parent
0300f97d74
commit
26511237d2
|
@ -117,7 +117,7 @@ public class EmpiricalDistribution extends AbstractRealDistribution
|
|||
private final List<SummaryStatistics> binStats;
|
||||
|
||||
/** Sample statistics */
|
||||
private SummaryStatistics sampleStats = null;
|
||||
private SummaryStatistics sampleStats;
|
||||
|
||||
/** Max loaded value */
|
||||
private double max = Double.NEGATIVE_INFINITY;
|
||||
|
@ -126,16 +126,16 @@ public class EmpiricalDistribution extends AbstractRealDistribution
|
|||
private double min = Double.POSITIVE_INFINITY;
|
||||
|
||||
/** Grid size */
|
||||
private double delta = 0d;
|
||||
private double delta;
|
||||
|
||||
/** number of bins */
|
||||
private final int binCount;
|
||||
|
||||
/** is the distribution loaded? */
|
||||
private boolean loaded = false;
|
||||
private boolean loaded;
|
||||
|
||||
/** upper bounds of subintervals in (0,1) "belonging" to the bins */
|
||||
private double[] upperBounds = null;
|
||||
private double[] upperBounds;
|
||||
|
||||
/**
|
||||
* Creates a new EmpiricalDistribution with the default bin count.
|
||||
|
|
|
@ -71,7 +71,7 @@ public class MultivariateNormalMixtureExpectationMaximization {
|
|||
/**
|
||||
* The log likelihood of the data given the fitted model.
|
||||
*/
|
||||
private double logLikelihood = 0d;
|
||||
private double logLikelihood;
|
||||
|
||||
/**
|
||||
* Creates an object to fit a multivariate normal mixture model to data.
|
||||
|
|
|
@ -29,7 +29,7 @@ import org.apache.commons.math4.exception.NumberIsTooSmallException;
|
|||
*/
|
||||
public class FixedGenerationCount implements StoppingCondition {
|
||||
/** Number of generations that have passed */
|
||||
private int numGenerations = 0;
|
||||
private int numGenerations;
|
||||
|
||||
/** Maximum number of generations (stopping criteria) */
|
||||
private final int maxGenerations;
|
||||
|
|
|
@ -53,7 +53,7 @@ public class GeneticAlgorithm {
|
|||
private final SelectionPolicy selectionPolicy;
|
||||
|
||||
/** the number of generations evolved to reach {@link StoppingCondition} in the last run. */
|
||||
private int generationsEvolved = 0;
|
||||
private int generationsEvolved;
|
||||
|
||||
/**
|
||||
* Create a new genetic algorithm.
|
||||
|
|
|
@ -753,7 +753,7 @@ public abstract class RealVector {
|
|||
return new Iterator<Entry>() {
|
||||
|
||||
/** Current index. */
|
||||
private int i = 0;
|
||||
private int i;
|
||||
|
||||
/** Current entry. */
|
||||
private Entry e = new Entry();
|
||||
|
|
|
@ -254,7 +254,7 @@ public class MiniBatchKMeansClusterer<T extends Clusterable>
|
|||
/** Minimum value of {@link #ewaInertia} during iteration. */
|
||||
private double ewaInertiaMin = Double.POSITIVE_INFINITY;
|
||||
/** Number of iteration during which {@link #ewaInertia} did not improve. */
|
||||
private int noImprovementTimes = 0;
|
||||
private int noImprovementTimes;
|
||||
|
||||
/**
|
||||
* @param batchSize Number of elements for each batch iteration.
