||||
// move sign to numerator.
|
||||
if (denominator < 0) {
|
||||
numerator *= -1;
|
||||
denominator *= -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,22 @@
|
|||
package org.apache.commons.math.fraction;
|
||||
|
||||
import org.apache.commons.math.MaxIterationsExceededException;
|
||||
|
||||
public class FractionConversionException extends MaxIterationsExceededException {
|
||||
|
||||
/** Serializable version identifier. */
|
||||
private static final long serialVersionUID = 4588659344016668813L;
|
||||
|
||||
/**
|
||||
* Constructs an exception with specified formatted detail message.
|
||||
* Message formatting is delegated to {@link java.text.MessageFormat}.
|
||||
* @param value double value to convert
|
||||
* @param maxIterations maximal number of iterations allowed
|
||||
*/
|
||||
public FractionConversionException(double value, int maxIterations) {
|
||||
super(maxIterations,
|
||||
"Unable to convert {0} to fraction after {1} iterations",
|
||||
new Object[] { new Double(value), new Integer(maxIterations) });
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue