Reorganized code, avoiding too many internal classes.

This commit is contained in:
Luc Maisonobe 2014-11-30 13:37:43 +01:00
parent 5f667c031c
commit 26ee481939
6 changed files with 430 additions and 266 deletions

View File

@ -784,7 +784,7 @@ public class PolygonsSet extends AbstractRegion<Euclidean2D, Euclidean1D> {
// is this an open or a closed loop ?
final boolean open = segment.getStart() == null;
while ((end != null) && (open || (globalStart.distance((Point<Euclidean2D>) end) > 1.0e-10))) {
while ((end != null) && (open || (globalStart.distance((Point<Euclidean2D>) end) > getTolerance()))) {
// search the sub-hyperplane starting where the previous one ended
AVLTree<ComparableSegment>.Node selectedNode = null;

View File

@ -16,18 +16,15 @@
*/
package org.apache.commons.math3.geometry.partitioning;
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.TreeSet;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.geometry.Space;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.Space;
import org.apache.commons.math3.geometry.Vector;
import org.apache.commons.math3.geometry.partitioning.Region.Location;
/** Abstract class for all regions, independently of geometry type or dimension.
@ -358,122 +355,6 @@ public abstract class AbstractRegion<S extends Space, T extends Space> implement
return tree;
}
/** Visitor building boundary shell tree.
* <p>
* The boundary shell is represented as {@link BoundaryAttribute boundary attributes}
* at each internal node.
* </p>
*/
private static class BoundaryBuilder<S extends Space> implements BSPTreeVisitor<S> {
/** {@inheritDoc} */
public Order visitOrder(BSPTree<S> node) {
return Order.PLUS_MINUS_SUB;
}
/** {@inheritDoc} */
public void visitInternalNode(BSPTree<S> node) {
SubHyperplane<S> plusOutside = null;
SubHyperplane<S> plusInside = null;
// characterize the cut sub-hyperplane,
// first with respect to the plus sub-tree
@SuppressWarnings("unchecked")
final SubHyperplane<S>[] plusChar = (SubHyperplane<S>[]) Array.newInstance(SubHyperplane.class, 2);
characterize(node.getPlus(), node.getCut().copySelf(), plusChar);
if (plusChar[0] != null && !plusChar[0].isEmpty()) {
// plusChar[0] corresponds to a subset of the cut sub-hyperplane known to have
// outside cells on its plus side, we want to check if parts of this subset
// do have inside cells on their minus side
@SuppressWarnings("unchecked")
final SubHyperplane<S>[] minusChar = (SubHyperplane<S>[]) Array.newInstance(SubHyperplane.class, 2);
characterize(node.getMinus(), plusChar[0], minusChar);
if (minusChar[1] != null && !minusChar[1].isEmpty()) {
// this part belongs to the boundary,
// it has the outside on its plus side and the inside on its minus side
plusOutside = minusChar[1];
}
}
if (plusChar[1] != null && !plusChar[1].isEmpty()) {
// plusChar[1] corresponds to a subset of the cut sub-hyperplane known to have
// inside cells on its plus side, we want to check if parts of this subset
// do have outside cells on their minus side
@SuppressWarnings("unchecked")
final SubHyperplane<S>[] minusChar = (SubHyperplane<S>[]) Array.newInstance(SubHyperplane.class, 2);
characterize(node.getMinus(), plusChar[1], minusChar);
if (minusChar[0] != null && !minusChar[0].isEmpty()) {
// this part belongs to the boundary,
// it has the inside on its plus side and the outside on its minus side
plusInside = minusChar[0];
}
}
// set the boundary attribute at non-leaf nodes
node.setAttribute(new BoundaryAttribute<S>(plusOutside, plusInside));
}
/** {@inheritDoc} */
public void visitLeafNode(BSPTree<S> node) {
}
/** Filter the parts of an hyperplane belonging to the boundary.
* <p>The filtering consist in splitting the specified
* sub-hyperplane into several parts lying in inside and outside
* cells of the tree. The principle is to call this method twice for
* each cut sub-hyperplane in the tree, once on the plus node and
* once on the minus node. The parts that have the same flag
* (inside/inside or outside/outside) do not belong to the boundary
* while parts that have different flags (inside/outside or
* outside/inside) do belong to the boundary.</p>
* @param node current BSP tree node
* @param sub sub-hyperplane to characterize
* @param characterization placeholder where to put the characterized parts
*/
private void characterize(final BSPTree<S> node, final SubHyperplane<S> sub,
final SubHyperplane<S>[] characterization) {
if (node.getCut() == null) {
// we have reached a leaf node
final boolean inside = (Boolean) node.getAttribute();
if (inside) {
if (characterization[1] == null) {
characterization[1] = sub;
} else {
characterization[1] = characterization[1].reunite(sub);
}
} else {
if (characterization[0] == null) {
characterization[0] = sub;
} else {
characterization[0] = characterization[0].reunite(sub);
}
}
} else {
final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
switch (sub.side(hyperplane)) {
case PLUS:
characterize(node.getPlus(), sub, characterization);
break;
case MINUS:
characterize(node.getMinus(), sub, characterization);
break;
case BOTH:
final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane);
characterize(node.getPlus(), split.getPlus(), characterization);
characterize(node.getMinus(), split.getMinus(), characterization);
break;
default:
// this should not happen
throw new MathInternalError();
}
}
}
}
/** {@inheritDoc} */
public double getBoundarySize() {
final BoundarySizeVisitor<S> visitor = new BoundarySizeVisitor<S>();
@ -525,146 +406,11 @@ public abstract class AbstractRegion<S extends Space, T extends Space> implement
/** {@inheritDoc} */
public Side side(final Hyperplane<S> hyperplane) {
final Sides sides = new Sides();
recurseSides(tree, hyperplane.wholeHyperplane(), sides);
return sides.plusFound() ?
(sides.minusFound() ? Side.BOTH : Side.PLUS) :
(sides.minusFound() ? Side.MINUS : Side.HYPER);
}
/** Search recursively for inside leaf nodes on each side of the given hyperplane.
* <p>The algorithm used here is directly derived from the one
* described in section III (<i>Binary Partitioning of a BSP
* Tree</i>) of the Bruce Naylor, John Amanatides and William
* Thibault paper <a
* href="http://www.cs.yorku.ca/~amana/research/bsptSetOp.pdf">Merging
* BSP Trees Yields Polyhedral Set Operations</a> Proc. Siggraph
* '90, Computer Graphics 24(4), August 1990, pp 115-124, published
* by the Association for Computing Machinery (ACM)..</p>
* @param node current BSP tree node
* @param sub sub-hyperplane
* @param sides object holding the sides found
*/
private void recurseSides(final BSPTree<S> node, final SubHyperplane<S> sub, final Sides sides) {
if (node.getCut() == null) {
if ((Boolean) node.getAttribute()) {
// this is an inside cell expanding across the hyperplane
sides.rememberPlusFound();
sides.rememberMinusFound();
}
return;
}
final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
switch (sub.side(hyperplane)) {
case PLUS :
// the sub-hyperplane is entirely in the plus sub-tree
if (node.getCut().side(sub.getHyperplane()) == Side.PLUS) {
if (!isEmpty(node.getMinus())) {
sides.rememberPlusFound();
}
} else {
if (!isEmpty(node.getMinus())) {
sides.rememberMinusFound();
}
}
if (!(sides.plusFound() && sides.minusFound())) {
recurseSides(node.getPlus(), sub, sides);
}
break;
case MINUS :
// the sub-hyperplane is entirely in the minus sub-tree
if (node.getCut().side(sub.getHyperplane()) == Side.PLUS) {
if (!isEmpty(node.getPlus())) {
sides.rememberPlusFound();
}
} else {
if (!isEmpty(node.getPlus())) {
sides.rememberMinusFound();
}
}
if (!(sides.plusFound() && sides.minusFound())) {
recurseSides(node.getMinus(), sub, sides);
}
break;
case BOTH :
// the sub-hyperplane extends in both sub-trees
final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane);
// explore first the plus sub-tree
recurseSides(node.getPlus(), split.getPlus(), sides);
// if needed, explore the minus sub-tree
if (!(sides.plusFound() && sides.minusFound())) {
recurseSides(node.getMinus(), split.getMinus(), sides);
}
break;
default :
// the sub-hyperplane and the cut sub-hyperplane share the same hyperplane
if (node.getCut().getHyperplane().sameOrientationAs(sub.getHyperplane())) {
if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) {
sides.rememberPlusFound();
}
if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) {
sides.rememberMinusFound();
}
} else {
if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) {
sides.rememberMinusFound();
}
if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) {
sides.rememberPlusFound();
}
}
}
}
/** Utility class holding the already found sides. */
private static final class Sides {
/** Indicator of inside leaf nodes found on the plus side. */
private boolean plusFound;
/** Indicator of inside leaf nodes found on the plus side. */
private boolean minusFound;
/** Simple constructor.
*/
public Sides() {
plusFound = false;
minusFound = false;
}
/** Remember the fact that inside leaf nodes have been found on the plus side.
*/
public void rememberPlusFound() {
plusFound = true;
}
/** Check if inside leaf nodes have been found on the plus side.
* @return true if inside leaf nodes have been found on the plus side
*/
public boolean plusFound() {
return plusFound;
}
/** Remember the fact that inside leaf nodes have been found on the minus side.
*/
public void rememberMinusFound() {
minusFound = true;
}
/** Check if inside leaf nodes have been found on the minus side.
* @return true if inside leaf nodes have been found on the minus side
*/
public boolean minusFound() {
return minusFound;
}
final InsideFinder<S> finder = new InsideFinder<S>(this);
finder.recurseSides(tree, hyperplane.wholeHyperplane());
return finder.plusFound() ?
(finder.minusFound() ? Side.BOTH : Side.PLUS) :
(finder.minusFound() ? Side.MINUS : Side.HYPER);
}
/** {@inheritDoc} */

View File

@ -0,0 +1,84 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.geometry.partitioning;
import org.apache.commons.math3.geometry.Space;
/** Visitor building boundary shell tree.
* <p>
* The boundary shell is represented as {@link BoundaryAttribute boundary attributes}
* at each internal node.
* </p>
* @param <S> Type of the space.
* @since 3.4
*/
class BoundaryBuilder<S extends Space> implements BSPTreeVisitor<S> {
/** Simple constructor.
*/
public BoundaryBuilder() {
}
/** {@inheritDoc} */
public Order visitOrder(BSPTree<S> node) {
return Order.PLUS_MINUS_SUB;
}
/** {@inheritDoc} */
public void visitInternalNode(BSPTree<S> node) {
SubHyperplane<S> plusOutside = null;
SubHyperplane<S> plusInside = null;
// characterize the cut sub-hyperplane,
// first with respect to the plus sub-tree
final Characterization<S> plusChar = new Characterization<S>(node.getPlus(), node.getCut().copySelf());
if (plusChar.touchOutside()) {
// plusChar.outsideTouching() corresponds to a subset of the cut sub-hyperplane
// known to have outside cells on its plus side, we want to check if parts
// of this subset do have inside cells on their minus side
final Characterization<S> minusChar = new Characterization<S>(node.getMinus(), plusChar.outsideTouching());
if (minusChar.touchInside()) {
// this part belongs to the boundary,
// it has the outside on its plus side and the inside on its minus side
plusOutside = minusChar.insideTouching();
}
}
if (plusChar.touchInside()) {
// plusChar.insideTouching() corresponds to a subset of the cut sub-hyperplane
// known to have inside cells on its plus side, we want to check if parts
// of this subset do have outside cells on their minus side
final Characterization<S> minusChar = new Characterization<S>(node.getMinus(), plusChar.insideTouching());
if (minusChar.touchOutside()) {
// this part belongs to the boundary,
// it has the inside on its plus side and the outside on its minus side
plusInside = minusChar.outsideTouching();
}
}
// set the boundary attribute at non-leaf nodes
node.setAttribute(new BoundaryAttribute<S>(plusOutside, plusInside));
}
/** {@inheritDoc} */
public void visitLeafNode(BSPTree<S> node) {
}
}

