Initial commit.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141141 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
f3676b5011
commit
2203f75783
|
@ -0,0 +1,178 @@
|
|||
/*
|
||||
*
|
||||
* Copyright (c) 2004 The Apache Software Foundation. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
||||
* use this file except in compliance with the License. You may obtain a copy
|
||||
* of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
*/
|
||||
package org.apache.commons.math.analysis;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
|
||||
/**
|
||||
* Represents a polynomial spline function.
|
||||
* <p>
|
||||
* A <strong>polynomial spline function</strong> consists of a set of <i>interpolating polynomials</i>
|
||||
* and an ascending array of domain <i>knot points</i>, determining the intervals over which the
|
||||
* spline function is defined by the constituent polynomials. The polynomials are assumed to have
|
||||
* been computed to match the values of another function at the knot points and the first two
|
||||
* derivatives of "adjacent" polynomials are constrained to agree at the knot points. The value
|
||||
* consistency constraints are not currently enforced by <code>PolynomialSplineFunction</code> itself,
|
||||
* but are assumed to hold among the polynomials and knot points passed to the constructor.
|
||||
* <p>
|
||||
* N.B.: The polynomials in the <code>polynomials</code> property must be centered on the knot points
|
||||
* to compute the spline function values. See below.
|
||||
* <p>
|
||||
* The value of the polynomial spline function for an argument <code>x</code> is computed as follows:
|
||||
* <ol>
|
||||
* <li>The knot array is searched to find the segment to which <code>x</code> belongs.
|
||||
* If <code>x</code> is less than the smallest knot point or greater than or equal to the largest one, an
|
||||
* <code>IllegalArgumentException</code> is thrown.</li>
|
||||
* <li> Let <code>j</code> be the index of the largest knot point that is less than or equal to <code>x</code>.
|
||||
* The value returned is <br> <code>polynomials[j](x - knot[j])</code></li></ol>
|
||||
*
|
||||
* @version $Revision: 1.1 $ $Date: 2004/04/02 20:58:11 $
|
||||
*/
|
||||
public class PolynomialSplineFunction implements UnivariateRealFunction, Serializable {
|
||||
|
||||
/** Spline segment interval delimiters (knots). Size is n+1 for n segments. */
|
||||
private double knots[];
|
||||
|
||||
/**
|
||||
* The polynomial functions that make up the spline. The first element determines the value of the spline
|
||||
* over the first subinterval, the second over the second, etc. Spline function values are determined by
|
||||
* evaluating these functions at <code>(x - knot[i])</code> where i is the knot segment to which x belongs.
|
||||
*/
|
||||
private PolynomialFunction polynomials[] = null;
|
||||
|
||||
/** Number of spline segments = number of polynomials = number of partition points - 1 */
|
||||
private int n = 0;
|
||||
|
||||
|
||||
/**
|
||||
* Construct a polynomial spline function with the given segment delimiters and interpolating
|
||||
* polynomials.
|
||||
* <p>
|
||||
* The constructor copies both arrays and assigns the copies to the knots and polynomials properties,
|
||||
* respectively.
|
||||
*
|
||||
* @param knots spline segment interval delimiters
|
||||
* @param polynomials polynomial functions that make up the spline
|
||||
* @throws NullPointerException if either of the input arrays is null
|
||||
* @throws IllegalArgumentException if knots has length less than 2,
|
||||
* <code>polynomials.length != knots.length - 1 </code>, or the knots array
|
||||
* is not strictly increasing.
|
||||
*
|
||||
*/
|
||||
public PolynomialSplineFunction(double knots[], PolynomialFunction polynomials[]) {
|
||||
super();
|
||||
if (knots.length < 2) {
|
||||
throw new IllegalArgumentException
|
||||
("Not enough knot values -- spline partition must have at least 2 points.");
|
||||
}
|
||||
if (knots.length - 1 != polynomials.length) {
|
||||
throw new IllegalArgumentException
|
||||
("Number of polynomial interpolants must match the number of segments.");
|
||||
}
|
||||
|
||||
// TODO: check that knots is increasing
|
||||
|
||||
this.n = knots.length -1;
|
||||
this.knots = new double[n + 1];
|
||||
System.arraycopy(knots, 0, this.knots, 0, n + 1);
|
||||
this.polynomials = new PolynomialFunction[n];
|
||||
System.arraycopy(polynomials, 0, this.polynomials, 0, n);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the value for the function.
|
||||
*
|
||||
* @param v the point for which the function value should be computed
|
||||
* @return the value
|
||||
* @throws MathException if the function couldn't be computed due to
|
||||
* missing additional data or other environmental problems.
|
||||
* @see UnivariateRealFunction#value(double)
|
||||
*/
|
||||
public double value(double v) throws MathException {
|
||||
if (v < knots[0] || v >= knots[n]) {
|
||||
throw new IllegalArgumentException("Argument outside domain");
|
||||
}
|
||||
int i = Arrays.binarySearch(knots, v);
|
||||
if (i < 0) {
|
||||
i = -i - 2;
|
||||
}
|
||||
return polynomials[i].value(v - knots[i]);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the derivative of the polynomial spline function as a UnivariateRealFunction
|
||||
* @return the derivative function
|
||||
*/
|
||||
public UnivariateRealFunction derivative() {
|
||||
return polynomialSplineDerivative();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the derivative of the polynomial spline function as a PolynomialSplineFunction
|
||||
*
|
||||
* @return the derivative function
|
||||
*/
|
||||
public PolynomialSplineFunction polynomialSplineDerivative() {
|
||||
PolynomialFunction derivativePolynomials[] = new PolynomialFunction[n];
|
||||
for (int i = 0; i < n; i++) {
|
||||
derivativePolynomials[i] = polynomials[i].polynomialDerivative();
|
||||
}
|
||||
return new PolynomialSplineFunction(knots, derivativePolynomials);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the number of spline segments = the number of polynomials = the number of knot points - 1.
|
||||
*
|
||||
* @return the number of spline segments
|
||||
*/
|
||||
public int getN() {
|
||||
return n;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a copy of the interpolating polynomials array.
|
||||
* <p>
|
||||
* Returns a fresh copy of the array. Changes made to the copy will
|
||||
* not affect the polynomials property.
|
||||
*
|
||||
* @return the interpolating polynomials
|
||||
*/
|
||||
public PolynomialFunction[] getPolynomials() {
|
||||
PolynomialFunction p[] = new PolynomialFunction[n];
|
||||
System.arraycopy(polynomials, 0, p, 0, n);
|
||||
return p;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an array copy of the knot points.
|
||||
* <p>
|
||||
* Returns a fresh copy of the array. Changes made to the copy
|
||||
* will not affect the knots property.
|
||||
*
|
||||
* @return the knot points
|
||||
*/
|
||||
public double[] getKnots() {
|
||||
double out[] = new double[n + 1];
|
||||
System.arraycopy(knots, 0, out, 0, n + 1);
|
||||
return out;
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue