Fixed userguide typos.
Thanks to Matt Adereth for the patch. JIRA: MATH-1048 git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1536265 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
a6be244e7f
commit
27bbf640fe
|
@ -302,7 +302,7 @@ double totalSampleSum = aggregatedStats.getSum();
|
|||
Strings, integers, longs and chars are all supported as value types,
|
||||
as well as instances of any class that implements <code>Comparable.</code>
|
||||
The ordering of values used in computing cumulative frequencies is by
|
||||
default the <i>natural ordering,</i> but this can be overriden by supplying a
|
||||
default the <i>natural ordering,</i> but this can be overridden by supplying a
|
||||
<code>Comparator</code> to the constructor. Adding values that are not
|
||||
comparable to those that have already been added results in an
|
||||
<code>IllegalArgumentException.</code>
|
||||
|
@ -385,7 +385,7 @@ System.out.println(f.getCumPct("z")); // displays 1
|
|||
<li> When there are fewer than two observations in the model, or when
|
||||
there is no variation in the x values (i.e. all x values are the same)
|
||||
all statistics return <code>NaN</code>. At least two observations with
|
||||
different x coordinates are requred to estimate a bivariate regression
|
||||
different x coordinates are required to estimate a bivariate regression
|
||||
model.</li>
|
||||
<li> getters for the statistics always compute values based on the current
|
||||
set of observations -- i.e., you can get statistics, then add more data
|
||||
|
@ -529,7 +529,7 @@ System.out.println(regression.getInterceptStdErr() );
|
|||
OLSMultipleLinearRegression</a> provides Ordinary Least Squares Regression, and
|
||||
<a href="../apidocs/org/apache/commons/math3/stat/regression/GLSMultipleLinearRegression.html">
|
||||
GLSMultipleLinearRegression</a> implements Generalized Least Squares. See the javadoc for these
|
||||
classes for details on the algorithms and forumlas used.
|
||||
classes for details on the algorithms and formulas used.
|
||||
</p>
|
||||
<p>
|
||||
Data for OLS models can be loaded in a single double[] array, consisting of concatenated rows of data, each containing
|
||||
|
@ -864,7 +864,7 @@ new PearsonsCorrelation().correlation(ranking.rank(x), ranking.rank(y))
|
|||
assumptions of the parametric t-test procedure, as discussed
|
||||
<a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html">
|
||||
here</a></li>
|
||||
<li>p-values returned by t-, chi-square and Anova tests are exact, based
|
||||
<li>p-values returned by t-, chi-square and ANOVA tests are exact, based
|
||||
on numerical approximations to the t-, chi-square and F distributions in the
|
||||
<code>distributions</code> package. </li>
|
||||
<li>The G test implementation provides two p-values:
|
||||
|
@ -893,7 +893,7 @@ double[] observed = {1d, 2d, 3d};
|
|||
double mu = 2.5d;
|
||||
System.out.println(TestUtils.t(mu, observed));
|
||||
</source>
|
||||
The code above will display the t-statisitic associated with a one-sample
|
||||
The code above will display the t-statistic associated with a one-sample
|
||||
t-test comparing the mean of the <code>observed</code> values against
|
||||
<code>mu.</code>
|
||||
</dd>
|
||||
|
@ -1026,7 +1026,7 @@ TestUtils.chiSquareTest(expected, observed);
|
|||
</source>
|
||||
</dd>
|
||||
<dd> To test the null hypothesis that <code>observed</code> conforms to
|
||||
<code>expected</code> with <code>alpha</code> siginficance level
|
||||
<code>expected</code> with <code>alpha</code> significance level
|
||||
(equiv. <code>100 * (1-alpha)%</code> confidence) where <code>
|
||||
0 < alpha < 1 </code> use:
|
||||
<source>
|
||||
|
@ -1058,7 +1058,7 @@ TestUtils.chiSquareTest(counts);
|
|||
</source>
|
||||
</dd>
|
||||
<dd>To perform a chi-square test of independence with <code>alpha</code>
|
||||
siginficance level (equiv. <code>100 * (1-alpha)%</code> confidence)
|
||||
significance level (equiv. <code>100 * (1-alpha)%</code> confidence)
|
||||
where <code>0 < alpha < 1 </code> use:
|
||||
<source>
|
||||
TestUtils.chiSquareTest(counts, alpha);
|
||||
|
@ -1070,12 +1070,12 @@ TestUtils.chiSquareTest(counts, alpha);
|
|||
<dt><strong>G tests</strong></dt>
|
||||
<br></br>
|
||||
<dd>G tests are an alternative to chi-square tests that are recommended
|
||||
when observed counts are small and / or incidence probabillities for
|
||||
when observed counts are small and / or incidence probabilities for
|
||||
some cells are small. See Ted Dunning's paper,
|
||||
<a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.5962">
|
||||
Accurate Methods for the Statistics of Surprise and Coincidence</a> for
|
||||
background and an empirical analysis showing now chi-square
|
||||
statistics can be misldeading in the presence of low incidence probabilities.
|
||||
statistics can be misleading in the presence of low incidence probabilities.
|
||||
This paper also derives the formulas used in computing G statistics and the
|
||||
root log likelihood ratio provided by the <code>GTest</code> class.</dd>
|
||||
<dd>
|
||||
|
@ -1116,7 +1116,7 @@ System.out.println(TestUtils.gDataSetsComparison(obs1, obs2)); // G statistic
|
|||
System.out.println(TestUtils.gTestDataSetsComparison(obs1, obs2)); // p-value
|
||||
</source>
|
||||
</dd>
|
||||
<dd>For 2 x 2 designs, the <code>rootLogLikelihoodRaio</code> method
|
||||
<dd>For 2 x 2 designs, the <code>rootLogLikelihoodRatio</code> method
|
||||
computes the
|
||||
<a href="http://tdunning.blogspot.com/2008/03/surprise-and-coincidence.html">
|
||||
signed root log likelihood ratio.</a> For example, suppose that for two events
|
||||
|
@ -1129,7 +1129,7 @@ new GTest().rootLogLikelihoodRatio(5, 1995, 0, 100000);
|
|||
and B are independent.
|
||||
</dd>
|
||||
<br></br>
|
||||
<dt><strong>One-Way Anova tests</strong></dt>
|
||||
<dt><strong>One-Way ANOVA tests</strong></dt>
|
||||
<br></br>
|
||||
<source>
|
||||
double[] classA =
|
||||
|
@ -1151,7 +1151,7 @@ classes.add(classC);
|
|||
double fStatistic = TestUtils.oneWayAnovaFValue(classes); // F-value
|
||||
double pValue = TestUtils.oneWayAnovaPValue(classes); // P-value
|
||||
</source>
|
||||
To test perform a One-Way Anova test with signficance level set at 0.01
|
||||
To test perform a One-Way ANOVA test with significance level set at 0.01
|
||||
(so the test will, assuming assumptions are met, reject the null
|
||||
hypothesis incorrectly only about one in 100 times), use
|
||||
<source>
|
||||
|
|
Loading…
Reference in New Issue