MATH-1636: Remove "isSupportedConnected" (as per STATISTICS-48).

This commit is contained in:
Gilles Sadowski 2021-12-01 02:06:16 +01:00
parent 142dcaa921
commit 226c1fc638
8 changed files with 4 additions and 286 deletions

View File

@ -164,31 +164,10 @@ public abstract class AbstractRealDistribution
}
};
double x = UnivariateSolverUtils.solve(toSolve,
lowerBound,
upperBound,
getSolverAbsoluteAccuracy());
if (!isSupportConnected()) {
/* Test for plateau. */
final double dx = getSolverAbsoluteAccuracy();
if (x - dx >= getSupportLowerBound()) {
double px = cumulativeProbability(x);
if (cumulativeProbability(x - dx) == px) {
upperBound = x;
while (upperBound - lowerBound > dx) {
final double midPoint = 0.5 * (lowerBound + upperBound);
if (cumulativeProbability(midPoint) < px) {
lowerBound = midPoint;
} else {
upperBound = midPoint;
}
}
return upperBound;
}
}
}
return x;
return UnivariateSolverUtils.solve(toSolve,
lowerBound,
upperBound,
getSolverAbsoluteAccuracy());
}
/**

View File

@ -465,15 +465,6 @@ public final class EmpiricalDistribution extends AbstractRealDistribution
return max;
}
/**
* {@inheritDoc}
* @since 3.1
*/
@Override
public boolean isSupportConnected() {
return true;
}
/**
* The probability of bin i.
*
@ -620,12 +611,6 @@ public final class EmpiricalDistribution extends AbstractRealDistribution
return value;
}
/** {@inheritDoc} */
@Override
public boolean isSupportConnected() {
return true;
}
/**
* {@inheritDoc}
*

View File

@ -215,18 +215,6 @@ public class EnumeratedIntegerDistribution extends AbstractIntegerDistribution {
return max;
}
/**
* {@inheritDoc}
*
* The support of this distribution is connected.
*
* @return {@code true}
*/
@Override
public boolean isSupportConnected() {
return true;
}
/**
* {@inheritDoc}
*

View File

@ -251,18 +251,6 @@ public class EnumeratedRealDistribution
return max;
}
/**
* {@inheritDoc}
*
* The support of this distribution is connected.
*
* @return {@code true}
*/
@Override
public boolean isSupportConnected() {
return true;
}
/** {@inheritDoc} */
@Override
public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {

View File

@ -120,10 +120,5 @@ public class AbstractIntegerDistributionTest {
public int getSupportUpperBound() {
return 6;
}
@Override
public final boolean isSupportConnected() {
return true;
}
}
}

View File

@ -1,201 +0,0 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.distribution;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.analysis.integration.RombergIntegrator;
import org.apache.commons.math4.legacy.analysis.integration.UnivariateIntegrator;
import org.apache.commons.math4.legacy.exception.OutOfRangeException;
import org.junit.Assert;
import org.junit.Test;
/** Various tests related to MATH-699. */
public class AbstractRealDistributionTest {
@Test
public void testContinuous() {
final double x0 = 0.0;
final double x1 = 1.0;
final double x2 = 2.0;
final double x3 = 3.0;
final double p12 = 0.5;
final AbstractRealDistribution distribution;
distribution = new AbstractRealDistribution() {
private static final long serialVersionUID = 1L;
@Override
public double cumulativeProbability(final double x) {
if ((x < x0) || (x > x3)) {
throw new OutOfRangeException(x, x0, x3);
}
if (x <= x1) {
return p12 * (x - x0) / (x1 - x0);
} else if (x <= x2) {
return p12;
} else if (x <= x3) {
return p12 + (1.0 - p12) * (x - x2) / (x3 - x2);
}
return 0.0;
}
@Override
public double density(final double x) {
if ((x < x0) || (x > x3)) {
throw new OutOfRangeException(x, x0, x3);
}
if (x <= x1) {
return p12 / (x1 - x0);
} else if (x <= x2) {
return 0.0;
} else if (x <= x3) {
return (1.0 - p12) / (x3 - x2);
}
return 0.0;
}
@Override
public double getMean() {
return ((x0 + x1) * p12 + (x2 + x3) * (1.0 - p12)) / 2.0;
}
@Override
public double getVariance() {
final double meanX = getMean();
final double meanX2;
meanX2 = ((x0 * x0 + x0 * x1 + x1 * x1) * p12 + (x2 * x2 + x2
* x3 + x3 * x3)
* (1.0 - p12)) / 3.0;
return meanX2 - meanX * meanX;
}
@Override
public double getSupportLowerBound() {
return x0;
}
@Override
public double getSupportUpperBound() {
return x3;
}
@Override
public boolean isSupportConnected() {
return false;
}
};
final double expected = x1;
final double actual = distribution.inverseCumulativeProbability(p12);
Assert.assertEquals("", expected, actual,
distribution.getSolverAbsoluteAccuracy());
}
@Test
public void testDiscontinuous() {
final double x0 = 0.0;
final double x1 = 0.25;
final double x2 = 0.5;
final double x3 = 0.75;
final double x4 = 1.0;
final double p12 = 1.0 / 3.0;
final double p23 = 2.0 / 3.0;
final AbstractRealDistribution distribution;
distribution = new AbstractRealDistribution() {
private static final long serialVersionUID = 1L;
@Override
public double cumulativeProbability(final double x) {
if ((x < x0) || (x > x4)) {
throw new OutOfRangeException(x, x0, x4);
}
if (x <= x1) {
return p12 * (x - x0) / (x1 - x0);
} else if (x <= x2) {
return p12;
} else if (x <= x3) {
return p23;
} else {
return (1.0 - p23) * (x - x3) / (x4 - x3) + p23;
}
}
@Override
public double density(final double x) {
if ((x < x0) || (x > x4)) {
throw new OutOfRangeException(x, x0, x4);
}
if (x <= x1) {
return p12 / (x1 - x0);
} else if (x <= x2) {
return 0.0;
} else if (x <= x3) {
return 0.0;
} else {
return (1.0 - p23) / (x4 - x3);
}
}
@Override
public double getMean() {
final UnivariateFunction f = new UnivariateFunction() {
@Override
public double value(final double x) {
return x * density(x);
}
};
final UnivariateIntegrator integrator = new RombergIntegrator();
return integrator.integrate(Integer.MAX_VALUE, f, x0, x4);
}
@Override
public double getVariance() {
final double meanX = getMean();
final UnivariateFunction f = new UnivariateFunction() {
@Override
public double value(final double x) {
return x * x * density(x);
}
};
final UnivariateIntegrator integrator = new RombergIntegrator();
final double meanX2 = integrator.integrate(Integer.MAX_VALUE,
f, x0, x4);
return meanX2 - meanX * meanX;
}
@Override
public double getSupportLowerBound() {
return x0;
}
@Override
public double getSupportUpperBound() {
return x4;
}
@Override
public boolean isSupportConnected() {
return false;
}
};
final double expected = x2;
final double actual = distribution.inverseCumulativeProbability(p23);
Assert.assertEquals("", expected, actual,
distribution.getSolverAbsoluteAccuracy());
}
}

View File

@ -142,14 +142,6 @@ public class EnumeratedIntegerDistributionTest {
Assert.assertEquals(7, testDistribution.getSupportUpperBound());
}
/**
* Tests if the distribution returns properly that the support is connected.
*/
@Test
public void testIsSupportConnected() {
Assert.assertTrue(testDistribution.isSupportConnected());
}
/**
* Tests sampling.
*/

View File

@ -162,14 +162,6 @@ public class EnumeratedRealDistributionTest {
Assert.assertEquals(7, testDistribution.getSupportUpperBound(), 0);
}
/**
* Tests if the distribution returns properly that the support is connected.
*/
@Test
public void testIsSupportConnected() {
Assert.assertTrue(testDistribution.isSupportConnected());
}
/**
* Tests sampling.
*/