|
||||
|
|
|
@ -71,7 +71,7 @@ public class HaltonSequenceGenerator implements RandomVectorGenerator {
|
|||
private final int dimension;
|
||||
|
||||
/** The current index in the sequence. */
|
||||
private int count = 0;
|
||||
private int count;
|
||||
|
||||
/** The base numbers for each component. */
|
||||
private final int[] base;
|
||||
|
|
|
@ -74,7 +74,7 @@ public class SobolSequenceGenerator implements RandomVectorGenerator {
|
|||
private final int dimension;
|
||||
|
||||
/** The current index in the sequence. */
|
||||
private int count = 0;
|
||||
private int count;
|
||||
|
||||
/** The direction vector for each component. */
|
||||
private final long[][] direction;
|
||||
|
|
|
@ -78,7 +78,7 @@ public class MultivariateSummaryStatistics
|
|||
private final int k;
|
||||
|
||||
/** Count of values that have been added */
|
||||
private long n = 0;
|
||||
private long n;
|
||||
|
||||
/** Sum statistic implementation - can be reset by setter. */
|
||||
private final StorelessUnivariateStatistic[] sumImpl;
|
||||
|
|
|
@ -63,7 +63,7 @@ public class SummaryStatistics implements StatisticalSummary, Serializable {
|
|||
private static final long serialVersionUID = -2021321786743555871L;
|
||||
|
||||
/** count of values that have been added */
|
||||
private long n = 0;
|
||||
private long n;
|
||||
|
||||
/** SecondMoment is used to compute the mean and variance */
|
||||
private SecondMoment secondMoment = new SecondMoment();
|
||||
|
|
|
@ -51,7 +51,7 @@ public class Skewness extends AbstractStorelessUnivariateStatistic implements Se
|
|||
private static final long serialVersionUID = 20150412L;
|
||||
|
||||
/** Third moment on which this statistic is based */
|
||||
protected ThirdMoment moment = null;
|
||||
protected ThirdMoment moment;
|
||||
|
||||
/**
|
||||
* Determines whether or not this statistic can be incremented or cleared.
|
||||
|
|
|
@ -46,7 +46,7 @@ public class StandardDeviation extends AbstractStorelessUnivariateStatistic
|
|||
private static final long serialVersionUID = 20150412L;
|
||||
|
||||
/** Wrapped Variance instance */
|
||||
private Variance variance = null;
|
||||
private Variance variance;
|
||||
|
||||
/**
|
||||
* Constructs a StandardDeviation. Sets the underlying {@link Variance}
|
||||
|
|
|
@ -72,7 +72,7 @@ public class Variance extends AbstractStorelessUnivariateStatistic implements Se
|
|||
private static final long serialVersionUID = 20150412L;
|
||||
|
||||
/** SecondMoment is used in incremental calculation of Variance*/
|
||||
protected SecondMoment moment = null;
|
||||
protected SecondMoment moment;
|
||||
|
||||
/**
|
||||
* Whether or not {@link #increment(double)} should increment
|
||||
|
|
|
@ -99,7 +99,7 @@ public class PSquarePercentile extends AbstractStorelessUnivariateStatistic
|
|||
* Markers is the marker collection object which comes to effect
|
||||
* only after 5 values are inserted
|
||||
*/
|
||||
private PSquareMarkers markers = null;
|
||||
private PSquareMarkers markers;
|
||||
|
||||
/**
|
||||
* Computed p value (i,e percentile value of data set hither to received)
|
||||
|
|
|
@ -44,7 +44,7 @@ public abstract class AbstractMultipleLinearRegression implements
|
|||
private RealVector yVector;
|
||||
|
||||
/** Whether or not the regression model includes an intercept. True means no intercept. */
|
||||
private boolean noIntercept = false;
|
||||
private boolean noIntercept;
|
||||
|
||||
/**
|
||||
* @return the X sample data.