View File

@ -0,0 +1,147 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.geometry.partitioning;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.geometry.Space;
/** Cut sub-hyperplanes characterization with respect to inside/outside cells.
* @see BoundaryBuilder
* @param <S> Type of the space.
* @since 3.4
*/
class Characterization<S extends Space> {
/** Part of the cut sub-hyperplane that touch outside cells. */
private SubHyperplane<S> outsideTouching;
/** Part of the cut sub-hyperplane that touch inside cells. */
private SubHyperplane<S> insideTouching;
/** Simple constructor.
* <p>Characterization consists in splitting the specified
* sub-hyperplane into several parts lying in inside and outside
* cells of the tree. The principle is to compute characterization
* twice for each cut sub-hyperplane in the tree, once on the plus
* node and once on the minus node. The parts that have the same flag
* (inside/inside or outside/outside) do not belong to the boundary
* while parts that have different flags (inside/outside or
* outside/inside) do belong to the boundary.</p>
* @param node current BSP tree node
* @param sub sub-hyperplane to characterize
*/
public Characterization(final BSPTree<S> node, final SubHyperplane<S> sub) {
outsideTouching = null;
insideTouching = null;
characterize(node, sub);
}
/** Filter the parts of an hyperplane belonging to the boundary.
* <p>The filtering consist in splitting the specified
* sub-hyperplane into several parts lying in inside and outside
* cells of the tree. The principle is to call this method twice for
* each cut sub-hyperplane in the tree, once on the plus node and
* once on the minus node. The parts that have the same flag
* (inside/inside or outside/outside) do not belong to the boundary
* while parts that have different flags (inside/outside or
* outside/inside) do belong to the boundary.</p>
* @param node current BSP tree node
* @param sub sub-hyperplane to characterize
*/
private void characterize(final BSPTree<S> node, final SubHyperplane<S> sub) {
if (node.getCut() == null) {
// we have reached a leaf node
final boolean inside = (Boolean) node.getAttribute();
if (inside) {
addInsideTouching(sub);
} else {
addOutsideTouching(sub);
}
} else {
final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
switch (sub.side(hyperplane)) {
case PLUS:
characterize(node.getPlus(), sub);
break;
case MINUS:
characterize(node.getMinus(), sub);
break;
case BOTH:
final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane);
characterize(node.getPlus(), split.getPlus());
characterize(node.getMinus(), split.getMinus());
break;
default:
// this should not happen
throw new MathInternalError();
}
}
}
/** Add a part of the cut sub-hyperplane known to touch an outside cell.
* @param sub part of the cut sub-hyperplane known to touch an outside cell
*/
private void addOutsideTouching(final SubHyperplane<S> sub) {
if (outsideTouching == null) {
outsideTouching = sub;
} else {
outsideTouching = outsideTouching.reunite(sub);
}
}
/** Add a part of the cut sub-hyperplane known to touch an inside cell.
* @param sub part of the cut sub-hyperplane known to touch an inside cell
*/
private void addInsideTouching(final SubHyperplane<S> sub) {
if (insideTouching == null) {
insideTouching = sub;
} else {
insideTouching = insideTouching.reunite(sub);
}
}
/** Check if the cut sub-hyperplane touches outside cells.
* @return true if the cut sub-hyperplane touches outside cells
*/
public boolean touchOutside() {
return outsideTouching != null && !outsideTouching.isEmpty();
}
/** Get all the parts of the cut sub-hyperplane known to touch outside cells.
* @return parts of the cut sub-hyperplane known to touch outside cells
* (may be null or empty)
*/
public SubHyperplane<S> outsideTouching() {
return outsideTouching;
}
/** Check if the cut sub-hyperplane touches inside cells.
* @return true if the cut sub-hyperplane touches inside cells
*/
public boolean touchInside() {
return insideTouching != null && !insideTouching.isEmpty();
}
/** Get all the parts of the cut sub-hyperplane known to touch inside cells.
* @return parts of the cut sub-hyperplane known to touch inside cells
* (may be null or empty)
*/
public SubHyperplane<S> insideTouching() {
return insideTouching;
}
}

