completely rewrote estimation package documentation

with downloadable example and explanation diagrams

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@618726 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2008-02-05 18:09:06 +00:00
parent 1d7fd3318b
commit 225e5c703c
4 changed files with 509 additions and 72 deletions

View File

@ -0,0 +1,187 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import org.apache.commons.math.estimation.EstimationException;
import org.apache.commons.math.estimation.EstimatedParameter;
import org.apache.commons.math.estimation.EstimationProblem;
import org.apache.commons.math.estimation.LevenbergMarquardtEstimator;
import org.apache.commons.math.estimation.SimpleEstimationProblem;
import org.apache.commons.math.estimation.WeightedMeasurement;
public class TrajectoryDeterminationProblem extends SimpleEstimationProblem {
public static void main(String[] args) {
try {
TrajectoryDeterminationProblem problem =
new TrajectoryDeterminationProblem(0.0, 100.0, 800.0, 1.0, 0.0);
double[][] distances = {
{ 0.0, 806.5849 }, { 20.0, 796.8148 }, { 40.0, 791.0833 }, { 60.0, 789.6712 },
{ 80.0, 793.1334 }, { 100.0, 797.7248 }, { 120.0, 803.2785 }, { 140.0, 813.4939 },
{ 160.0, 826.9295 }, { 180.0, 844.0640 }, { 200.0, 863.3829 }, { 220.0, 883.3143 },
{ 240.0, 908.6867 }, { 260.0, 934.8561 }, { 280.0, 964.0730 }, { 300.0, 992.1033 },
{ 320.0, 1023.998 }, { 340.0, 1057.439 }, { 360.0, 1091.912 }, { 380.0, 1125.968 },
{ 400.0, 1162.789 }, { 420.0, 1201.517 }, { 440.0, 1239.176 }, { 460.0, 1279.347 } };
for (int i = 0; i < distances.length; ++i) {
problem.addDistanceMeasurement(1.0, distances[i][0], distances[i][1]);
};
double[][] angles = {
{ 10.0, 1.415423 }, { 30.0, 1.352643 }, { 50.0, 1.289290 }, { 70.0, 1.225249 },
{ 90.0, 1.161203 }, {110.0, 1.098538 }, {130.0, 1.036263 }, {150.0, 0.976052 },
{170.0, 0.917921 }, {190.0, 0.861830 }, {210.0, 0.808237 }, {230.0, 0.757043 },
{250.0, 0.708650 }, {270.0, 0.662949 }, {290.0, 0.619903 }, {310.0, 0.579160 },
{330.0, 0.541033 }, {350.0, 0.505590 }, {370.0, 0.471746 }, {390.0, 0.440155 },
{410.0, 0.410522 }, {430.0, 0.382701 }, {450.0, 0.356957 }, {470.0, 0.332400 } };
for (int i = 0; i < angles.length; ++i) {
problem.addAngularMeasurement(3.0e7, angles[i][0], angles[i][1]);
};
LevenbergMarquardtEstimator estimator = new LevenbergMarquardtEstimator();
estimator.estimate(problem);
System.out.println("initial position: " + problem.getX0() + " " + problem.getY0());
System.out.println("velocity: " + problem.getVx0() + " " + problem.getVy0());
} catch (EstimationException ee) {
System.err.println(ee.getMessage());
}
}
public TrajectoryDeterminationProblem(double t0,
double x0Guess, double y0Guess,
double vx0Guess, double vy0Guess) {
this.t0 = t0;
x0 = new EstimatedParameter( "x0", x0Guess);
y0 = new EstimatedParameter( "y0", y0Guess);
vx0 = new EstimatedParameter("vx0", vx0Guess);
vy0 = new EstimatedParameter("vy0", vy0Guess);
// inform the base class about the parameters
addParameter(x0);
addParameter(y0);
addParameter(vx0);
addParameter(vy0);
}
public double getX0() {
return x0.getEstimate();
}
public double getY0() {
return y0.getEstimate();
}
public double getVx0() {
return vx0.getEstimate();
}
public double getVy0() {
return vy0.getEstimate();
}
public void addAngularMeasurement(double wi, double ti, double ai) {
// let the base class handle the measurement
addMeasurement(new AngularMeasurement(wi, ti, ai));
}
public void addDistanceMeasurement(double wi, double ti, double di) {
// let the base class handle the measurement
addMeasurement(new DistanceMeasurement(wi, ti, di));
}
public double x(double t) {
return x0.getEstimate() + (t - t0) * vx0.getEstimate();
}
public double y(double t) {
return y0.getEstimate() + (t - t0) * vy0.getEstimate();
}
private class AngularMeasurement extends WeightedMeasurement {
public AngularMeasurement(double weight, double t, double angle) {
super(weight, angle);
this.t = t;
}
public double getTheoreticalValue() {
