Initial commit of code split off from TestStatistic. Changed observed vectors to be long[] arrays and added support for independence tests using 2-way tables.
git-svn-id: https://svn.apache.org/repos/asf/jakarta/commons/proper/math/trunk@141206 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
3e97a3afbb
commit
257ee19b38
|
@ -0,0 +1,214 @@
|
|||
/*
|
||||
* Copyright 2004 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math.stat.inference;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
|
||||
/**
|
||||
* An interface for Chi-Square tests.
|
||||
*
|
||||
* @version $Revision: 1.1 $ $Date: 2004/05/03 03:02:25 $
|
||||
*/
|
||||
public interface ChiSquareTest {
|
||||
|
||||
/**
|
||||
* Computes the <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm">
|
||||
* Chi-Square statistic</a> comparing <code>observed</code> and <code>expected</code>
|
||||
* freqeuncy counts.
|
||||
* <p>
|
||||
* This statistic can be used to perform a Chi-Square test evaluating the null hypothesis that
|
||||
* the observed counts follow the expected distribution.
|
||||
* <p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>Expected counts must all be positive.
|
||||
* </li>
|
||||
* <li>Observed counts must all be >= 0.
|
||||
* </li>
|
||||
* <li>The observed and expected arrays must have the same length and
|
||||
* their common length must be at least 2.
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of expected frequency counts
|
||||
* @return chiSquare statistic
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
*/
|
||||
double chiSquare(double[] expected, long[] observed)
|
||||
throws IllegalArgumentException;
|
||||
|
||||
/**
|
||||
* Returns the <i>observed significance level</i>, or <a href=
|
||||
* "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
|
||||
* p-value</a>, associated with a
|
||||
* <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm">
|
||||
* Chi-square goodness of fit test</a> comparing the <code>observed</code>
|
||||
* frequency counts to those in the <code>expected</code> array.
|
||||
* <p>
|
||||
* The number returned is the smallest significance level at which one can reject
|
||||
* the null hypothesis that the observed counts conform to the frequency distribution
|
||||
* described by the expected counts.
|
||||
* <p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>Expected counts must all be positive.
|
||||
* </li>
|
||||
* <li>Observed counts must all be >= 0.
|
||||
* </li>
|
||||
* <li>The observed and expected arrays must have the same length and
|
||||
* their common length must be at least 2.
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of expected frequency counts
|
||||
* @return p-value
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs computing the p-value
|
||||
*/
|
||||
double chiSquareTest(double[] expected, long[] observed)
|
||||
throws IllegalArgumentException, MathException;
|
||||
|
||||
/**
|
||||
* Performs a <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm">
|
||||
* Chi-square goodness of fit test</a> evaluating the null hypothesis that the observed counts
|
||||
* conform to the frequency distribution described by the expected counts, with
|
||||
* significance level <code>alpha</code>. Returns true iff the null hypothesis can be rejected
|
||||
* with 100 * (1 - alpha) percent confidence.
|
||||
* <p>
|
||||
* <strong>Example:</strong><br>
|
||||
* To test the hypothesis that <code>observed</code> follows
|
||||
* <code>expected</code> at the 99% level, use <p>
|
||||
* <code>chiSquareTest(expected, observed, 0.01) </code>
|
||||
* <p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>Expected counts must all be positive.
|
||||
* </li>
|
||||
* <li>Observed counts must all be >= 0.
|
||||
* </li>
|
||||
* <li>The observed and expected arrays must have the same length and
|
||||
* their common length must be at least 2.
|
||||
* <li> <code> 0 < alpha < 0.5 </code>
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of expected frequency counts
|
||||
* @param alpha significance level of the test
|
||||
* @return true iff null hypothesis can be rejected with confidence
|
||||
* 1 - alpha
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs performing the test
|
||||
*/
|
||||
boolean chiSquareTest(double[] expected, long[] observed, double alpha)
|
||||
throws IllegalArgumentException, MathException;
|
||||
|
||||
/**
|
||||
* Computes the Chi-Square statistic associated with a
|
||||
* <a href="http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm">
|
||||
* chi-square test of independence</a> based on the input <code>counts</code>
|
||||
* array, viewed as a two-way table.
|
||||
* <p>
|
||||
* The rows of the 2-way table are <code>count[0], ... , count[count.length - 1] </code>
|
||||
* <p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>All counts must be >= 0.
|
||||
* </li>
|
||||
* <li>The count array must be rectangular (i.e. all count[i] subarrays must have the same length).