View File

@ -0,0 +1,150 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.geometry.partitioning;
import org.apache.commons.math3.geometry.Space;
/** Utility class checking if inside nodes can be found
* on the plus and minus sides of an hyperplane.
* @param <S> Type of the space.
* @since 3.4
*/
class InsideFinder<S extends Space> {
/** Region on which to operate. */
private final Region<S> region;
/** Indicator of inside leaf nodes found on the plus side. */
private boolean plusFound;
/** Indicator of inside leaf nodes found on the plus side. */
private boolean minusFound;
/** Simple constructor.
* @param region region on which to operate
*/
public InsideFinder(final Region<S> region) {
this.region = region;
plusFound = false;
minusFound = false;
}
/** Search recursively for inside leaf nodes on each side of the given hyperplane.
* <p>The algorithm used here is directly derived from the one
* described in section III (<i>Binary Partitioning of a BSP
* Tree</i>) of the Bruce Naylor, John Amanatides and William
* Thibault paper <a
* href="http://www.cs.yorku.ca/~amana/research/bsptSetOp.pdf">Merging
* BSP Trees Yields Polyhedral Set Operations</a> Proc. Siggraph
* '90, Computer Graphics 24(4), August 1990, pp 115-124, published
* by the Association for Computing Machinery (ACM)..</p>
* @param node current BSP tree node
* @param sub sub-hyperplane
*/
public void recurseSides(final BSPTree<S> node, final SubHyperplane<S> sub) {
if (node.getCut() == null) {
if ((Boolean) node.getAttribute()) {
// this is an inside cell expanding across the hyperplane
plusFound = true;
minusFound = true;
}
return;
}
final Hyperplane<S> hyperplane = node.getCut().getHyperplane();
switch (sub.side(hyperplane)) {
case PLUS :
// the sub-hyperplane is entirely in the plus sub-tree
if (node.getCut().side(sub.getHyperplane()) == Side.PLUS) {
if (!region.isEmpty(node.getMinus())) {
plusFound = true;
}
} else {
if (!region.isEmpty(node.getMinus())) {
minusFound = true;
}
}
if (!(plusFound && minusFound)) {
recurseSides(node.getPlus(), sub);
}
break;
case MINUS :
// the sub-hyperplane is entirely in the minus sub-tree
if (node.getCut().side(sub.getHyperplane()) == Side.PLUS) {
if (!region.isEmpty(node.getPlus())) {
plusFound = true;
}
} else {
if (!region.isEmpty(node.getPlus())) {
minusFound = true;
}
}
if (!(plusFound && minusFound)) {
recurseSides(node.getMinus(), sub);
}
break;
case BOTH :
// the sub-hyperplane extends in both sub-trees
final SubHyperplane.SplitSubHyperplane<S> split = sub.split(hyperplane);
// explore first the plus sub-tree
recurseSides(node.getPlus(), split.getPlus());
// if needed, explore the minus sub-tree
if (!(plusFound && minusFound)) {
recurseSides(node.getMinus(), split.getMinus());
}
break;
default :
// the sub-hyperplane and the cut sub-hyperplane share the same hyperplane
if (node.getCut().getHyperplane().sameOrientationAs(sub.getHyperplane())) {
if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) {
plusFound = true;
}
if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) {
minusFound = true;
}
} else {
if ((node.getPlus().getCut() != null) || ((Boolean) node.getPlus().getAttribute())) {
minusFound = true;
}
if ((node.getMinus().getCut() != null) || ((Boolean) node.getMinus().getAttribute())) {
plusFound = true;
}
}
}
}
/** Check if inside leaf nodes have been found on the plus side.
* @return true if inside leaf nodes have been found on the plus side
*/
public boolean plusFound() {
return plusFound;
}
/** Check if inside leaf nodes have been found on the minus side.
* @return true if inside leaf nodes have been found on the minus side
*/
public boolean minusFound() {
return minusFound;
}
}

