Fixed userguide typos.

Thanks to Matt Adereth for the patch.

JIRA: MATH-1048

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1536265 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2013-10-28 07:10:12 +00:00
parent a6be244e7f
commit 27bbf640fe
1 changed files with 12 additions and 12 deletions

View File

@ -302,7 +302,7 @@ double totalSampleSum = aggregatedStats.getSum();
Strings, integers, longs and chars are all supported as value types,
as well as instances of any class that implements <code>Comparable.</code>
The ordering of values used in computing cumulative frequencies is by
default the <i>natural ordering,</i> but this can be overriden by supplying a
default the <i>natural ordering,</i> but this can be overridden by supplying a
<code>Comparator</code> to the constructor. Adding values that are not
comparable to those that have already been added results in an
<code>IllegalArgumentException.</code>
@ -385,7 +385,7 @@ System.out.println(f.getCumPct("z")); // displays 1
<li> When there are fewer than two observations in the model, or when
there is no variation in the x values (i.e. all x values are the same)
all statistics return <code>NaN</code>. At least two observations with
different x coordinates are requred to estimate a bivariate regression
different x coordinates are required to estimate a bivariate regression
model.</li>
<li> getters for the statistics always compute values based on the current
set of observations -- i.e., you can get statistics, then add more data
@ -529,7 +529,7 @@ System.out.println(regression.getInterceptStdErr() );
OLSMultipleLinearRegression</a> provides Ordinary Least Squares Regression, and
<a href="../apidocs/org/apache/commons/math3/stat/regression/GLSMultipleLinearRegression.html">
GLSMultipleLinearRegression</a> implements Generalized Least Squares. See the javadoc for these
classes for details on the algorithms and forumlas used.
classes for details on the algorithms and formulas used.
</p>
<p>
Data for OLS models can be loaded in a single double[] array, consisting of concatenated rows of data, each containing
@ -864,7 +864,7 @@ new PearsonsCorrelation().correlation(ranking.rank(x), ranking.rank(y))
assumptions of the parametric t-test procedure, as discussed
<a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
here</a></li>
<li>p-values returned by t-, chi-square and Anova tests are exact, based
<li>p-values returned by t-, chi-square and ANOVA tests are exact, based
on numerical approximations to the t-, chi-square and F distributions in the
<code>distributions</code> package. </li>
<li>The G test implementation provides two p-values:
@ -893,7 +893,7 @@ double[] observed = {1d, 2d, 3d};
double mu = 2.5d;
System.out.println(TestUtils.t(mu, observed));
</source>
The code above will display the t-statisitic associated with a one-sample
The code above will display the t-statistic associated with a one-sample
t-test comparing the mean of the <code>observed</code> values against
<code>mu.</code>
</dd>
@ -1026,7 +1026,7 @@ TestUtils.chiSquareTest(expected, observed);
</source>
</dd>
<dd> To test the null hypothesis that <code>observed</code> conforms to
<code>expected</code> with <code>alpha</code> siginficance level
<code>expected</code> with <code>alpha</code> significance level
(equiv. <code>100 * (1-alpha)%</code> confidence) where <code>
0 &lt; alpha &lt; 1 </code> use:
<source>
@ -1058,7 +1058,7 @@ TestUtils.chiSquareTest(counts);
</source>
</dd>
<dd>To perform a chi-square test of independence with <code>alpha</code>
siginficance level (equiv. <code>100 * (1-alpha)%</code> confidence)
significance level (equiv. <code>100 * (1-alpha)%</code> confidence)
where <code>0 &lt; alpha &lt; 1 </code> use:
<source>
TestUtils.chiSquareTest(counts, alpha);
@ -1070,12 +1070,12 @@ TestUtils.chiSquareTest(counts, alpha);
<dt><strong>G tests</strong></dt>
<br></br>
<dd>G tests are an alternative to chi-square tests that are recommended
when observed counts are small and / or incidence probabillities for
when observed counts are small and / or incidence probabilities for
some cells are small. See Ted Dunning's paper,
<a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.5962">
Accurate Methods for the Statistics of Surprise and Coincidence</a> for
background and an empirical analysis showing now chi-square
statistics can be misldeading in the presence of low incidence probabilities.
statistics can be misleading in the presence of low incidence probabilities.
This paper also derives the formulas used in computing G statistics and the
root log likelihood ratio provided by the <code>GTest</code> class.</dd>
<dd>
@ -1116,7 +1116,7 @@ System.out.println(TestUtils.gDataSetsComparison(obs1, obs2)); // G statistic
System.out.println(TestUtils.gTestDataSetsComparison(obs1, obs2)); // p-value
</source>
</dd>
<dd>For 2 x 2 designs, the <code>rootLogLikelihoodRaio</code> method
<dd>For 2 x 2 designs, the <code>rootLogLikelihoodRatio</code> method
computes the
<a href="http://tdunning.blogspot.com/2008/03/surprise-and-coincidence.html">
signed root log likelihood ratio.</a> For example, suppose that for two events
@ -1129,7 +1129,7 @@ new GTest().rootLogLikelihoodRatio(5, 1995, 0, 100000);
and B are independent.
</dd>
<br></br>
<dt><strong>One-Way Anova tests</strong></dt>
<dt><strong>One-Way ANOVA tests</strong></dt>
<br></br>
<source>
double[] classA =
@ -1151,7 +1151,7 @@ classes.add(classC);
double fStatistic = TestUtils.oneWayAnovaFValue(classes); // F-value
double pValue = TestUtils.oneWayAnovaPValue(classes); // P-value
</source>
To test perform a One-Way Anova test with signficance level set at 0.01
To test perform a One-Way ANOVA test with significance level set at 0.01
(so the test will, assuming assumptions are met, reject the null
hypothesis incorrectly only about one in 100 times), use
<source>