return Math.atan2(y(t), x(t));
}
public double getPartial(EstimatedParameter parameter) {
double xt = x(t);
double yt = y(t);
double r = Math.sqrt(xt * xt + yt * yt);
double u = yt / (r + xt);
double c = 2 * u / (1 + u * u);
if (parameter == x0) {
return -c;
} else if (parameter == vx0) {
return -c * t;
} else if (parameter == y0) {
return c * xt / yt;
} else {
return c * t * xt / yt;
}
}
private final double t;
private static final long serialVersionUID = -5990040582592763282L;
}
private class DistanceMeasurement extends WeightedMeasurement {
public DistanceMeasurement(double weight, double t, double angle) {
super(weight, angle);
this.t = t;
}
public double getTheoreticalValue() {
double xt = x(t);
double yt = y(t);
return Math.sqrt(xt * xt + yt * yt);
}
public double getPartial(EstimatedParameter parameter) {
double xt = x(t);
double yt = y(t);
double r = Math.sqrt(xt * xt + yt * yt);
if (parameter == x0) {
return xt / r;
} else if (parameter == vx0) {
return xt * t / r;
} else if (parameter == y0) {
return yt / r;
} else {
return yt * t / r;
}
}
private final double t;
private static final long serialVersionUID = 3257286197740459503L;
}
private double t0;
private EstimatedParameter x0;
private EstimatedParameter y0;
private EstimatedParameter vx0;
private EstimatedParameter vy0;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

View File

@ -1,21 +1,21 @@
<?xml version="1.0"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<?xml-stylesheet type="text/xsl" href="./xdoc.xsl"?>
<!-- $Revision: 480435 $ $Date: 2006-11-29 08:06:35 +0100 (mer., 29 nov. 2006) $ -->
@ -29,86 +29,336 @@
<section name="12 Parametric Estimation">
<subsection name="12.1 Overview" href="overview">
<p>
The estimation package provides classes to fit some non-linear model
to available observations depending on it. These problems are commonly
called estimation problems.
The estimation package provides classes to fit some non-linear
model to available observations depending on it. These
problems are commonly called estimation problems.
</p>
<p>
The estimation problems considered here are parametric problems where
a user-provided model depends on initially unknown scalar parameters and
several measurements made on values that depend on the model are available.
As examples, one can consider the center and radius of a circle given
points approximately lying on a ring, or a satellite orbit given range,
range-rate and angular measurements from various ground stations.
The estimation problems considered here are parametric
problems where a user-provided model depends on initially
unknown scalar parameters and several measurements made on
values that depend on the model are available. As examples,
one can consider the center and radius of a circle given
points approximately lying on a ring, or a satellite orbit
given range, range-rate and angular measurements from various
ground stations.
</p>
<p>
One important class of estimation problems is weighted least squares problems.
They basically consist in finding the values for some parameters p<sub>k</sub>
such that a cost function J =
<!-- TODO: get entity for summation imported -->
sum(w<sub>i</sub> r<sub>i</sub><sup>2</sup>)
is minimized. The various r<sub>i</sub> terms represent the deviation
r<sub>i</sub> = mes<sub>i</sub> - mod<sub>i</sub> between the measurements and
the parameterized models. The w<sub>i</sub> factors are the measurements weights,
they are often chosen either all equal to 1.0 or proportional to the inverse of
the variance of the measurement type. The solver adjusts the values of the
estimated parameters p<sub>k</sub> which are not bound (i.e. the free parameters).
It does not touch the parameters which have been put in a bound state by the user.
One important class of estimation problems is weighted least
squares problems. They basically consist in finding the values
for some parameters p<sub>k</sub> such that a cost function
J = sum(w<sub>i</sub>r<sub>i</sub><sup>2</sup>) is minimized.