View File

@ -16,8 +16,12 @@
*/
package org.apache.commons.math3.geometry.partitioning;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.Space;
import org.apache.commons.math3.geometry.euclidean.twod.PolygonsSet;
import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
import org.apache.commons.math3.geometry.partitioning.BSPTree.VanishingCutHandler;
import org.apache.commons.math3.geometry.partitioning.Region.Location;
/** This class is a factory for {@link Region}.
@ -115,7 +119,7 @@ public class RegionFactory<S extends Space> {
*/
public Region<S> difference(final Region<S> region1, final Region<S> region2) {
final BSPTree<S> tree =
region1.getTree(false).merge(region2.getTree(false), new DifferenceMerger());
region1.getTree(false).merge(region2.getTree(false), new DifferenceMerger(region1, region2));
tree.visit(nodeCleaner);
return region1.buildNew(tree);
}
@ -206,7 +210,23 @@ public class RegionFactory<S extends Space> {
}
/** BSP tree leaf merger computing difference of two regions. */
private class DifferenceMerger implements BSPTree.LeafMerger<S> {
private class DifferenceMerger implements BSPTree.LeafMerger<S>, VanishingCutHandler<S> {
/** Region to subtract from. */
private final Region<S> region1;
/** Region to subtract. */
private final Region<S> region2;
/** Simple constructor.
* @param region1 region to subtract from
* @param region2 region to subtract
*/
public DifferenceMerger(final Region<S> region1, final Region<S> region2) {
this.region1 = region1.copySelf();
this.region2 = region2.copySelf();
}
/** {@inheritDoc} */
public BSPTree<S> merge(final BSPTree<S> leaf, final BSPTree<S> tree,
final BSPTree<S> parentTree, final boolean isPlusChild,
@ -215,15 +235,32 @@ public class RegionFactory<S extends Space> {
// the leaf node represents an inside cell
final BSPTree<S> argTree =
recurseComplement(leafFromInstance ? tree : leaf);
argTree.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(true));
argTree.insertInTree(parentTree, isPlusChild, this);
return argTree;
}
// the leaf node represents an outside cell
final BSPTree<S> instanceTree =
leafFromInstance ? leaf : tree;
instanceTree.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(false));
instanceTree.insertInTree(parentTree, isPlusChild, this);
return instanceTree;
}
/** {@inheritDoc} */
public BSPTree<S> fixNode(final BSPTree<S> node) {
// get a representative point in the degenerate cell
final BSPTree<S> cell = node.pruneAroundConvexCell(Boolean.TRUE, Boolean.FALSE, null);
final Region<S> r = region1.buildNew(cell);
for (Vector2D[] loop : ((PolygonsSet) r).getVertices()) {
System.out.format(java.util.Locale.US, "%n");
for (Vector2D v : loop) {
System.out.format(java.util.Locale.US, "%14.10f %14.10f%n", v.getX(), v.getY());
}
}
final Point<S> p = r.getBarycenter();
return new BSPTree<S>(region1.checkPoint(p) == Location.INSIDE &&
region2.checkPoint(p) == Location.OUTSIDE);
}
}
/** Visitor removing internal nodes attributes. */
@ -252,7 +289,7 @@ public class RegionFactory<S extends Space> {
private final boolean inside;
/** Simple constructor.
* @param inside inside/outside indocator to use for ambiguous nodes
* @param inside inside/outside indicator to use for ambiguous nodes
*/
public VanishingToLeaf(final boolean inside) {
this.inside = inside;