|
||||
* </li>
|
||||
* <li>The 2-way table represented by <code>counts</code> must have at least 2 columns and
|
||||
* at least 2 rows.
|
||||
* </li>
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param counts array representation of 2-way table
|
||||
* @return chiSquare statistic
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
*/
|
||||
double chiSquare(long[][] counts)
|
||||
throws IllegalArgumentException;
|
||||
|
||||
/**
|
||||
* Returns the <i>observed significance level</i>, or <a href=
|
||||
* "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
|
||||
* p-value</a>, associated with a
|
||||
* <a href="http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm">
|
||||
* chi-square test of independence</a> based on the input <code>counts</code>
|
||||
* array, viewed as a two-way table.
|
||||
* <p>
|
||||
* The rows of the 2-way table are <code>count[0], ... , count[count.length - 1] </code>
|
||||
* <p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>All counts must be >= 0.
|
||||
* </li>
|
||||
* <li>The count array must be rectangular (i.e. all count[i] subarrays must have the same length).
|
||||
* </li>
|
||||
* <li>The 2-way table represented by <code>counts</code> must have at least 2 columns and
|
||||
* at least 2 rows.
|
||||
* </li>
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param counts array representation of 2-way table
|
||||
* @return p-value
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs computing the p-value
|
||||
*/
|
||||
double chiSquareTest(long[][] counts)
|
||||
throws IllegalArgumentException, MathException;
|
||||
|
||||
/**
|
||||
* Performs a <a href="http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm">
|
||||
* chi-square test of independence</a> evaluating the null hypothesis that the classifications
|
||||
* represented by the counts in the columns of the input 2-way table are independent of the rows,
|
||||
* with significance level <code>alpha</code>. Returns true iff the null hypothesis can be rejected
|
||||
* with 100 * (1 - alpha) percent confidence.
|
||||
* <p>
|
||||
* The rows of the 2-way table are <code>count[0], ... , count[count.length - 1] </code>
|
||||
* <p>
|
||||
* <strong>Example:</strong><br>
|
||||
* To test the null hypothesis that the counts in <code>count[0], ... , count[count.length - 1] </code>
|
||||
* all correspond to the same underlying probability distribution at the 99% level, use <p>
|
||||
* <code>chiSquareTest(counts, 0.01) </code>
|
||||
* <p>
|
||||
* <strong>Preconditions</strong>: <ul>
|
||||
* <li>All counts must be >= 0.
|
||||
* </li>
|
||||
* <li>The count array must be rectangular (i.e. all count[i] subarrays must have the same length).
|
||||
* </li>
|
||||
* <li>The 2-way table represented by <code>counts</code> must have at least 2 columns and
|
||||
* at least 2 rows.
|
||||
* </li>
|
||||
* </li></ul><p>
|
||||
* If any of the preconditions are not met, an
|
||||
* <code>IllegalArgumentException</code> is thrown.
|
||||
*
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of exptected frequency counts
|
||||
* @param alpha significance level of the test
|
||||
* @return true iff null hypothesis can be rejected with confidence
|
||||
* 1 - alpha
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs performing the test
|
||||
*/
|
||||
boolean chiSquareTest(long[][] counts, double alpha)
|
||||
throws IllegalArgumentException, MathException;
|
||||
}
|
|
@ -0,0 +1,318 @@
|
|||
/*
|
||||
* Copyright 2004 The Apache Software Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math.stat.inference;
|
||||
|
||||
import java.io.Serializable;
|
||||
|
||||
import org.apache.commons.math.MathException;
|
||||
import org.apache.commons.math.distribution.DistributionFactory;
|
||||
import org.apache.commons.math.distribution.ChiSquaredDistribution;
|
||||
|
||||
/**
|
||||
* Implements Chi-Square test statistics defined in the {@link ChiSquareTest} interface.