The various r<sub>i</sub> terms represent the deviation
r<sub>i</sub> = mes<sub>i</sub> - mod<sub>i</sub>
between the measurements and the parameterized models. The
w<sub>i</sub> factors are the measurements weights, they are often
chosen either all equal to 1.0 or proportional to the inverse of the
variance of the measurement type. The solver adjusts the values of
the estimated parameters p<sub>k</sub> which are not bound (i.e. the
free parameters). It does not touch the parameters which have been
put in a bound state by the user.
</p>
<p>
The aim of this package is similar to the aim of the optimization package, but the
algorithms are entirely differents as:
The aim of this package is similar to the aim of the
optimization package, but the algorithms are entirely
different as:
<ul>
<li>
they need the partial derivatives of the measurements
with respect to the free parameters
they need the partial derivatives of the measurements with
respect to the free parameters
</li>
<li>
they are residuals based instead of generic cost functions based
they are residuals based instead of generic cost functions
based
</li>
</ul>
</p>
</subsection>
</subsection>
<subsection name="12.2 Models" href="models">
The <a href="../apidocs/org/apache/commons/math/estimation/EstimationProblem.html">
org.apache.commons.math.estimation.EstimationProblem</a> interface is a very
simple container packing together parameters and measurements.
</subsection>
<subsection name="12.3 Parameters" href="parameters">
<subsection name="12.2 Problem modeling" href="problem">
<p>
The <a href="../apidocs/org/apache/commons/math/estimation/EstimatedParameter.html">
org.apache.commons.math.estimation.EstimatedParameter</a> class to represent each
estimated parameter. The parameters are set up with a guessed value which will be
adjusted by the solver until a best fit is achieved. It is possible to change which
parameters are modified and which are preserved thanks to a bound property. Such
settings are often needed by expert users to handle contingency cases with very
low observability.
The problem modeling is the most important part for the
user. Understanding it is the key to proper use of the
package. One interface and two classes are provided for this
purpose: <a href="../apidocs/org/apache/commons/math/estimation/EstimationProblem.html">
EstimationProblem</a>, <a href="../apidocs/org/apache/commons/math/estimation/EstimatedParameter.html">
EstimatedParameter</a> and <a href="../apidocs/org/apache/commons/math/estimation/WeightedMeasurement.html">
WeightedMeasurement</a>.
</p>
</subsection>
<subsection name="12.4 Measurements" href="measurements">
<p>
The user extends the <a href="../apidocs/org/apache/commons/math/estimation/WeightedMeasurement.html">
org.apache.commons.math.estimation.WeightedMeasurement</a> abstract class to define its
own measurements. Each measurement types should have its own implementing class, for
example in the satellite example above , the user should define three classes, one
for range measurements, one for range-rates measurements and one for angular measurements.
Each measurement would correspond to an instance of the appropriate class, set up with
the date, a reference to the ground station, the weight and the measured value.
</p>
</subsection>
<subsection name="12.5 Solvers" href="solvers">
<p>
The package provides two common <a href="../apidocs/org/apache/commons/math/estimation/Estimator.html">
org.apache.commons.math.estimation.Estimator</a> implementations to solve weighted
least squares problems. The first one is based on the
<a href="../apidocs/org/apache/commons/math/estimation/GaussNewtonEstimator.html">Gauss-Newton</a> method.
The second one is based on the
<a href="../apidocs/org/apache/commons/math/estimation/LevenbergMarquardtEstimator.html">Levenberg-Marquardt</a>
method. The first one is best suited when a good approximation of the parameters is known while the second one
is more robust and can handle starting points far from the solution.
Consider the following example problem: we want to determine the
linear trajectory of a sailing ship by performing angular and
distance measurements from an observing spot on the shore. The
problem model is represented by two equations:
</p>
</subsection>
<p>
x(t) = x<sub>0</sub>+(t-t<sub>0</sub>)vx<sub>0</sub><br/>
y(t) = y<sub>0</sub>+(t-t<sub>0</sub>)vy<sub>0</sub>
</p>
<p>
These two equations depend on four parameters (x<sub>0</sub>, y<sub>0</sub>,
vx<sub>0</sub> and vy<sub>0</sub>). We want to determine these four parameters.