|
||||
|
|
|
@ -58,13 +58,13 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
/** scratch space for tolerance calc */
|
||||
private final double[] work_tolset;
|
||||
/** number of observations entered */
|
||||
private long nobs = 0;
|
||||
private long nobs;
|
||||
/** sum of squared errors of largest regression */
|
||||
private double sserr = 0.0;
|
||||
private double sserr;
|
||||
/** has rss been called? */
|
||||
private boolean rss_set = false;
|
||||
private boolean rss_set;
|
||||
/** has the tolerance setting method been called */
|
||||
private boolean tol_set = false;
|
||||
private boolean tol_set;
|
||||
/** flags for variables with linear dependency problems */
|
||||
private final boolean[] lindep;
|
||||
/** singular x values */
|
||||
|
@ -72,9 +72,9 @@ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegressio
|
|||
/** workspace for singularity method */
|
||||
private final double[] work_sing;
|
||||
/** summation of Y variable */
|
||||
private double sumy = 0.0;
|
||||
private double sumy;
|
||||
/** summation of squared Y values */
|
||||
private double sumsqy = 0.0;
|
||||
private double sumsqy;
|
||||
/** boolean flag whether a regression constant is added */
|
||||
private final boolean hasIntercept;
|
||||
/** zero tolerance */
|
||||
|
|
|
@ -54,7 +54,7 @@ import org.apache.commons.math4.stat.descriptive.moment.SecondMoment;
|
|||
public class OLSMultipleLinearRegression extends AbstractMultipleLinearRegression {
|
||||
|
||||
/** Cached QR decomposition of X matrix */
|
||||
private QRDecomposition qr = null;
|
||||
private QRDecomposition qr;
|
||||
|
||||
/** Singularity threshold for QR decomposition */
|
||||
private final double threshold;
|
||||
|
|
|
@ -66,28 +66,28 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
|
|||
private static final long serialVersionUID = -3004689053607543335L;
|
||||
|
||||
/** sum of x values */
|
||||
private double sumX = 0d;
|
||||
private double sumX;
|
||||
|
||||
/** total variation in x (sum of squared deviations from xbar) */
|
||||
private double sumXX = 0d;
|
||||
private double sumXX;
|
||||
|
||||
/** sum of y values */
|
||||
private double sumY = 0d;
|
||||
private double sumY;
|
||||
|
||||
/** total variation in y (sum of squared deviations from ybar) */
|
||||
private double sumYY = 0d;
|
||||
private double sumYY;
|
||||
|
||||
/** sum of products */
|
||||
private double sumXY = 0d;
|
||||
private double sumXY;
|
||||
|
||||
/** number of observations */
|
||||
private long n = 0;
|
||||
private long n;
|
||||
|
||||
/** mean of accumulated x values, used in updating formulas */
|
||||
private double xbar = 0;
|
||||
private double xbar;
|
||||
|
||||
/** mean of accumulated y values, used in updating formulas */
|
||||
private double ybar = 0;
|
||||
private double ybar;
|
||||
|
||||
/** include an intercept or not */
|
||||
private final boolean hasIntercept;
|
||||
|
|
|
@ -148,7 +148,7 @@ public class IntegerSequence {
|
|||
/** Function called at counter exhaustion. */
|
||||
private final MaxCountExceededCallback maxCountCallback;
|
||||
/** Current count. */
|
||||
private int count = 0;
|
||||
private int count;
|
||||
|
||||
/**
|
||||
* Defines a method to be called at counter exhaustion.
|
||||
|
|
|
@ -120,14 +120,14 @@ public class ResizableDoubleArray implements DoubleArray, Serializable {
|
|||
* The number of addressable elements in the array. Note that this
|
||||
* has nothing to do with the length of the internal storage array.
|
||||
*/
|
||||
private int numElements = 0;
|
||||
private int numElements;
|
||||
|
||||
/**
|
||||
* The position of the first addressable element in the internal storage
|
||||
* array. The addressable elements in the array are
|
||||
* {@code internalArray[startIndex],...,internalArray[startIndex + numElements - 1]}.
|
||||
*/
|
||||
private int startIndex = 0;
|
||||
private int startIndex;
|
||||
|
||||
/**
|
||||
* Specification of expansion algorithm.
|
||||
|
|
|
@ -38,12 +38,12 @@ public class TransformerMap implements NumberTransformer, Serializable {
|
|||
/**
|
||||
* A default Number Transformer for Numbers and numeric Strings.
|
||||
*/
|
||||
private NumberTransformer defaultTransformer = null;
|
||||
private NumberTransformer defaultTransformer;
|
||||
|
||||
/**
|
||||
* The internal Map.
|
||||
*/
|
||||
private Map<Class<?>, NumberTransformer> map = null;
|
||||
private Map<Class<?>, NumberTransformer> map;
|
||||
|
||||
/**
|
||||
* Build a map containing only the default transformer.
|
||||
|
|
Loading…
Reference in New Issue