|
||||
*
|
||||
* @version $Revision: 1.1 $ $Date: 2004/05/03 03:02:25 $
|
||||
*/
|
||||
public class ChiSquareTestImpl implements ChiSquareTest, Serializable {
|
||||
|
||||
/** Serializable version identifier */
|
||||
static final long serialVersionUID = 8125110460369960493L;
|
||||
|
||||
public ChiSquareTestImpl() {
|
||||
super();
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of expected frequency counts
|
||||
* @return chi-square test statistic
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* or length is less than 2
|
||||
*/
|
||||
public double chiSquare(double[] expected, long[] observed)
|
||||
throws IllegalArgumentException {
|
||||
double sumSq = 0.0d;
|
||||
double dev = 0.0d;
|
||||
if ((expected.length < 2) || (expected.length != observed.length)) {
|
||||
throw new IllegalArgumentException("observed, expected array lengths incorrect");
|
||||
}
|
||||
if (!isPositive(expected) || !isNonNegative(observed)) {
|
||||
throw new IllegalArgumentException(
|
||||
"observed counts must be non-negative and expected counts must be postive");
|
||||
}
|
||||
for (int i = 0; i < observed.length; i++) {
|
||||
dev = ((double) observed[i] - expected[i]);
|
||||
sumSq += dev * dev / expected[i];
|
||||
}
|
||||
return sumSq;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of exptected frequency counts
|
||||
* @return p-value
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs computing the p-value
|
||||
*/
|
||||
public double chiSquareTest(double[] expected, long[] observed)
|
||||
throws IllegalArgumentException, MathException {
|
||||
ChiSquaredDistribution chiSquaredDistribution =
|
||||
DistributionFactory.newInstance().createChiSquareDistribution((double) expected.length - 1);
|
||||
return 1 - chiSquaredDistribution.cumulativeProbability(chiSquare(expected, observed));
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of exptected frequency counts
|
||||
* @param alpha significance level of the test
|
||||
* @return true iff null hypothesis can be rejected with confidence
|
||||
* 1 - alpha
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs performing the test
|
||||
*/
|
||||
public boolean chiSquareTest(double[] expected, long[] observed, double alpha)
|
||||
throws IllegalArgumentException, MathException {
|
||||
if ((alpha <= 0) || (alpha > 0.5)) {
|
||||
throw new IllegalArgumentException("bad significance level: " + alpha);
|
||||
}
|
||||
return (chiSquareTest(expected, observed) < alpha);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of expected frequency counts
|
||||
* @return chi-square test statistic
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
*/
|
||||
public double chiSquare(long[][] counts)
|
||||
throws IllegalArgumentException {
|
||||
|
||||
checkArray(counts);
|
||||
int nRows = counts.length;
|
||||
int nCols = counts[0].length;
|
||||
|
||||
// compute row, column and total sums
|
||||
double[] rowSum = new double[nRows];
|
||||
double[] colSum = new double[nCols];
|
||||
double total = 0.0d;
|
||||
for (int row = 0; row < nRows; row++) {
|
||||
for (int col = 0; col < nCols; col++) {
|
||||
rowSum[row] += (double) counts[row][col];
|
||||
colSum[col] += (double) counts[row][col];
|
||||
total += (double) counts[row][col];
|
||||
}
|
||||
}
|
||||
|
||||
// compute expected counts and chi-square
|
||||
double sumSq = 0.0d;
|
||||
double expected = 0.0d;
|
||||
for (int row = 0; row < nRows; row++) {
|
||||
for (int col = 0; col < nCols; col++) {
|
||||
expected = (rowSum[row] * colSum[col]) / total;
|
||||
sumSq += (((double) counts[row][col] - expected) * ((double) counts[row][col] - expected))
|
||||
/ expected;
|
||||
}
|
||||
}
|
||||
return sumSq;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of exptected frequency counts
|
||||
* @return p-value
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs computing the p-value
|
||||
*/
|
||||
public double chiSquareTest(long[][] counts)
|
||||
throws IllegalArgumentException, MathException {
|
||||
checkArray(counts);
|
||||
double df = ((double) counts.length -1) * ((double) counts[0].length - 1);
|
||||
ChiSquaredDistribution chiSquaredDistribution =
|
||||
DistributionFactory.newInstance().createChiSquareDistribution(df);
|
||||
return 1 - chiSquaredDistribution.cumulativeProbability(chiSquare(counts));
|
||||
}
|
||||
|
||||
/**
|
||||
* @param observed array of observed frequency counts
|
||||
* @param expected array of exptected frequency counts
|
||||
* @param alpha significance level of the test
|
||||
* @return true iff null hypothesis can be rejected with confidence
|
||||
* 1 - alpha
|
||||
* @throws IllegalArgumentException if preconditions are not met
|
||||
* @throws MathException if an error occurs performing the test
|
||||
*/
|
||||
public boolean chiSquareTest(long[][] counts, double alpha)
|
||||
throws IllegalArgumentException, MathException {
|
||||
if ((alpha <= 0) || (alpha > 0.5)) {
|
||||
throw new IllegalArgumentException("bad significance level: " + alpha);
|
||||
}
|
||||
return (chiSquareTest(counts) < alpha);
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks to make sure that the input long[][] array is rectangular,
|
||||
* has at least 2 rows and 2 columns, and has all non-negative entries,
|
||||
* throwing IllegalArgumentException if any of these checks fail.