</p>
<p>
Assuming the observing spot is located at the origin of the coordinates
system and that the angular measurements correspond to the angle between
the x axis and the line of sight, the theoretical values of the angular
measurements at t<sub>i</sub> and of the distance measurements at
t<sub>j</sub> are modeled as follows:
</p>
<p>
angle<sub>i,theo</sub> = atan2(y(t<sub>i</sub>), x(t<sub>i</sub>))<br/>
distance<sub>j,theo</sub> = sqrt(x(t<sub>j</sub>)<sup>2</sup>+y(t<sub>j</sub>)<sup>2</sup>)
</p>
<p>
The real observations generate a set of measurements values angle<sub>i,meas</sub>
and distance<sub>j,meas</sub>.
</p>
<p>
The following class diagram shows one way to solve this problem using the
estimation package. The grey elements are already provided by the package
whereas the purple elements are developed by the user.
</p>
<img src="./estimation-class-diagram.png"/>
<p>
The <code>TrajectoryDeterminationProblem</code> class holds the linear model
equations x(t) and y(t). It delegate storage of the four parameters x<sub>0</sub>,
y<sub>0</sub>, vx<sub>0</sub> and vy<sub>0</sub> and of the various measurements
angle<sub>i,meas</sub> and distance<sub>j,meas</sub> to its base class
<code>SimpleEstimationProblem</code>. Since the theoretical values of the measurements
angle<sub>i,theo</sub> and distance<sub>j,theo</sub> depend on the linear model,
the two classes <code>AngularMeasurement</code> and <code>DistanceMeasurement</code>
are implemented as internal classes, thus having access to the equations of the
linear model and to the parameters.
</p>
<p>
Here are the various parts of the <code>TrajectoryDeterminationProblem.java</code>
source file. This example, with an additional <code>main</code> method is
available <a href="./TrajectoryDeterminationProblem.java">here</a>.
</p>
<dd>First, the general setup of the class: declarations, fields, constructor, setters and getters:
<source>
public class TrajectoryDeterminationProblem extends SimpleEstimationProblem {
public TrajectoryDeterminationProblem(double t0,
double x0Guess, double y0Guess,
double vx0Guess, double vy0Guess) {
this.t0 = t0;
x0 = new EstimatedParameter( "x0", x0Guess);
y0 = new EstimatedParameter( "y0", y0Guess);
vx0 = new EstimatedParameter("vx0", vx0Guess);
vy0 = new EstimatedParameter("vy0", vy0Guess);
// inform the base class about the parameters
addParameter(x0);
addParameter(y0);
addParameter(vx0);
addParameter(vy0);
}
public double getX0() {
return x0.getEstimate();
}
public double getY0() {
return y0.getEstimate();
}
public double getVx0() {
return vx0.getEstimate();
}
public double getVy0() {
return vy0.getEstimate();
}
public void addAngularMeasurement(double wi, double ti, double ai) {
// let the base class handle the measurement
addMeasurement(new AngularMeasurement(wi, ti, ai));
}
public void addDistanceMeasurement(double wi, double ti, double di) {
// let the base class handle the measurement
addMeasurement(new DistanceMeasurement(wi, ti, di));
}
public double x(double t) {
return x0.getEstimate() + (t - t0) * vx0.getEstimate();
}
public double y(double t) {
return y0.getEstimate() + (t - t0) * vy0.getEstimate();
}
// measurements internal classes go here
private double t0;
private EstimatedParameter x0;
private EstimatedParameter y0;
private EstimatedParameter vx0;
private EstimatedParameter vy0;
}
</source>
</dd>
<dd>The two specialized measurements class are simple internal classes that
implement the equation for their respective measurement type, using the
enclosing class to get the parameters references and the linear models x(t)
and y(t). The <code>serialVersionUID</code> static fields are present because
the <code>WeightedMeasurement</code> class implements the
<code>Serializable</code> interface.
<source>
private class AngularMeasurement extends WeightedMeasurement {
public AngularMeasurement(double weight, double t, double angle) {
super(weight, angle);
this.t = t;
}
public double getTheoreticalValue() {
return Math.atan2(y(t), x(t));
}
public double getPartial(EstimatedParameter parameter) {
double xt = x(t);
double yt = y(t);
double r = Math.sqrt(xt * xt + yt * yt);
double u = yt / (r + xt);
double c = 2 * u / (1 + u * u);
if (parameter == x0) {
return -c;
} else if (parameter == vx0) {
return -c * t;
} else if (parameter == y0) {
return c * xt / yt;
} else {
return c * t * xt / yt;
}
}
private final double t;
private static final long serialVersionUID = -5990040582592763282L;
}
</source>
<source>
private class DistanceMeasurement extends WeightedMeasurement {
public DistanceMeasurement(double weight, double t, double angle) {
super(weight, angle);
this.t = t;
}
public double getTheoreticalValue() {
double xt = x(t);
double yt = y(t);
return Math.sqrt(xt * xt + yt * yt);
}
public double getPartial(EstimatedParameter parameter) {
double xt = x(t);
double yt = y(t);
double r = Math.sqrt(xt * xt + yt * yt);
if (parameter == x0) {
return xt / r;
} else if (parameter == vx0) {
return xt * t / r;
} else if (parameter == y0) {
return yt / r;
} else {
return yt * t / r;
}
}
private final double t;
private static final long serialVersionUID = 3257286197740459503L;
}
</source>
</dd>
</subsection>
<subsection name="12.3 Problem solving" href="solving">
<p>
Solving the problem is simply a matter of choosing an implementation
of the <a href="../apidocs/org/apache/commons/math/estimation/Estimator.html">
Estimator</a> interface and to pass the problem instance to its <code>estimate</code>
method. Two implementations are already provided by the library: <a
href="../apidocs/org/apache/commons/math/estimation/GaussNewtonEstimator.html">
GaussNewtonEstimator</a> and <a
href="../apidocs/org/apache/commons/math/estimation/LevenbergMarquardtEstimator.html">
LevenbergMarquardtEstimator</a>. The first one implements a simple Gauss-Newton
algorithm, which is sufficient when the starting point (initial guess) is close
enough to the solution. The second one implements a more complex Levenberg-Marquardt
algorithm which is more robust when the initial guess is far from the solution.
</p>
<p>
The following sequence diagram explains roughly what occurs under the hood
in the <code>estimate</code> method.
</p>
<img src="./estimation-sequence-diagram.png"/>
<p>
Basically, the estimator first retrieves the parameters and the measurements.
The estimation loop is based on the gradient of the sum of the squares of the
residuals, hence, the estimators get the various partial derivatives of all
measurements with respect to all parameters. A new state hopefully globally
reducing the residuals is estimated, and the parameters value are updated.
This estimation loops stops when either the convergence conditions are met
or the maximal number of iterations is exceeded.
</p>
</subsection>
<subsection name="12.4 Fine tuning" href="tuning">
<p>
One important tuning parameter for weighted least-squares solving is the
weight attributed to each measurement. This weights has two purposes:
</p>
<ul>
<li>fixing unit problems when combining different types of measurements</li>
<li>adjusting the influence of good or bad measurements on the solution</li>
</ul>
<p>
The weight is a multiplicative factor for the <em>square</em> of the residuals.
A common choice is to use the inverse of the variance of the measurements error
as the weighting factor for all measurements for one type. On our sailing ship
example, we may have a range measurements accuracy of about 1 meter and an angular
measurements accuracy of about 0.01 degree, or 1.7 10<sup>-4</sup> radians. So we
would use w=1.0 for distance measurements weight and w=3 10<sup>7</sup> for
angular measurements weight. If we knew that the measurements quality is bad
at tracking start because of measurement system warm-up delay for example, then
we would reduce the weight for the first measurements and use for example
w=0.1 and w=3 10<sup>6</sup> respectively, depending on the type.
</p>
<p>
After a problem has been set up, it is possible to fine tune the
way it will be solved. For example, it may appear the measurements are not
sufficient to get some parameters with sufficient confidence due to observability
problems. It is possible to fix some parameters in order to prevent the solver
from changing them. This is realized by passing <code>true</code> to the
<code>setBound</code> method of the parameter.
</p>
<p>
It is also possible to ignore some measurements by passing <code>true</code> to the
<code>setIgnored</code> method of the measurement. A typical use is to
<ol>
<li>
perform a first determination with all parameters, to check each measurement
residual after convergence (i.e. to compute the difference between the
measurement and its theoretical value as computed from the estimated parameters),
</li>
<li>
compute standard deviation for the measurements samples (one sample for each
measurements type)
</li>
<li>
ignore measurements whose residual are above some threshold (for example three
time the standard deviation on the residuals) assuming they correspond to
bad measurements,
</li>
<li>
perform another determination on the reduced measurements set.
</li>
</ol>
</p>
</subsection>
</section>
</body>
</document>