|
||||
*
|
||||
* @param in input 2-way table to check
|
||||
* @throws IllegalArgumentException
|
||||
*/
|
||||
private void checkArray(long[][] in) throws IllegalArgumentException {
|
||||
|
||||
if (in.length < 2) {
|
||||
throw new IllegalArgumentException("Input table must have at least two rows");
|
||||
}
|
||||
|
||||
if (in[0].length < 2) {
|
||||
throw new IllegalArgumentException("Input table must have at least two columns");
|
||||
}
|
||||
|
||||
if (!isRectangular(in)) {
|
||||
throw new IllegalArgumentException("Input table must be rectangular");
|
||||
}
|
||||
|
||||
if (!isNonNegative(in)) {
|
||||
throw new IllegalArgumentException("All entries in input 2-way table must be non-negative");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//--------------------- Private array methods -- should find a utility home for these
|
||||
|
||||
/**
|
||||
* Returns true iff input array is rectangular.
|
||||
* Throws NullPointerException if input array is null
|
||||
* Throws ArrayIndexOutOfBoundsException if input array is empty
|
||||
*
|
||||
* @param in array to be tested
|
||||
* @return true if the array is rectangular
|
||||
*/
|
||||
private boolean isRectangular(long[][] in) {
|
||||
for (int i = 1; i < in.length; i++) {
|
||||
if (in[i].length != in[0].length) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true iff all entries of the input array are > 0.
|
||||
* Throws NullPointerException if input array is null.
|
||||
* Returns true if the array is non-null, but empty
|
||||
*
|
||||
* @param in array to be tested
|
||||
* @return true if all entries of the array are positive
|
||||
*/
|
||||
private boolean isPositive(double[] in) {
|
||||
for (int i = 0; i < in.length; i ++) {
|
||||
if (in[i] <= 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true iff all entries of the input array are >= 0.
|
||||
* Throws NullPointerException if input array is null.
|
||||
* Returns true if the array is non-null, but empty
|
||||
*
|
||||
* @param in array to be tested
|
||||
* @return true if all entries of the array are non-negative
|
||||
*/
|
||||
private boolean isNonNegative(double[] in) {
|
||||
for (int i = 0; i < in.length; i ++) {
|
||||
if (in[i] < 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true iff all entries of the input array are > 0.
|
||||
* Throws NullPointerException if input array is null.
|
||||
* Returns true if the array is non-null, but empty
|
||||
*
|
||||
* @param in array to be tested
|
||||
* @return true if all entries of the array are positive
|
||||
*/
|
||||
private boolean isPositive(long[] in) {
|
||||
for (int i = 0; i < in.length; i ++) {
|
||||
if (in[i] <= 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true iff all entries of the input array are >= 0.
|
||||
* Throws NullPointerException if input array is null.
|
||||
* Returns true if the array is non-null, but empty
|
||||
*
|
||||
* @param in array to be tested
|
||||
* @return true if all entries of the array are non-negative
|
||||
*/
|
||||
private boolean isNonNegative(long[] in) {
|
||||
for (int i = 0; i < in.length; i ++) {
|
||||
if (in[i] < 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true iff all entries of (all subarrays of) the input array are > 0.
|
||||
* Throws NullPointerException if input array is null.
|
||||
* Returns true if the array is non-null, but empty
|
||||
*
|
||||
* @param in array to be tested
|
||||
* @return true if all entries of the array are positive
|
||||
*/
|
||||
private boolean isPositive(long[][] in) {
|
||||
for (int i = 0; i < in.length; i ++) {
|
||||
for (int j = 0; j < in[i].length; j++) {
|
||||
if (in[i][j] <= 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true iff all entries of (all subarrays of) the input array are >= 0.
|
||||
* Throws NullPointerException if input array is null.
|
||||
* Returns true if the array is non-null, but empty
|
||||
*
|
||||
* @param in array to be tested
|
||||
* @return true if all entries of the array are non-negative
|
||||
*/
|
||||
private boolean isNonNegative(long[][] in) {
|
||||
for (int i = 0; i < in.length; i ++) {
|
||||
for (int j = 0; j < in[i].length; j++) {
|
||||
if (in[i][j] <= 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue