Merge branch 'master' of https://git-wip-us.apache.org/repos/asf/commons-math
This commit is contained in:
commit
29b1936291
12
pom.xml
12
pom.xml
|
@ -38,9 +38,9 @@
|
|||
</issueManagement>
|
||||
|
||||
<scm>
|
||||
<connection>scm:svn:http://svn.apache.org/repos/asf/commons/proper/math/trunk</connection>
|
||||
<developerConnection>scm:svn:https://svn.apache.org/repos/asf/commons/proper/math/trunk</developerConnection>
|
||||
<url>http://svn.apache.org/viewvc/commons/proper/math/trunk</url>
|
||||
<connection>scm:git:http://git-wip-us.apache.org/repos/asf/commons-math.git</connection>
|
||||
<developerConnection>scm:git:https://git-wip-us.apache.org/repos/asf/commons-math.git</developerConnection>
|
||||
<url>https://git-wip-us.apache.org/repos/asf?p=commons-math.git</url>
|
||||
</scm>
|
||||
|
||||
<distributionManagement>
|
||||
|
@ -203,6 +203,9 @@
|
|||
<contributor>
|
||||
<name>Ted Dunning</name>
|
||||
</contributor>
|
||||
<contributor>
|
||||
<name>Ole Ersoy</name>
|
||||
</contributor>
|
||||
<contributor>
|
||||
<name>Ajo Fod</name>
|
||||
</contributor>
|
||||
|
@ -212,6 +215,9 @@
|
|||
<contributor>
|
||||
<name>Ken Geis</name>
|
||||
</contributor>
|
||||
<contributor>
|
||||
<name>Hank Grabowski</name>
|
||||
</contributor>
|
||||
<contributor>
|
||||
<name>Bernhard Grünewaldt</name>
|
||||
</contributor>
|
||||
|
|
|
@ -73,6 +73,18 @@ Users are encouraged to upgrade to this version as this release not
|
|||
2. A few methods in the FastMath class are in fact slower that their
|
||||
counterpart in either Math or StrictMath (cf. MATH-740 and MATH-901).
|
||||
">
|
||||
<action dev="luc" type="fix" issue="MATH-1138" due-to="Hank Grabowski">
|
||||
Fixed bicubic spline interpolator, using Akima splines.
|
||||
</action>
|
||||
<action dev="psteitz" type="add" issue="MATH-1154" >
|
||||
Changed classes in the inference package that instantiate distributions to
|
||||
pass null RandomGenerators to avoid initialization overhead for the default
|
||||
generator.
|
||||
</action>
|
||||
<action dev="luc" type="add" issue="MATH-1156" >
|
||||
Added all Java 8 StrictMath methods to FastMath, so FastMath remains compatible
|
||||
with newer Java versions.
|
||||
</action>
|
||||
<action dev="tn" type="add" issue="MATH-1139" due-to="Alexey Volkov">
|
||||
Added Gumbel, Laplace, Logistic and Nakagami distributions.
|
||||
</action>
|
||||
|
|
|
@ -0,0 +1,225 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.analysis.interpolation;
|
||||
|
||||
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
|
||||
import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction;
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.apache.commons.math3.util.MathArrays;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
|
||||
/**
|
||||
* Computes a cubic spline interpolation for the data set using the Akima
|
||||
* algorithm, as originally formulated by Hiroshi Akima in his 1970 paper
|
||||
* "A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures."
|
||||
* J. ACM 17, 4 (October 1970), 589-602. DOI=10.1145/321607.321609
|
||||
* http://doi.acm.org/10.1145/321607.321609
|
||||
* <p>
|
||||
* This implementation is based on the Akima implementation in the CubicSpline
|
||||
* class in the Math.NET Numerics library. The method referenced is
|
||||
* CubicSpline.InterpolateAkimaSorted
|
||||
* <p>
|
||||
* The {@link #interpolate(double[], double[])} method returns a
|
||||
* {@link PolynomialSplineFunction} consisting of n cubic polynomials, defined
|
||||
* over the subintervals determined by the x values, x[0] < x[i] ... < x[n]. The
|
||||
* Akima algorithm requires that n >= 5.
|
||||
* </p>
|
||||
* <p>
|
||||
*/
|
||||
|
||||
public class AkimaSplineInterpolator
|
||||
implements UnivariateInterpolator {
|
||||
|
||||
|
||||
/**
|
||||
* The minimum number of points that are needed to compute the function
|
||||
*/
|
||||
public static final int MINIMUM_NUMBER_POINTS = 5;
|
||||
|
||||
/**
|
||||
* Default constructor. Builds an AkimaSplineInterpolator object
|
||||
*/
|
||||
public AkimaSplineInterpolator() {
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes an interpolating function for the data set.
|
||||
*
|
||||
* @param xvals the arguments for the interpolation points
|
||||
* @param yvals the values for the interpolation points
|
||||
* @return a function which interpolates the data set
|
||||
* @throws DimensionMismatchException if {@code x} and {@code y} have
|
||||
* different sizes.
|
||||
* @throws NonMonotonicSequenceException if {@code x} is not sorted in
|
||||
* strict increasing order.
|
||||
* @throws NumberIsTooSmallException if the size of {@code x} is smaller
|
||||
* than 5.
|
||||
*/
|
||||
public PolynomialSplineFunction interpolate(double[] xvals, double[] yvals)
|
||||
throws DimensionMismatchException, NumberIsTooSmallException,
|
||||
NonMonotonicSequenceException {
|
||||
if (xvals == null || yvals == null) {
|
||||
throw new NullArgumentException();
|
||||
}
|
||||
|
||||
if (xvals.length != yvals.length) {
|
||||
throw new DimensionMismatchException(xvals.length, yvals.length);
|
||||
}
|
||||
|
||||
if (xvals.length < MINIMUM_NUMBER_POINTS) {
|
||||
throw new NumberIsTooSmallException(
|
||||
LocalizedFormats.NUMBER_OF_POINTS,
|
||||
xvals.length,
|
||||
MINIMUM_NUMBER_POINTS, true);
|
||||
}
|
||||
|
||||
MathArrays.checkOrder(xvals);
|
||||
|
||||
final int numberOfDiffAndWeightElements = xvals.length - 1;
|
||||
|
||||
double differences[] = new double[numberOfDiffAndWeightElements];
|
||||
double weights[] = new double[numberOfDiffAndWeightElements];
|
||||
|
||||
for (int i = 0; i < differences.length; i++) {
|
||||
differences[i] = (yvals[i + 1] - yvals[i]) /
|
||||
(xvals[i + 1] - xvals[i]);
|
||||
}
|
||||
|
||||
for (int i = 1; i < weights.length; i++) {
|
||||
weights[i] = FastMath.abs(differences[i] - differences[i - 1]);
|
||||
}
|
||||
|
||||
/* Prepare Hermite interpolation scheme */
|
||||
|
||||
double firstDerivatives[] = new double[xvals.length];
|
||||
|
||||
for (int i = 2; i < firstDerivatives.length - 2; i++) {
|
||||
if (Precision.equals(weights[i - 1], 0.0) &&
|
||||
Precision.equals(weights[i + 1], 0.0)) {
|
||||
firstDerivatives[i] = (((xvals[i + 1] - xvals[i]) * differences[i - 1]) + ((xvals[i] - xvals[i - 1]) * differences[i])) /
|
||||
(xvals[i + 1] - xvals[i - 1]);
|
||||
} else {
|
||||
firstDerivatives[i] = ((weights[i + 1] * differences[i - 1]) + (weights[i - 1] * differences[i])) /
|
||||
(weights[i + 1] + weights[i - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
firstDerivatives[0] = this.differentiateThreePoint(xvals, yvals, 0, 0,
|
||||
1, 2);
|
||||
firstDerivatives[1] = this.differentiateThreePoint(xvals, yvals, 1, 0,
|
||||
1, 2);
|
||||
firstDerivatives[xvals.length - 2] = this
|
||||
.differentiateThreePoint(xvals, yvals, xvals.length - 2,
|
||||
xvals.length - 3, xvals.length - 2,
|
||||
xvals.length - 1);
|
||||
firstDerivatives[xvals.length - 1] = this
|
||||
.differentiateThreePoint(xvals, yvals, xvals.length - 1,
|
||||
xvals.length - 3, xvals.length - 2,
|
||||
xvals.length - 1);
|
||||
|
||||
return this.interpolateHermiteSorted(xvals, yvals, firstDerivatives);
|
||||
}
|
||||
|
||||
/**
|
||||
* Three point differentiation helper, modeled off of the same method in the
|
||||
* Math.NET CubicSpline class. This is used by both the Apache Math and the
|
||||
* Math.NET Akima Cubic Spline algorithms
|
||||
*
|
||||
* @param xvals x values to calculate the numerical derivative with
|
||||
* @param yvals y values to calculate the numerical derivative with
|
||||
* @param indexOfDifferentiation index of the elemnt we are calculating the derivative around
|
||||
* @param indexOfFirstSample index of the first element to sample for the three point method
|
||||
* @param indexOfSecondsample index of the second element to sample for the three point method
|
||||
* @param indexOfThirdSample index of the third element to sample for the three point method
|
||||
* @return the derivative
|
||||
*/
|
||||
private double differentiateThreePoint(double[] xvals, double[] yvals,
|
||||
int indexOfDifferentiation,
|
||||
int indexOfFirstSample,
|
||||
int indexOfSecondsample,
|
||||
int indexOfThirdSample) {
|
||||
double x0 = yvals[indexOfFirstSample];
|
||||
double x1 = yvals[indexOfSecondsample];
|
||||
double x2 = yvals[indexOfThirdSample];
|
||||
|
||||
double t = xvals[indexOfDifferentiation] - xvals[indexOfFirstSample];
|
||||
double t1 = xvals[indexOfSecondsample] - xvals[indexOfFirstSample];
|
||||
double t2 = xvals[indexOfThirdSample] - xvals[indexOfFirstSample];
|
||||
|
||||
double a = (x2 - x0 - (t2 / t1 * (x1 - x0))) / (t2 * t2 - t1 * t2);
|
||||
double b = (x1 - x0 - a * t1 * t1) / t1;
|
||||
return (2 * a * t) + b;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a Hermite cubic spline interpolation from the set of (x,y) value
|
||||
* pairs and their derivatives. This is modeled off of the
|
||||
* InterpolateHermiteSorted method in the Math.NET CubicSpline class.
|
||||
*
|
||||
* @param xvals x values for interpolation
|
||||
* @param yvals y values for interpolation
|
||||
* @param firstDerivatives first derivative values of the function
|
||||
* @return polynomial that fits the function
|
||||
*/
|
||||
private PolynomialSplineFunction interpolateHermiteSorted(double[] xvals,
|
||||
double[] yvals,
|
||||
double[] firstDerivatives) {
|
||||
if (xvals.length != yvals.length) {
|
||||
throw new DimensionMismatchException(xvals.length, yvals.length);
|
||||
}
|
||||
|
||||
if (xvals.length != firstDerivatives.length) {
|
||||
throw new DimensionMismatchException(xvals.length,
|
||||
firstDerivatives.length);
|
||||
}
|
||||
|
||||
final int minimumLength = 2;
|
||||
if (xvals.length < minimumLength) {
|
||||
throw new NumberIsTooSmallException(
|
||||
LocalizedFormats.NUMBER_OF_POINTS,
|
||||
xvals.length, minimumLength,
|
||||
true);
|
||||
}
|
||||
|
||||
int size = xvals.length - 1;
|
||||
final PolynomialFunction polynomials[] = new PolynomialFunction[size];
|
||||
final double coefficients[] = new double[4];
|
||||
|
||||
for (int i = 0; i < polynomials.length; i++) {
|
||||
double w = xvals[i + 1] - xvals[i];
|
||||
double w2 = w * w;
|
||||
coefficients[0] = yvals[i];
|
||||
coefficients[1] = firstDerivatives[i];
|
||||
coefficients[2] = (3 * (yvals[i + 1] - yvals[i]) / w - 2 *
|
||||
firstDerivatives[i] - firstDerivatives[i + 1]) /
|
||||
w;
|
||||
coefficients[3] = (2 * (yvals[i] - yvals[i + 1]) / w +
|
||||
firstDerivatives[i] + firstDerivatives[i + 1]) /
|
||||
w2;
|
||||
polynomials[i] = new PolynomialFunction(coefficients);
|
||||
}
|
||||
|
||||
return new PolynomialSplineFunction(xvals, polynomials);
|
||||
|
||||
}
|
||||
}
|
|
@ -18,143 +18,76 @@ package org.apache.commons.math3.analysis.interpolation;
|
|||
|
||||
import java.util.Arrays;
|
||||
import org.apache.commons.math3.analysis.BivariateFunction;
|
||||
import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction;
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.InsufficientDataException;
|
||||
import org.apache.commons.math3.exception.NoDataException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.exception.OutOfRangeException;
|
||||
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
|
||||
import org.apache.commons.math3.util.MathArrays;
|
||||
|
||||
/**
|
||||
* Function that implements the
|
||||
* <a href="http://en.wikipedia.org/wiki/Bicubic_interpolation">
|
||||
* bicubic spline interpolation</a>.
|
||||
* Function that implements the <a
|
||||
* href="http://www.paulinternet.nl/?page=bicubic"> bicubic spline
|
||||
* interpolation</a>.
|
||||
*
|
||||
* @since 2.1
|
||||
*/
|
||||
public class BicubicSplineInterpolatingFunction
|
||||
implements BivariateFunction {
|
||||
/** Number of coefficients. */
|
||||
private static final int NUM_COEFF = 16;
|
||||
/**
|
||||
* Matrix to compute the spline coefficients from the function values
|
||||
* and function derivatives values
|
||||
*/
|
||||
private static final double[][] AINV = {
|
||||
{ 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
|
||||
{ 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 },
|
||||
{ -3,3,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0 },
|
||||
{ 2,-2,0,0,1,1,0,0,0,0,0,0,0,0,0,0 },
|
||||
{ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 },
|
||||
{ 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 },
|
||||
{ 0,0,0,0,0,0,0,0,-3,3,0,0,-2,-1,0,0 },
|
||||
{ 0,0,0,0,0,0,0,0,2,-2,0,0,1,1,0,0 },
|
||||
{ -3,0,3,0,0,0,0,0,-2,0,-1,0,0,0,0,0 },
|
||||
{ 0,0,0,0,-3,0,3,0,0,0,0,0,-2,0,-1,0 },
|
||||
{ 9,-9,-9,9,6,3,-6,-3,6,-6,3,-3,4,2,2,1 },
|
||||
{ -6,6,6,-6,-3,-3,3,3,-4,4,-2,2,-2,-2,-1,-1 },
|
||||
{ 2,0,-2,0,0,0,0,0,1,0,1,0,0,0,0,0 },
|
||||
{ 0,0,0,0,2,0,-2,0,0,0,0,0,1,0,1,0 },
|
||||
{ -6,6,6,-6,-4,-2,4,2,-3,3,-3,3,-2,-1,-2,-1 },
|
||||
{ 4,-4,-4,4,2,2,-2,-2,2,-2,2,-2,1,1,1,1 }
|
||||
};
|
||||
|
||||
/** Samples x-coordinates */
|
||||
private final double[] xval;
|
||||
|
||||
/** Samples y-coordinates */
|
||||
private final double[] yval;
|
||||
|
||||
/** Set of cubic splines patching the whole data grid */
|
||||
private final BicubicSplineFunction[][] splines;
|
||||
/**
|
||||
* Partial derivatives.
|
||||
* The value of the first index determines the kind of derivatives:
|
||||
* 0 = first partial derivatives wrt x
|
||||
* 1 = first partial derivatives wrt y
|
||||
* 2 = second partial derivatives wrt x
|
||||
* 3 = second partial derivatives wrt y
|
||||
* 4 = cross partial derivatives
|
||||
*/
|
||||
private final BivariateFunction[][][] partialDerivatives;
|
||||
private final double[][] fval;
|
||||
|
||||
/**
|
||||
* @param x Sample values of the x-coordinate, in increasing order.
|
||||
* @param y Sample values of the y-coordinate, in increasing order.
|
||||
* @param f Values of the function on every grid point.
|
||||
* @param dFdX Values of the partial derivative of function with respect
|
||||
* to x on every grid point.
|
||||
* @param dFdY Values of the partial derivative of function with respect
|
||||
* to y on every grid point.
|
||||
* @param d2FdXdY Values of the cross partial derivative of function on
|
||||
* every grid point.
|
||||
* @throws DimensionMismatchException if the various arrays do not contain
|
||||
* the expected number of elements.
|
||||
* @throws NonMonotonicSequenceException if {@code x} or {@code y} are
|
||||
* not strictly increasing.
|
||||
* @param f Values of the function on every grid point. the expected number
|
||||
* of elements.
|
||||
* @throws NonMonotonicSequenceException if {@code x} or {@code y} are not
|
||||
* strictly increasing.
|
||||
* @throws NullArgumentException if any of the arguments are null
|
||||
* @throws NoDataException if any of the arrays has zero length.
|
||||
* @throws DimensionMismatchException if the length of x and y don't match the row, column
|
||||
* height of f
|
||||
*/
|
||||
public BicubicSplineInterpolatingFunction(double[] x,
|
||||
double[] y,
|
||||
double[][] f,
|
||||
double[][] dFdX,
|
||||
double[][] dFdY,
|
||||
double[][] d2FdXdY)
|
||||
throws DimensionMismatchException,
|
||||
NoDataException,
|
||||
NonMonotonicSequenceException {
|
||||
this(x, y, f, dFdX, dFdY, d2FdXdY, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param x Sample values of the x-coordinate, in increasing order.
|
||||
* @param y Sample values of the y-coordinate, in increasing order.
|
||||
* @param f Values of the function on every grid point.
|
||||
* @param dFdX Values of the partial derivative of function with respect
|
||||
* to x on every grid point.
|
||||
* @param dFdY Values of the partial derivative of function with respect
|
||||
* to y on every grid point.
|
||||
* @param d2FdXdY Values of the cross partial derivative of function on
|
||||
* every grid point.
|
||||
* @param initializeDerivatives Whether to initialize the internal data
|
||||
* needed for calling any of the methods that compute the partial derivatives
|
||||
* this function.
|
||||
* @throws DimensionMismatchException if the various arrays do not contain
|
||||
* the expected number of elements.
|
||||
* @throws NonMonotonicSequenceException if {@code x} or {@code y} are
|
||||
* not strictly increasing.
|
||||
* @throws NoDataException if any of the arrays has zero length.
|
||||
*
|
||||
* @see #partialDerivativeX(double,double)
|
||||
* @see #partialDerivativeY(double,double)
|
||||
* @see #partialDerivativeXX(double,double)
|
||||
* @see #partialDerivativeYY(double,double)
|
||||
* @see #partialDerivativeXY(double,double)
|
||||
*/
|
||||
public BicubicSplineInterpolatingFunction(double[] x,
|
||||
double[] y,
|
||||
double[][] f,
|
||||
double[][] dFdX,
|
||||
double[][] dFdY,
|
||||
double[][] d2FdXdY,
|
||||
boolean initializeDerivatives)
|
||||
throws DimensionMismatchException,
|
||||
NoDataException,
|
||||
NonMonotonicSequenceException {
|
||||
public BicubicSplineInterpolatingFunction(double[] x, double[] y,
|
||||
double[][] f)
|
||||
throws DimensionMismatchException, NullArgumentException,
|
||||
NoDataException, NonMonotonicSequenceException {
|
||||
|
||||
final int minimumLength = AkimaSplineInterpolator.MINIMUM_NUMBER_POINTS;
|
||||
|
||||
if (x == null || y == null || f == null || f[0] == null) {
|
||||
throw new NullArgumentException();
|
||||
}
|
||||
|
||||
final int xLen = x.length;
|
||||
final int yLen = y.length;
|
||||
|
||||
if (xLen == 0 || yLen == 0 || f.length == 0 || f[0].length == 0) {
|
||||
throw new NoDataException();
|
||||
}
|
||||
|
||||
if (xLen < minimumLength || yLen < minimumLength ||
|
||||
f.length < minimumLength || f[0].length < minimumLength) {
|
||||
throw new InsufficientDataException();
|
||||
}
|
||||
|
||||
if (xLen != f.length) {
|
||||
throw new DimensionMismatchException(xLen, f.length);
|
||||
}
|
||||
if (xLen != dFdX.length) {
|
||||
throw new DimensionMismatchException(xLen, dFdX.length);
|
||||
}
|
||||
if (xLen != dFdY.length) {
|
||||
throw new DimensionMismatchException(xLen, dFdY.length);
|
||||
}
|
||||
if (xLen != d2FdXdY.length) {
|
||||
throw new DimensionMismatchException(xLen, d2FdXdY.length);
|
||||
|
||||
if (yLen != f[0].length) {
|
||||
throw new DimensionMismatchException(yLen, f[0].length);
|
||||
}
|
||||
|
||||
MathArrays.checkOrder(x);
|
||||
|
@ -162,57 +95,7 @@ public class BicubicSplineInterpolatingFunction
|
|||
|
||||
xval = x.clone();
|
||||
yval = y.clone();
|
||||
|
||||
final int lastI = xLen - 1;
|
||||
final int lastJ = yLen - 1;
|
||||
splines = new BicubicSplineFunction[lastI][lastJ];
|
||||
|
||||
for (int i = 0; i < lastI; i++) {
|
||||
if (f[i].length != yLen) {
|
||||
throw new DimensionMismatchException(f[i].length, yLen);
|
||||
}
|
||||
if (dFdX[i].length != yLen) {
|
||||
throw new DimensionMismatchException(dFdX[i].length, yLen);
|
||||
}
|
||||
if (dFdY[i].length != yLen) {
|
||||
throw new DimensionMismatchException(dFdY[i].length, yLen);
|
||||
}
|
||||
if (d2FdXdY[i].length != yLen) {
|
||||
throw new DimensionMismatchException(d2FdXdY[i].length, yLen);
|
||||
}
|
||||
final int ip1 = i + 1;
|
||||
for (int j = 0; j < lastJ; j++) {
|
||||
final int jp1 = j + 1;
|
||||
final double[] beta = new double[] {
|
||||
f[i][j], f[ip1][j], f[i][jp1], f[ip1][jp1],
|
||||
dFdX[i][j], dFdX[ip1][j], dFdX[i][jp1], dFdX[ip1][jp1],
|
||||
dFdY[i][j], dFdY[ip1][j], dFdY[i][jp1], dFdY[ip1][jp1],
|
||||
d2FdXdY[i][j], d2FdXdY[ip1][j], d2FdXdY[i][jp1], d2FdXdY[ip1][jp1]
|
||||
};
|
||||
|
||||
splines[i][j] = new BicubicSplineFunction(computeSplineCoefficients(beta),
|
||||
initializeDerivatives);
|
||||
}
|
||||
}
|
||||
|
||||
if (initializeDerivatives) {
|
||||
// Compute all partial derivatives.
|
||||
partialDerivatives = new BivariateFunction[5][lastI][lastJ];
|
||||
|
||||
for (int i = 0; i < lastI; i++) {
|
||||
for (int j = 0; j < lastJ; j++) {
|
||||
final BicubicSplineFunction bcs = splines[i][j];
|
||||
partialDerivatives[0][i][j] = bcs.partialDerivativeX();
|
||||
partialDerivatives[1][i][j] = bcs.partialDerivativeY();
|
||||
partialDerivatives[2][i][j] = bcs.partialDerivativeXX();
|
||||
partialDerivatives[3][i][j] = bcs.partialDerivativeYY();
|
||||
partialDerivatives[4][i][j] = bcs.partialDerivativeXY();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Partial derivative methods cannot be used.
|
||||
partialDerivatives = null;
|
||||
}
|
||||
fval = f.clone();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -220,13 +103,37 @@ public class BicubicSplineInterpolatingFunction
|
|||
*/
|
||||
public double value(double x, double y)
|
||||
throws OutOfRangeException {
|
||||
final int i = searchIndex(x, xval);
|
||||
final int j = searchIndex(y, yval);
|
||||
int index;
|
||||
PolynomialSplineFunction spline;
|
||||
AkimaSplineInterpolator interpolator = new AkimaSplineInterpolator();
|
||||
final int offset = 2;
|
||||
final int count = offset + 3;
|
||||
final int i = searchIndex(x, xval, offset, count);
|
||||
final int j = searchIndex(y, yval, offset, count);
|
||||
|
||||
final double xN = (x - xval[i]) / (xval[i + 1] - xval[i]);
|
||||
final double yN = (y - yval[j]) / (yval[j + 1] - yval[j]);
|
||||
double xArray[] = new double[count];
|
||||
double yArray[] = new double[count];
|
||||
double zArray[] = new double[count];
|
||||
double interpArray[] = new double[count];
|
||||
|
||||
return splines[i][j].value(xN, yN);
|
||||
for (index = 0; index < count; index++) {
|
||||
xArray[index] = xval[i + index];
|
||||
yArray[index] = yval[j + index];
|
||||
}
|
||||
|
||||
for (int zIndex = 0; zIndex < count; zIndex++) {
|
||||
for (index = 0; index < count; index++) {
|
||||
zArray[index] = fval[i + index][j + zIndex];
|
||||
}
|
||||
spline = interpolator.interpolate(xArray, zArray);
|
||||
interpArray[zIndex] = spline.value(x);
|
||||
}
|
||||
|
||||
spline = interpolator.interpolate(yArray, interpArray);
|
||||
|
||||
double returnValue = spline.value(y);
|
||||
|
||||
return returnValue;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -238,9 +145,7 @@ public class BicubicSplineInterpolatingFunction
|
|||
* @since 3.3
|
||||
*/
|
||||
public boolean isValidPoint(double x, double y) {
|
||||
if (x < xval[0] ||
|
||||
x > xval[xval.length - 1] ||
|
||||
y < yval[0] ||
|
||||
if (x < xval[0] || x > xval[xval.length - 1] || y < yval[0] ||
|
||||
y > yval[yval.length - 1]) {
|
||||
return false;
|
||||
} else {
|
||||
|
@ -248,386 +153,43 @@ public class BicubicSplineInterpolatingFunction
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @param x x-coordinate.
|
||||
* @param y y-coordinate.
|
||||
* @return the value at point (x, y) of the first partial derivative with
|
||||
* respect to x.
|
||||
* @throws OutOfRangeException if {@code x} (resp. {@code y}) is outside
|
||||
* the range defined by the boundary values of {@code xval} (resp.
|
||||
* {@code yval}).
|
||||
* @throws NullPointerException if the internal data were not initialized
|
||||
* (cf. {@link #BicubicSplineInterpolatingFunction(double[],double[],double[][],
|
||||
* double[][],double[][],double[][],boolean) constructor}).
|
||||
*/
|
||||
public double partialDerivativeX(double x, double y)
|
||||
throws OutOfRangeException {
|
||||
return partialDerivative(0, x, y);
|
||||
}
|
||||
/**
|
||||
* @param x x-coordinate.
|
||||
* @param y y-coordinate.
|
||||
* @return the value at point (x, y) of the first partial derivative with
|
||||
* respect to y.
|
||||
* @throws OutOfRangeException if {@code x} (resp. {@code y}) is outside
|
||||
* the range defined by the boundary values of {@code xval} (resp.
|
||||
* {@code yval}).
|
||||
* @throws NullPointerException if the internal data were not initialized
|
||||
* (cf. {@link #BicubicSplineInterpolatingFunction(double[],double[],double[][],
|
||||
* double[][],double[][],double[][],boolean) constructor}).
|
||||
*/
|
||||
public double partialDerivativeY(double x, double y)
|
||||
throws OutOfRangeException {
|
||||
return partialDerivative(1, x, y);
|
||||
}
|
||||
/**
|
||||
* @param x x-coordinate.
|
||||
* @param y y-coordinate.
|
||||
* @return the value at point (x, y) of the second partial derivative with
|
||||
* respect to x.
|
||||
* @throws OutOfRangeException if {@code x} (resp. {@code y}) is outside
|
||||
* the range defined by the boundary values of {@code xval} (resp.
|
||||
* {@code yval}).
|
||||
* @throws NullPointerException if the internal data were not initialized
|
||||
* (cf. {@link #BicubicSplineInterpolatingFunction(double[],double[],double[][],
|
||||
* double[][],double[][],double[][],boolean) constructor}).
|
||||
*/
|
||||
public double partialDerivativeXX(double x, double y)
|
||||
throws OutOfRangeException {
|
||||
return partialDerivative(2, x, y);
|
||||
}
|
||||
/**
|
||||
* @param x x-coordinate.
|
||||
* @param y y-coordinate.
|
||||
* @return the value at point (x, y) of the second partial derivative with
|
||||
* respect to y.
|
||||
* @throws OutOfRangeException if {@code x} (resp. {@code y}) is outside
|
||||
* the range defined by the boundary values of {@code xval} (resp.
|
||||
* {@code yval}).
|
||||
* @throws NullPointerException if the internal data were not initialized
|
||||
* (cf. {@link #BicubicSplineInterpolatingFunction(double[],double[],double[][],
|
||||
* double[][],double[][],double[][],boolean) constructor}).
|
||||
*/
|
||||
public double partialDerivativeYY(double x, double y)
|
||||
throws OutOfRangeException {
|
||||
return partialDerivative(3, x, y);
|
||||
}
|
||||
/**
|
||||
* @param x x-coordinate.
|
||||
* @param y y-coordinate.
|
||||
* @return the value at point (x, y) of the second partial cross-derivative.
|
||||
* @throws OutOfRangeException if {@code x} (resp. {@code y}) is outside
|
||||
* the range defined by the boundary values of {@code xval} (resp.
|
||||
* {@code yval}).
|
||||
* @throws NullPointerException if the internal data were not initialized
|
||||
* (cf. {@link #BicubicSplineInterpolatingFunction(double[],double[],double[][],
|
||||
* double[][],double[][],double[][],boolean) constructor}).
|
||||
*/
|
||||
public double partialDerivativeXY(double x, double y)
|
||||
throws OutOfRangeException {
|
||||
return partialDerivative(4, x, y);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param which First index in {@link #partialDerivatives}.
|
||||
* @param x x-coordinate.
|
||||
* @param y y-coordinate.
|
||||
* @return the value at point (x, y) of the selected partial derivative.
|
||||
* @throws OutOfRangeException if {@code x} (resp. {@code y}) is outside
|
||||
* the range defined by the boundary values of {@code xval} (resp.
|
||||
* {@code yval}).
|
||||
* @throws NullPointerException if the internal data were not initialized
|
||||
* (cf. {@link #BicubicSplineInterpolatingFunction(double[],double[],double[][],
|
||||
* double[][],double[][],double[][],boolean) constructor}).
|
||||
*/
|
||||
private double partialDerivative(int which, double x, double y)
|
||||
throws OutOfRangeException {
|
||||
final int i = searchIndex(x, xval);
|
||||
final int j = searchIndex(y, yval);
|
||||
|
||||
final double xN = (x - xval[i]) / (xval[i + 1] - xval[i]);
|
||||
final double yN = (y - yval[j]) / (yval[j + 1] - yval[j]);
|
||||
|
||||
return partialDerivatives[which][i][j].value(xN, yN);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param c Coordinate.
|
||||
* @param val Coordinate samples.
|
||||
* @return the index in {@code val} corresponding to the interval
|
||||
* containing {@code c}.
|
||||
* @throws OutOfRangeException if {@code c} is out of the
|
||||
* range defined by the boundary values of {@code val}.
|
||||
* @param offset how far back from found value to offset for querying
|
||||
* @param count total number of elements forward from beginning that will be
|
||||
* queried
|
||||
* @return the index in {@code val} corresponding to the interval containing
|
||||
* {@code c}.
|
||||
* @throws OutOfRangeException if {@code c} is out of the range defined by
|
||||
* the boundary values of {@code val}.
|
||||
*/
|
||||
private int searchIndex(double c, double[] val) {
|
||||
final int r = Arrays.binarySearch(val, c);
|
||||
private int searchIndex(double c, double[] val, int offset, int count) {
|
||||
int r = Arrays.binarySearch(val, c);
|
||||
|
||||
if (r == -1 ||
|
||||
r == -val.length - 1) {
|
||||
if (r == -1 || r == -val.length - 1) {
|
||||
throw new OutOfRangeException(c, val[0], val[val.length - 1]);
|
||||
}
|
||||
|
||||
if (r < 0) {
|
||||
// "c" in within an interpolation sub-interval: Return the
|
||||
// index of the sample at the lower end of the sub-interval.
|
||||
return -r - 2;
|
||||
// "c" in within an interpolation sub-interval, which returns
|
||||
// negative
|
||||
// need to remove the negative sign for consistency
|
||||
r = -r - offset - 1;
|
||||
} else {
|
||||
r -= offset;
|
||||
}
|
||||
final int last = val.length - 1;
|
||||
if (r == last) {
|
||||
|
||||
if (r < 0) {
|
||||
r = 0;
|
||||
}
|
||||
|
||||
if ((r + count) >= val.length) {
|
||||
// "c" is the last sample of the range: Return the index
|
||||
// of the sample at the lower end of the last sub-interval.
|
||||
return last - 1;
|
||||
r = val.length - count;
|
||||
}
|
||||
|
||||
// "c" is another sample point.
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the spline coefficients from the list of function values and
|
||||
* function partial derivatives values at the four corners of a grid
|
||||
* element. They must be specified in the following order:
|
||||
* <ul>
|
||||
* <li>f(0,0)</li>
|
||||
* <li>f(1,0)</li>
|
||||
* <li>f(0,1)</li>
|
||||
* <li>f(1,1)</li>
|
||||
* <li>f<sub>x</sub>(0,0)</li>
|
||||
* <li>f<sub>x</sub>(1,0)</li>
|
||||
* <li>f<sub>x</sub>(0,1)</li>
|
||||
* <li>f<sub>x</sub>(1,1)</li>
|
||||
* <li>f<sub>y</sub>(0,0)</li>
|
||||
* <li>f<sub>y</sub>(1,0)</li>
|
||||
* <li>f<sub>y</sub>(0,1)</li>
|
||||
* <li>f<sub>y</sub>(1,1)</li>
|
||||
* <li>f<sub>xy</sub>(0,0)</li>
|
||||
* <li>f<sub>xy</sub>(1,0)</li>
|
||||
* <li>f<sub>xy</sub>(0,1)</li>
|
||||
* <li>f<sub>xy</sub>(1,1)</li>
|
||||
* </ul>
|
||||
* where the subscripts indicate the partial derivative with respect to
|
||||
* the corresponding variable(s).
|
||||
*
|
||||
* @param beta List of function values and function partial derivatives
|
||||
* values.
|
||||
* @return the spline coefficients.
|
||||
*/
|
||||
private double[] computeSplineCoefficients(double[] beta) {
|
||||
final double[] a = new double[NUM_COEFF];
|
||||
|
||||
for (int i = 0; i < NUM_COEFF; i++) {
|
||||
double result = 0;
|
||||
final double[] row = AINV[i];
|
||||
for (int j = 0; j < NUM_COEFF; j++) {
|
||||
result += row[j] * beta[j];
|
||||
}
|
||||
a[i] = result;
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 2D-spline function.
|
||||
*
|
||||
*/
|
||||
class BicubicSplineFunction implements BivariateFunction {
|
||||
/** Number of points. */
|
||||
private static final short N = 4;
|
||||
/** Coefficients */
|
||||
private final double[][] a;
|
||||
/** First partial derivative along x. */
|
||||
private final BivariateFunction partialDerivativeX;
|
||||
/** First partial derivative along y. */
|
||||
private final BivariateFunction partialDerivativeY;
|
||||
/** Second partial derivative along x. */
|
||||
private final BivariateFunction partialDerivativeXX;
|
||||
/** Second partial derivative along y. */
|
||||
private final BivariateFunction partialDerivativeYY;
|
||||
/** Second crossed partial derivative. */
|
||||
private final BivariateFunction partialDerivativeXY;
|
||||
|
||||
/**
|
||||
* Simple constructor.
|
||||
*
|
||||
* @param coeff Spline coefficients.
|
||||
*/
|
||||
public BicubicSplineFunction(double[] coeff) {
|
||||
this(coeff, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Simple constructor.
|
||||
*
|
||||
* @param coeff Spline coefficients.
|
||||
* @param initializeDerivatives Whether to initialize the internal data
|
||||
* needed for calling any of the methods that compute the partial derivatives
|
||||
* this function.
|
||||
*/
|
||||
public BicubicSplineFunction(double[] coeff,
|
||||
boolean initializeDerivatives) {
|
||||
a = new double[N][N];
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
a[i][j] = coeff[i * N + j];
|
||||
}
|
||||
}
|
||||
|
||||
if (initializeDerivatives) {
|
||||
// Compute all partial derivatives functions.
|
||||
final double[][] aX = new double[N][N];
|
||||
final double[][] aY = new double[N][N];
|
||||
final double[][] aXX = new double[N][N];
|
||||
final double[][] aYY = new double[N][N];
|
||||
final double[][] aXY = new double[N][N];
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
final double c = a[i][j];
|
||||
aX[i][j] = i * c;
|
||||
aY[i][j] = j * c;
|
||||
aXX[i][j] = (i - 1) * aX[i][j];
|
||||
aYY[i][j] = (j - 1) * aY[i][j];
|
||||
aXY[i][j] = j * aX[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
partialDerivativeX = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double[] pX = {0, 1, x, x2};
|
||||
|
||||
final double y2 = y * y;
|
||||
final double y3 = y2 * y;
|
||||
final double[] pY = {1, y, y2, y3};
|
||||
|
||||
return apply(pX, pY, aX);
|
||||
}
|
||||
};
|
||||
partialDerivativeY = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double x3 = x2 * x;
|
||||
final double[] pX = {1, x, x2, x3};
|
||||
|
||||
final double y2 = y * y;
|
||||
final double[] pY = {0, 1, y, y2};
|
||||
|
||||
return apply(pX, pY, aY);
|
||||
}
|
||||
};
|
||||
partialDerivativeXX = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double[] pX = {0, 0, 1, x};
|
||||
|
||||
final double y2 = y * y;
|
||||
final double y3 = y2 * y;
|
||||
final double[] pY = {1, y, y2, y3};
|
||||
|
||||
return apply(pX, pY, aXX);
|
||||
}
|
||||
};
|
||||
partialDerivativeYY = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double x3 = x2 * x;
|
||||
final double[] pX = {1, x, x2, x3};
|
||||
|
||||
final double[] pY = {0, 0, 1, y};
|
||||
|
||||
return apply(pX, pY, aYY);
|
||||
}
|
||||
};
|
||||
partialDerivativeXY = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double[] pX = {0, 1, x, x2};
|
||||
|
||||
final double y2 = y * y;
|
||||
final double[] pY = {0, 1, y, y2};
|
||||
|
||||
return apply(pX, pY, aXY);
|
||||
}
|
||||
};
|
||||
} else {
|
||||
partialDerivativeX = null;
|
||||
partialDerivativeY = null;
|
||||
partialDerivativeXX = null;
|
||||
partialDerivativeYY = null;
|
||||
partialDerivativeXY = null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
public double value(double x, double y) {
|
||||
if (x < 0 || x > 1) {
|
||||
throw new OutOfRangeException(x, 0, 1);
|
||||
}
|
||||
if (y < 0 || y > 1) {
|
||||
throw new OutOfRangeException(y, 0, 1);
|
||||
}
|
||||
|
||||
final double x2 = x * x;
|
||||
final double x3 = x2 * x;
|
||||
final double[] pX = {1, x, x2, x3};
|
||||
|
||||
final double y2 = y * y;
|
||||
final double y3 = y2 * y;
|
||||
final double[] pY = {1, y, y2, y3};
|
||||
|
||||
return apply(pX, pY, a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the value of the bicubic polynomial.
|
||||
*
|
||||
* @param pX Powers of the x-coordinate.
|
||||
* @param pY Powers of the y-coordinate.
|
||||
* @param coeff Spline coefficients.
|
||||
* @return the interpolated value.
|
||||
*/
|
||||
private double apply(double[] pX, double[] pY, double[][] coeff) {
|
||||
double result = 0;
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
result += coeff[i][j] * pX[i] * pY[j];
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return the partial derivative wrt {@code x}.
|
||||
*/
|
||||
public BivariateFunction partialDerivativeX() {
|
||||
return partialDerivativeX;
|
||||
}
|
||||
/**
|
||||
* @return the partial derivative wrt {@code y}.
|
||||
*/
|
||||
public BivariateFunction partialDerivativeY() {
|
||||
return partialDerivativeY;
|
||||
}
|
||||
/**
|
||||
* @return the second partial derivative wrt {@code x}.
|
||||
*/
|
||||
public BivariateFunction partialDerivativeXX() {
|
||||
return partialDerivativeXX;
|
||||
}
|
||||
/**
|
||||
* @return the second partial derivative wrt {@code y}.
|
||||
*/
|
||||
public BivariateFunction partialDerivativeYY() {
|
||||
return partialDerivativeYY;
|
||||
}
|
||||
/**
|
||||
* @return the second partial cross-derivative.
|
||||
*/
|
||||
public BivariateFunction partialDerivativeXY() {
|
||||
return partialDerivativeXY;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,12 +16,10 @@
|
|||
*/
|
||||
package org.apache.commons.math3.analysis.interpolation;
|
||||
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction;
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.NoDataException;
|
||||
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
|
||||
import org.apache.commons.math3.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.util.MathArrays;
|
||||
|
||||
/**
|
||||
|
@ -30,144 +28,37 @@ import org.apache.commons.math3.util.MathArrays;
|
|||
* @since 2.2
|
||||
*/
|
||||
public class BicubicSplineInterpolator
|
||||
implements BivariateGridInterpolator {
|
||||
/** Whether to initialize internal data used to compute the analytical
|
||||
derivatives of the splines. */
|
||||
private final boolean initializeDerivatives;
|
||||
implements BivariateGridInterpolator
|
||||
{
|
||||
|
||||
/**
|
||||
* Default constructor.
|
||||
* The argument {@link #BicubicSplineInterpolator(boolean) initializeDerivatives}
|
||||
* is set to {@code false}.
|
||||
*/
|
||||
public BicubicSplineInterpolator() {
|
||||
this(false);
|
||||
}
|
||||
public BicubicSplineInterpolator()
|
||||
{
|
||||
|
||||
/**
|
||||
* Creates an interpolator.
|
||||
*
|
||||
* @param initializeDerivatives Whether to initialize the internal data
|
||||
* needed for calling any of the methods that compute the partial derivatives
|
||||
* of the {@link BicubicSplineInterpolatingFunction function} returned from
|
||||
* the call to {@link #interpolate(double[],double[],double[][]) interpolate}.
|
||||
*/
|
||||
public BicubicSplineInterpolator(boolean initializeDerivatives) {
|
||||
this.initializeDerivatives = initializeDerivatives;
|
||||
}
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
*/
|
||||
public BicubicSplineInterpolatingFunction interpolate(final double[] xval,
|
||||
final double[] yval,
|
||||
public BicubicSplineInterpolatingFunction interpolate( final double[] xval, final double[] yval,
|
||||
final double[][] fval)
|
||||
throws NoDataException, DimensionMismatchException,
|
||||
NonMonotonicSequenceException, NumberIsTooSmallException {
|
||||
if (xval.length == 0 || yval.length == 0 || fval.length == 0) {
|
||||
throw new NoDataException();
|
||||
throws DimensionMismatchException, NullArgumentException, NoDataException, NonMonotonicSequenceException
|
||||
{
|
||||
if ( xval == null || yval == null || fval == null || fval[0] == null )
|
||||
{
|
||||
throw new NullArgumentException();
|
||||
}
|
||||
if (xval.length != fval.length) {
|
||||
throw new DimensionMismatchException(xval.length, fval.length);
|
||||
|
||||
if ( xval.length == 0 || yval.length == 0 || fval.length == 0 )
|
||||
{
|
||||
throw new NoDataException();
|
||||
}
|
||||
|
||||
MathArrays.checkOrder(xval);
|
||||
MathArrays.checkOrder(yval);
|
||||
|
||||
final int xLen = xval.length;
|
||||
final int yLen = yval.length;
|
||||
|
||||
// Samples (first index is y-coordinate, i.e. subarray variable is x)
|
||||
// 0 <= i < xval.length
|
||||
// 0 <= j < yval.length
|
||||
// fX[j][i] = f(xval[i], yval[j])
|
||||
final double[][] fX = new double[yLen][xLen];
|
||||
for (int i = 0; i < xLen; i++) {
|
||||
if (fval[i].length != yLen) {
|
||||
throw new DimensionMismatchException(fval[i].length, yLen);
|
||||
}
|
||||
|
||||
for (int j = 0; j < yLen; j++) {
|
||||
fX[j][i] = fval[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
final SplineInterpolator spInterpolator = new SplineInterpolator();
|
||||
|
||||
// For each line y[j] (0 <= j < yLen), construct a 1D spline with
|
||||
// respect to variable x
|
||||
final PolynomialSplineFunction[] ySplineX = new PolynomialSplineFunction[yLen];
|
||||
for (int j = 0; j < yLen; j++) {
|
||||
ySplineX[j] = spInterpolator.interpolate(xval, fX[j]);
|
||||
}
|
||||
|
||||
// For each line x[i] (0 <= i < xLen), construct a 1D spline with
|
||||
// respect to variable y generated by array fY_1[i]
|
||||
final PolynomialSplineFunction[] xSplineY = new PolynomialSplineFunction[xLen];
|
||||
for (int i = 0; i < xLen; i++) {
|
||||
xSplineY[i] = spInterpolator.interpolate(yval, fval[i]);
|
||||
}
|
||||
|
||||
// Partial derivatives with respect to x at the grid knots
|
||||
final double[][] dFdX = new double[xLen][yLen];
|
||||
for (int j = 0; j < yLen; j++) {
|
||||
final UnivariateFunction f = ySplineX[j].derivative();
|
||||
for (int i = 0; i < xLen; i++) {
|
||||
dFdX[i][j] = f.value(xval[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Partial derivatives with respect to y at the grid knots
|
||||
final double[][] dFdY = new double[xLen][yLen];
|
||||
for (int i = 0; i < xLen; i++) {
|
||||
final UnivariateFunction f = xSplineY[i].derivative();
|
||||
for (int j = 0; j < yLen; j++) {
|
||||
dFdY[i][j] = f.value(yval[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// Cross partial derivatives
|
||||
final double[][] d2FdXdY = new double[xLen][yLen];
|
||||
for (int i = 0; i < xLen ; i++) {
|
||||
final int nI = nextIndex(i, xLen);
|
||||
final int pI = previousIndex(i);
|
||||
for (int j = 0; j < yLen; j++) {
|
||||
final int nJ = nextIndex(j, yLen);
|
||||
final int pJ = previousIndex(j);
|
||||
d2FdXdY[i][j] = (fval[nI][nJ] - fval[nI][pJ] -
|
||||
fval[pI][nJ] + fval[pI][pJ]) /
|
||||
((xval[nI] - xval[pI]) * (yval[nJ] - yval[pJ]));
|
||||
}
|
||||
}
|
||||
|
||||
// Create the interpolating splines
|
||||
return new BicubicSplineInterpolatingFunction(xval, yval, fval,
|
||||
dFdX, dFdY, d2FdXdY,
|
||||
initializeDerivatives);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the next index of an array, clipping if necessary.
|
||||
* It is assumed (but not checked) that {@code i >= 0}.
|
||||
*
|
||||
* @param i Index.
|
||||
* @param max Upper limit of the array.
|
||||
* @return the next index.
|
||||
*/
|
||||
private int nextIndex(int i, int max) {
|
||||
final int index = i + 1;
|
||||
return index < max ? index : index - 1;
|
||||
}
|
||||
/**
|
||||
* Computes the previous index of an array, clipping if necessary.
|
||||
* It is assumed (but not checked) that {@code i} is smaller than the size
|
||||
* of the array.
|
||||
*
|
||||
* @param i Index.
|
||||
* @return the previous index.
|
||||
*/
|
||||
private int previousIndex(int i) {
|
||||
final int index = i - 1;
|
||||
return index >= 0 ? index : 0;
|
||||
return new BicubicSplineInterpolatingFunction( xval, yval, fval );
|
||||
}
|
||||
}
|
||||
|
|
|
@ -76,7 +76,7 @@ public class TricubicSplineInterpolator
|
|||
}
|
||||
}
|
||||
|
||||
final BicubicSplineInterpolator bsi = new BicubicSplineInterpolator(true);
|
||||
final BicubicSplineInterpolator bsi = new BicubicSplineInterpolator();
|
||||
|
||||
// For each line x[i] (0 <= i < xLen), construct a 2D spline in y and z
|
||||
final BicubicSplineInterpolatingFunction[] xSplineYZ
|
||||
|
@ -103,46 +103,13 @@ public class TricubicSplineInterpolator
|
|||
final double[][][] dFdX = new double[xLen][yLen][zLen];
|
||||
final double[][][] dFdY = new double[xLen][yLen][zLen];
|
||||
final double[][][] d2FdXdY = new double[xLen][yLen][zLen];
|
||||
for (int k = 0; k < zLen; k++) {
|
||||
final BicubicSplineInterpolatingFunction f = zSplineXY[k];
|
||||
for (int i = 0; i < xLen; i++) {
|
||||
final double x = xval[i];
|
||||
for (int j = 0; j < yLen; j++) {
|
||||
final double y = yval[j];
|
||||
dFdX[i][j][k] = f.partialDerivativeX(x, y);
|
||||
dFdY[i][j][k] = f.partialDerivativeY(x, y);
|
||||
d2FdXdY[i][j][k] = f.partialDerivativeXY(x, y);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Partial derivatives wrt y and wrt z
|
||||
final double[][][] dFdZ = new double[xLen][yLen][zLen];
|
||||
final double[][][] d2FdYdZ = new double[xLen][yLen][zLen];
|
||||
for (int i = 0; i < xLen; i++) {
|
||||
final BicubicSplineInterpolatingFunction f = xSplineYZ[i];
|
||||
for (int j = 0; j < yLen; j++) {
|
||||
final double y = yval[j];
|
||||
for (int k = 0; k < zLen; k++) {
|
||||
final double z = zval[k];
|
||||
dFdZ[i][j][k] = f.partialDerivativeY(y, z);
|
||||
d2FdYdZ[i][j][k] = f.partialDerivativeXY(y, z);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Partial derivatives wrt x and wrt z
|
||||
final double[][][] d2FdZdX = new double[xLen][yLen][zLen];
|
||||
for (int j = 0; j < yLen; j++) {
|
||||
final BicubicSplineInterpolatingFunction f = ySplineZX[j];
|
||||
for (int k = 0; k < zLen; k++) {
|
||||
final double z = zval[k];
|
||||
for (int i = 0; i < xLen; i++) {
|
||||
final double x = xval[i];
|
||||
d2FdZdX[i][j][k] = f.partialDerivativeXY(z, x);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Third partial cross-derivatives
|
||||
final double[][][] d3FdXdYdZ = new double[xLen][yLen][zLen];
|
||||
|
|
|
@ -22,8 +22,9 @@ import org.apache.commons.math3.exception.util.ExceptionContext;
|
|||
import org.apache.commons.math3.exception.util.ExceptionContextProvider;
|
||||
|
||||
/**
|
||||
* Base class for all exceptions that signal a mismatch between the
|
||||
* current state and the user's expectations.
|
||||
* Base class for all exceptions that signal that the process
|
||||
* throwing the exception is in a state that does not comply with
|
||||
* the set of states that it is designed to be in.
|
||||
*
|
||||
* @since 2.2
|
||||
*/
|
||||
|
|
|
@ -293,6 +293,7 @@ public enum LocalizedFormats implements Localizable {
|
|||
OVERFLOW_IN_FRACTION("overflow in fraction {0}/{1}, cannot negate"),
|
||||
OVERFLOW_IN_ADDITION("overflow in addition: {0} + {1}"),
|
||||
OVERFLOW_IN_SUBTRACTION("overflow in subtraction: {0} - {1}"),
|
||||
OVERFLOW_IN_MULTIPLICATION("overflow in multiplication: {0} * {1}"),
|
||||
PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD("cannot access {0} method in percentile implementation {1}"),
|
||||
PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD("percentile implementation {0} does not support {1}"),
|
||||
PERMUTATION_EXCEEDS_N("permutation size ({0}) exceeds permuation domain ({1})"), /* keep */
|
||||
|
|
|
@ -119,7 +119,19 @@ public abstract class RungeKuttaIntegrator extends AbstractIntegrator {
|
|||
|
||||
// set up integration control objects
|
||||
stepStart = equations.getTime();
|
||||
stepSize = forward ? step : -step;
|
||||
if (forward) {
|
||||
if (stepStart + step >= t) {
|
||||
stepSize = t - stepStart;
|
||||
} else {
|
||||
stepSize = step;
|
||||
}
|
||||
} else {
|
||||
if (stepStart - step <= t) {
|
||||
stepSize = t - stepStart;
|
||||
} else {
|
||||
stepSize = -step;
|
||||
}
|
||||
}
|
||||
initIntegration(equations.getTime(), y0, t);
|
||||
|
||||
// main integration loop
|
||||
|
|
|
@ -128,7 +128,7 @@ public class Percentile extends AbstractUnivariateStatistic implements Serializa
|
|||
* can be reset with {@link #withEstimationType(EstimationType)}</li>
|
||||
* <li>default NaN strategy: {@link NaNStrategy#REMOVED},
|
||||
* can be reset with {@link #withNaNStrategy(NaNStrategy)}</li>
|
||||
* <li>a KthSelector that makes use of {@link PivotingStrategy#MEDIAN_OF_3},
|
||||
* <li>a KthSelector that makes use of {@link MedianOf3PivotingStrategy},
|
||||
* can be reset with {@link #withKthSelector(KthSelector)}</li>
|
||||
* </ul>
|
||||
*/
|
||||
|
|
|
@ -119,7 +119,8 @@ public class BinomialTest {
|
|||
throw new NullArgumentException();
|
||||
}
|
||||
|
||||
final BinomialDistribution distribution = new BinomialDistribution(numberOfTrials, probability);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final BinomialDistribution distribution = new BinomialDistribution(null, numberOfTrials, probability);
|
||||
switch (alternativeHypothesis) {
|
||||
case GREATER_THAN:
|
||||
return 1 - distribution.cumulativeProbability(numberOfSuccesses - 1);
|
||||
|
|
|
@ -155,8 +155,9 @@ public class ChiSquareTest {
|
|||
throws NotPositiveException, NotStrictlyPositiveException,
|
||||
DimensionMismatchException, MaxCountExceededException {
|
||||
|
||||
ChiSquaredDistribution distribution =
|
||||
new ChiSquaredDistribution(expected.length - 1.0);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final ChiSquaredDistribution distribution =
|
||||
new ChiSquaredDistribution(null, expected.length - 1.0);
|
||||
return 1.0 - distribution.cumulativeProbability(chiSquare(expected, observed));
|
||||
}
|
||||
|
||||
|
@ -311,8 +312,8 @@ public class ChiSquareTest {
|
|||
|
||||
checkArray(counts);
|
||||
double df = ((double) counts.length -1) * ((double) counts[0].length - 1);
|
||||
ChiSquaredDistribution distribution;
|
||||
distribution = new ChiSquaredDistribution(df);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final ChiSquaredDistribution distribution = new ChiSquaredDistribution(df);
|
||||
return 1 - distribution.cumulativeProbability(chiSquare(counts));
|
||||
|
||||
}
|
||||
|
@ -507,8 +508,9 @@ public class ChiSquareTest {
|
|||
throws DimensionMismatchException, NotPositiveException, ZeroException,
|
||||
MaxCountExceededException {
|
||||
|
||||
ChiSquaredDistribution distribution;
|
||||
distribution = new ChiSquaredDistribution((double) observed1.length - 1);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final ChiSquaredDistribution distribution =
|
||||
new ChiSquaredDistribution(null, (double) observed1.length - 1);
|
||||
return 1 - distribution.cumulativeProbability(
|
||||
chiSquareDataSetsComparison(observed1, observed2));
|
||||
|
||||
|
|
|
@ -152,10 +152,10 @@ public class GTest {
|
|||
throws NotPositiveException, NotStrictlyPositiveException,
|
||||
DimensionMismatchException, MaxCountExceededException {
|
||||
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final ChiSquaredDistribution distribution =
|
||||
new ChiSquaredDistribution(expected.length - 1.0);
|
||||
return 1.0 - distribution.cumulativeProbability(
|
||||
g(expected, observed));
|
||||
new ChiSquaredDistribution(null, expected.length - 1.0);
|
||||
return 1.0 - distribution.cumulativeProbability(g(expected, observed));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -183,10 +183,10 @@ public class GTest {
|
|||
throws NotPositiveException, NotStrictlyPositiveException,
|
||||
DimensionMismatchException, MaxCountExceededException {
|
||||
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final ChiSquaredDistribution distribution =
|
||||
new ChiSquaredDistribution(expected.length - 2.0);
|
||||
return 1.0 - distribution.cumulativeProbability(
|
||||
g(expected, observed));
|
||||
new ChiSquaredDistribution(null, expected.length - 2.0);
|
||||
return 1.0 - distribution.cumulativeProbability(g(expected, observed));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -472,8 +472,10 @@ public class GTest {
|
|||
final long[] observed2)
|
||||
throws DimensionMismatchException, NotPositiveException, ZeroException,
|
||||
MaxCountExceededException {
|
||||
final ChiSquaredDistribution distribution = new ChiSquaredDistribution(
|
||||
(double) observed1.length - 1);
|
||||
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final ChiSquaredDistribution distribution =
|
||||
new ChiSquaredDistribution(null, (double) observed1.length - 1);
|
||||
return 1 - distribution.cumulativeProbability(
|
||||
gDataSetsComparison(observed1, observed2));
|
||||
}
|
||||
|
|
|
@ -181,7 +181,8 @@ public class MannWhitneyUTest {
|
|||
final double z = (Umin - EU) / FastMath.sqrt(VarU);
|
||||
|
||||
// No try-catch or advertised exception because args are valid
|
||||
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final NormalDistribution standardNormal = new NormalDistribution(null, 0, 1);
|
||||
|
||||
return 2 * standardNormal.cumulativeProbability(z);
|
||||
}
|
||||
|
|
|
@ -124,9 +124,10 @@ public class OneWayAnova {
|
|||
throws NullArgumentException, DimensionMismatchException,
|
||||
ConvergenceException, MaxCountExceededException {
|
||||
|
||||
AnovaStats a = anovaStats(categoryData);
|
||||
final AnovaStats a = anovaStats(categoryData);
|
||||
// No try-catch or advertised exception because args are valid
|
||||
FDistribution fdist = new FDistribution(a.dfbg, a.dfwg);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final FDistribution fdist = new FDistribution(null, a.dfbg, a.dfwg);
|
||||
return 1.0 - fdist.cumulativeProbability(a.F);
|
||||
|
||||
}
|
||||
|
@ -167,7 +168,8 @@ public class OneWayAnova {
|
|||
ConvergenceException, MaxCountExceededException {
|
||||
|
||||
final AnovaStats a = anovaStats(categoryData, allowOneElementData);
|
||||
final FDistribution fdist = new FDistribution(a.dfbg, a.dfwg);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final FDistribution fdist = new FDistribution(null, a.dfbg, a.dfwg);
|
||||
return 1.0 - fdist.cumulativeProbability(a.F);
|
||||
|
||||
}
|
||||
|
|
|
@ -1056,8 +1056,9 @@ public class TTest {
|
|||
final double v, final double n)
|
||||
throws MaxCountExceededException, MathIllegalArgumentException {
|
||||
|
||||
double t = FastMath.abs(t(m, mu, v, n));
|
||||
TDistribution distribution = new TDistribution(n - 1);
|
||||
final double t = FastMath.abs(t(m, mu, v, n));
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final TDistribution distribution = new TDistribution(null, n - 1);
|
||||
return 2.0 * distribution.cumulativeProbability(-t);
|
||||
|
||||
}
|
||||
|
@ -1086,7 +1087,8 @@ public class TTest {
|
|||
|
||||
final double t = FastMath.abs(t(m1, m2, v1, v2, n1, n2));
|
||||
final double degreesOfFreedom = df(v1, v2, n1, n2);
|
||||
TDistribution distribution = new TDistribution(degreesOfFreedom);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final TDistribution distribution = new TDistribution(null, degreesOfFreedom);
|
||||
return 2.0 * distribution.cumulativeProbability(-t);
|
||||
|
||||
}
|
||||
|
@ -1115,7 +1117,8 @@ public class TTest {
|
|||
|
||||
final double t = FastMath.abs(homoscedasticT(m1, m2, v1, v2, n1, n2));
|
||||
final double degreesOfFreedom = n1 + n2 - 2;
|
||||
TDistribution distribution = new TDistribution(degreesOfFreedom);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final TDistribution distribution = new TDistribution(null, degreesOfFreedom);
|
||||
return 2.0 * distribution.cumulativeProbability(-t);
|
||||
|
||||
}
|
||||
|
|
|
@ -253,7 +253,8 @@ public class WilcoxonSignedRankTest {
|
|||
final double z = (Wmin - ES - 0.5) / FastMath.sqrt(VarS);
|
||||
|
||||
// No try-catch or advertised exception because args are valid
|
||||
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
|
||||
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
|
||||
final NormalDistribution standardNormal = new NormalDistribution(null, 0, 1);
|
||||
|
||||
return 2*standardNormal.cumulativeProbability(z);
|
||||
}
|
||||
|
|
|
@ -18,6 +18,9 @@ package org.apache.commons.math3.util;
|
|||
|
||||
import java.io.PrintStream;
|
||||
|
||||
import org.apache.commons.math3.exception.MathArithmeticException;
|
||||
import org.apache.commons.math3.exception.util.LocalizedFormats;
|
||||
|
||||
/**
|
||||
* Faster, more accurate, portable alternative to {@link Math} and
|
||||
* {@link StrictMath} for large scale computation.
|
||||
|
@ -804,6 +807,24 @@ public class FastMath {
|
|||
return nextAfter(a, Float.POSITIVE_INFINITY);
|
||||
}
|
||||
|
||||
/** Compute next number towards negative infinity.
|
||||
* @param a number to which neighbor should be computed
|
||||
* @return neighbor of a towards negative infinity
|
||||
* @since 3.4
|
||||
*/
|
||||
public static double nextDown(final double a) {
|
||||
return nextAfter(a, Double.NEGATIVE_INFINITY);
|
||||
}
|
||||
|
||||
/** Compute next number towards negative infinity.
|
||||
* @param a number to which neighbor should be computed
|
||||
* @return neighbor of a towards negative infinity
|
||||
* @since 3.4
|
||||
*/
|
||||
public static float nextDown(final float a) {
|
||||
return nextAfter(a, Float.NEGATIVE_INFINITY);
|
||||
}
|
||||
|
||||
/** Returns a pseudo-random number between 0.0 and 1.0.
|
||||
* <p><b>Note:</b> this implementation currently delegates to {@link Math#random}
|
||||
* @return a random number between 0.0 and 1.0
|
||||
|
@ -3634,6 +3655,319 @@ public class FastMath {
|
|||
return StrictMath.IEEEremainder(dividend, divisor); // TODO provide our own implementation
|
||||
}
|
||||
|
||||
/** Convert a long to interger, detecting overflows
|
||||
* @param n number to convert to int
|
||||
* @return integer with same valie as n if no overflows occur
|
||||
* @exception MathArithmeticException if n cannot fit into an int
|
||||
* @since 3.4
|
||||
*/
|
||||
public static int toIntExact(final long n) throws MathArithmeticException {
|
||||
if (n < Integer.MIN_VALUE || n > Integer.MAX_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW);
|
||||
}
|
||||
return (int) n;
|
||||
}
|
||||
|
||||
/** Increment a number, detecting overflows.
|
||||
* @param n number to increment
|
||||
* @return n+1 if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static int incrementExact(final int n) throws MathArithmeticException {
|
||||
|
||||
if (n == Integer.MAX_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, n, 1);
|
||||
}
|
||||
|
||||
return n + 1;
|
||||
|
||||
}
|
||||
|
||||
/** Increment a number, detecting overflows.
|
||||
* @param n number to increment
|
||||
* @return n+1 if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static long incrementExact(final long n) throws MathArithmeticException {
|
||||
|
||||
if (n == Long.MAX_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, n, 1);
|
||||
}
|
||||
|
||||
return n + 1;
|
||||
|
||||
}
|
||||
|
||||
/** Decrement a number, detecting overflows.
|
||||
* @param n number to decrement
|
||||
* @return n-1 if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static int decrementExact(final int n) throws MathArithmeticException {
|
||||
|
||||
if (n == Integer.MIN_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, n, 1);
|
||||
}
|
||||
|
||||
return n - 1;
|
||||
|
||||
}
|
||||
|
||||
/** Decrement a number, detecting overflows.
|
||||
* @param n number to decrement
|
||||
* @return n-1 if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static long decrementExact(final long n) throws MathArithmeticException {
|
||||
|
||||
if (n == Long.MIN_VALUE) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, n, 1);
|
||||
}
|
||||
|
||||
return n - 1;
|
||||
|
||||
}
|
||||
|
||||
/** Add two numbers, detecting overflows.
|
||||
* @param a first number to add
|
||||
* @param b second number to add
|
||||
* @return a+b if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static int addExact(final int a, final int b) throws MathArithmeticException {
|
||||
|
||||
// compute sum
|
||||
final int sum = a + b;
|
||||
|
||||
// check for overflow
|
||||
if ((a ^ b) >= 0 && (sum ^ b) < 0) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, b);
|
||||
}
|
||||
|
||||
return sum;
|
||||
|
||||
}
|
||||
|
||||
/** Add two numbers, detecting overflows.
|
||||
* @param a first number to add
|
||||
* @param b second number to add
|
||||
* @return a+b if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static long addExact(final long a, final long b) throws MathArithmeticException {
|
||||
|
||||
// compute sum
|
||||
final long sum = a + b;
|
||||
|
||||
// check for overflow
|
||||
if ((a ^ b) >= 0 && (sum ^ b) < 0) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, a, b);
|
||||
}
|
||||
|
||||
return sum;
|
||||
|
||||
}
|
||||
|
||||
/** Subtract two numbers, detecting overflows.
|
||||
* @param a first number
|
||||
* @param b second number to subtract from a
|
||||
* @return a-b if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static int subtractExact(final int a, final int b) {
|
||||
|
||||
// compute subtraction
|
||||
final int sub = a - b;
|
||||
|
||||
// check for overflow
|
||||
if ((a ^ b) < 0 && (sub ^ b) >= 0) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, a, b);
|
||||
}
|
||||
|
||||
return sub;
|
||||
|
||||
}
|
||||
|
||||
/** Subtract two numbers, detecting overflows.
|
||||
* @param a first number
|
||||
* @param b second number to subtract from a
|
||||
* @return a-b if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static long subtractExact(final long a, final long b) {
|
||||
|
||||
// compute subtraction
|
||||
final long sub = a - b;
|
||||
|
||||
// check for overflow
|
||||
if ((a ^ b) < 0 && (sub ^ b) >= 0) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, a, b);
|
||||
}
|
||||
|
||||
return sub;
|
||||
|
||||
}
|
||||
|
||||
/** Multiply two numbers, detecting overflows.
|
||||
* @param a first number to multiply
|
||||
* @param b second number to multiply
|
||||
* @return a*b if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static int multiplyExact(final int a, final int b) {
|
||||
if (((b > 0) && (a > Integer.MAX_VALUE / b || a < Integer.MIN_VALUE / b)) ||
|
||||
((b < -1) && (a > Integer.MIN_VALUE / b || a < Integer.MAX_VALUE / b)) ||
|
||||
((b == -1) && (a == Integer.MIN_VALUE))) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_MULTIPLICATION, a, b);
|
||||
}
|
||||
return a * b;
|
||||
}
|
||||
|
||||
/** Multiply two numbers, detecting overflows.
|
||||
* @param a first number to multiply
|
||||
* @param b second number to multiply
|
||||
* @return a*b if no overflows occur
|
||||
* @exception MathArithmeticException if an overflow occurs
|
||||
* @since 3.4
|
||||
*/
|
||||
public static long multiplyExact(final long a, final long b) {
|
||||
if (((b > 0l) && (a > Long.MAX_VALUE / b || a < Long.MIN_VALUE / b)) ||
|
||||
((b < -1l) && (a > Long.MIN_VALUE / b || a < Long.MAX_VALUE / b)) ||
|
||||
((b == -1l) && (a == Long.MIN_VALUE))) {
|
||||
throw new MathArithmeticException(LocalizedFormats.OVERFLOW_IN_MULTIPLICATION, a, b);
|
||||
}
|
||||
return a * b;
|
||||
}
|
||||
|
||||
/** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0.
|
||||
* <p>
|
||||
* This methods returns the same value as integer division when
|
||||
* a and b are same signs, but returns a different value when
|
||||
* they are opposite (i.e. q is negative).
|
||||
* </p>
|
||||
* @param a dividend
|
||||
* @param b divisor
|
||||
* @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0
|
||||
* @exception MathArithmeticException if b == 0
|
||||
* @see #floorMod(int, int)
|
||||
* @since 3.4
|
||||
*/
|
||||
public static int floorDiv(final int a, final int b) throws MathArithmeticException {
|
||||
|
||||
if (b == 0) {
|
||||
throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
|
||||
}
|
||||
|
||||
final int m = a % b;
|
||||
if ((a ^ b) >= 0 || m == 0) {
|
||||
// a an b have same sign, or division is exact
|
||||
return a / b;
|
||||
} else {
|
||||
// a and b have opposite signs and division is not exact
|
||||
return (a / b) - 1;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Finds q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0.
|
||||
* <p>
|
||||
* This methods returns the same value as integer division when
|
||||
* a and b are same signs, but returns a different value when
|
||||
* they are opposite (i.e. q is negative).
|
||||
* </p>
|
||||
* @param a dividend
|
||||
* @param b divisor
|
||||
* @return q such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0
|
||||
* @exception MathArithmeticException if b == 0
|
||||
* @see #floorMod(long, long)
|
||||
* @since 3.4
|
||||
*/
|
||||
public static long floorDiv(final long a, final long b) throws MathArithmeticException {
|
||||
|
||||
if (b == 0l) {
|
||||
throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
|
||||
}
|
||||
|
||||
final long m = a % b;
|
||||
if ((a ^ b) >= 0l || m == 0l) {
|
||||
// a an b have same sign, or division is exact
|
||||
return a / b;
|
||||
} else {
|
||||
// a and b have opposite signs and division is not exact
|
||||
return (a / b) - 1l;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0.
|
||||
* <p>
|
||||
* This methods returns the same value as integer modulo when
|
||||
* a and b are same signs, but returns a different value when
|
||||
* they are opposite (i.e. q is negative).
|
||||
* </p>
|
||||
* @param a dividend
|
||||
* @param b divisor
|
||||
* @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0
|
||||
* @exception MathArithmeticException if b == 0
|
||||
* @see #floorDiv(int, int)
|
||||
* @since 3.4
|
||||
*/
|
||||
public static int floorMod(final int a, final int b) throws MathArithmeticException {
|
||||
|
||||
if (b == 0) {
|
||||
throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
|
||||
}
|
||||
|
||||
final int m = a % b;
|
||||
if ((a ^ b) >= 0 || m == 0) {
|
||||
// a an b have same sign, or division is exact
|
||||
return m;
|
||||
} else {
|
||||
// a and b have opposite signs and division is not exact
|
||||
return b + m;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Finds r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0.
|
||||
* <p>
|
||||
* This methods returns the same value as integer modulo when
|
||||
* a and b are same signs, but returns a different value when
|
||||
* they are opposite (i.e. q is negative).
|
||||
* </p>
|
||||
* @param a dividend
|
||||
* @param b divisor
|
||||
* @return r such that a = q b + r with 0 <= r < b if b > 0 and b < r <= 0 if b > 0
|
||||
* @exception MathArithmeticException if b == 0
|
||||
* @see #floorDiv(long, long)
|
||||
* @since 3.4
|
||||
*/
|
||||
public static long floorMod(final long a, final long b) {
|
||||
|
||||
if (b == 0l) {
|
||||
throw new MathArithmeticException(LocalizedFormats.ZERO_DENOMINATOR);
|
||||
}
|
||||
|
||||
final long m = a % b;
|
||||
if ((a ^ b) >= 0l || m == 0l) {
|
||||
// a an b have same sign, or division is exact
|
||||
return m;
|
||||
} else {
|
||||
// a and b have opposite signs and division is not exact
|
||||
return b + m;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the first argument with the sign of the second argument.
|
||||
* A NaN {@code sign} argument is treated as positive.
|
||||
|
|
|
@ -36,7 +36,7 @@ public class KthSelector implements Serializable {
|
|||
/** Minimum selection size for insertion sort rather than selection. */
|
||||
private static final int MIN_SELECT_SIZE = 15;
|
||||
|
||||
/** A {@link PivotingStrategy} used for pivoting */
|
||||
/** A {@link PivotingStrategyInterface} used for pivoting */
|
||||
private final PivotingStrategyInterface pivotingStrategy;
|
||||
|
||||
/**
|
||||
|
|
|
@ -265,6 +265,7 @@ OVERFLOW = d\u00e9passement de capacit\u00e9
|
|||
OVERFLOW_IN_FRACTION = d\u00e9passement de capacit\u00e9 pour la fraction {0}/{1}, son signe ne peut \u00eatre chang\u00e9
|
||||
OVERFLOW_IN_ADDITION = d\u00e9passement de capacit\u00e9 pour l''addition : {0} + {1}
|
||||
OVERFLOW_IN_SUBTRACTION = d\u00e9passement de capacit\u00e9 pour la soustraction : {0} - {1}
|
||||
OVERFLOW_IN_MULTIPLICATION = d\u00e9passement de capacit\u00e9 pour la multiplication : {0} * {1}
|
||||
PERCENTILE_IMPLEMENTATION_CANNOT_ACCESS_METHOD = acc\u00e8s impossible \u00e0 la m\u00e9thode {0} dans la mise en \u0153uvre du pourcentage {1}
|
||||
PERCENTILE_IMPLEMENTATION_UNSUPPORTED_METHOD = l''implantation de pourcentage {0} ne dispose pas de la m\u00e9thode {1}
|
||||
PERMUTATION_EXCEEDS_N = la taille de la permutation ({0}) d\u00e9passe le domaine de la permutation ({1})
|
||||
|
|
|
@ -41,7 +41,7 @@
|
|||
href="http://commons.apache.org/math/javadocs/api-2.2/index.html"/>
|
||||
<item name="Issue Tracking" href="/issue-tracking.html"/>
|
||||
<item name="Source Repository (current)"
|
||||
href="http://svn.apache.org/viewvc/commons/proper/math/trunk"/>
|
||||
href="http://git-wip-us.apache.org/repos/asf/commons-math.git"/>
|
||||
<item name="Wiki"
|
||||
href="http://wiki.apache.org/commons/Math"/>
|
||||
<item name="Developers Guide" href="/developers.html"/>
|
||||
|
|
|
@ -50,7 +50,7 @@
|
|||
under the heading "Repository Checkout" on the
|
||||
<a href="https://git-wip-us.apache.org/">Git at the ASF page</a>.
|
||||
The git url for the current development sources of Commons Math
|
||||
is <source>http://apacheid@git-wip-us.apache.org/repos/asf/commons-math.git</source>
|
||||
is <source>http://git-wip-us.apache.org/repos/asf/commons-math.git</source>
|
||||
for anonymous read-only access and
|
||||
<source>https://apacheid@git-wip-us.apache.org/repos/asf/commons-math.git</source>
|
||||
(where apacheid should be replaced by each committer Apache ID) for committers
|
||||
|
@ -92,9 +92,9 @@
|
|||
</p>
|
||||
<li>
|
||||
Generating patches: The requested format for generating patches is
|
||||
the Unified Diff format, which can be easily generated using the svn
|
||||
the Unified Diff format, which can be easily generated using the git
|
||||
client or various IDEs.
|
||||
<source>svn diff > patch </source>
|
||||
<source>git diff -p > patch </source>
|
||||
Run this command from the top-level project directory (where pom.xml
|
||||
resides).
|
||||
</li>
|
||||
|
@ -132,7 +132,7 @@
|
|||
</li>
|
||||
<li>Submit code as attachments to the JIRA ticket. Please use one
|
||||
ticket for each feature, adding multiple patches to the ticket
|
||||
as necessary. Use the svn diff command to generate your patches as
|
||||
as necessary. Use the git diff command to generate your patches as
|
||||
diffs. Please do not submit modified copies of existing java files. Be
|
||||
patient (but not <strong>too</strong> patient) with committers reviewing
|
||||
patches. Post a *nudge* message to commons-dev with a reference to the
|
||||
|
@ -154,12 +154,18 @@
|
|||
<p>
|
||||
Committers should configure the <source>user.name</source>,
|
||||
<source>user.email</source> and <source>core.autocrlf</source>
|
||||
git repository or global options with <source>git config</source>.
|
||||
The first two options set the identity and mail of the committer.
|
||||
The third option deals with line endings to achieve consistency
|
||||
in line endings. Windows users should configure this option to
|
||||
<source>true</source> while OS X and Linux users should configure
|
||||
it to <source>input</source>.
|
||||
git repository or global settings with <source>git config</source>.
|
||||
The first two settings define the identity and mail of the committer.
|
||||
The third setting deals with line endings to achieve consistency
|
||||
in line endings. Windows users should configure this setting to
|
||||
<source>true</source> (thus forcing git to convert CR/LF line endings
|
||||
in the workspace while maintaining LF only line endings in the repository)
|
||||
while OS X and Linux users should configure it to <source>input</source>
|
||||
(thus forcing git to only strip accidental CR/LF when committing into
|
||||
the repository, but never when cheking out files from the repository). See <a
|
||||
href="http://www.git-scm.com/book/en/Customizing-Git-Git-Configuration">Customizing
|
||||
Git - Git Configuration</a> in the git book for explanation about how to
|
||||
configure these settings and more.
|
||||
</p>
|
||||
</subsection>
|
||||
<subsection name='Documentation'>
|
||||
|
|
|
@ -71,12 +71,9 @@
|
|||
</p>
|
||||
</subsection>
|
||||
<!--
|
||||
<subsection name="Nightly Builds">
|
||||
<subsection name="No Nightly Builds">
|
||||
<p>
|
||||
<a href="http://people.apache.org/builds/commons/nightly/commons-math/">
|
||||
Nightly builds</a> are built once a day from the current SVN HEAD.
|
||||
This is (nearly) the latest code and so should be treated with
|
||||
caution!
|
||||
There are no nightly builds for Apache Commons Math anymore.
|
||||
</p>
|
||||
</subsection>
|
||||
-->
|
||||
|
|
|
@ -0,0 +1,227 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math3.analysis.interpolation;
|
||||
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
import org.apache.commons.math3.distribution.UniformRealDistribution;
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.random.Well19937c;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
import static org.junit.Assert.*;
|
||||
|
||||
public class AkimaSplineInterpolatorTest
|
||||
{
|
||||
|
||||
@Test
|
||||
public void testIllegalArguments()
|
||||
{
|
||||
// Data set arrays of different size.
|
||||
UnivariateInterpolator i = new AkimaSplineInterpolator();
|
||||
|
||||
try
|
||||
{
|
||||
double yval[] = { 0.0, 1.0, 2.0, 3.0, 4.0 };
|
||||
i.interpolate( null, yval );
|
||||
Assert.fail( "Failed to detect x null pointer" );
|
||||
}
|
||||
catch ( NullArgumentException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
double xval[] = { 0.0, 1.0, 2.0, 3.0, 4.0 };
|
||||
i.interpolate( xval, null );
|
||||
Assert.fail( "Failed to detect y null pointer" );
|
||||
}
|
||||
catch ( NullArgumentException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
double xval[] = { 0.0, 1.0, 2.0, 3.0 };
|
||||
double yval[] = { 0.0, 1.0, 2.0, 3.0 };
|
||||
i.interpolate( xval, yval );
|
||||
Assert.fail( "Failed to detect insufficient data" );
|
||||
}
|
||||
catch ( NumberIsTooSmallException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
double xval[] = { 0.0, 1.0, 2.0, 3.0, 4.0 };
|
||||
double yval[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 };
|
||||
i.interpolate( xval, yval );
|
||||
Assert.fail( "Failed to detect data set array with different sizes." );
|
||||
}
|
||||
catch ( DimensionMismatchException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
// X values not sorted.
|
||||
try
|
||||
{
|
||||
double xval[] = { 0.0, 1.0, 0.5, 7.0, 3.5, 2.2, 8.0 };
|
||||
double yval[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
|
||||
i.interpolate( xval, yval );
|
||||
Assert.fail( "Failed to detect unsorted arguments." );
|
||||
}
|
||||
catch ( NonMonotonicSequenceException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Interpolate a straight line. <p> y = 2 x - 5 <p> Tolerances determined by performing same calculation using
|
||||
* Math.NET over ten runs of 100 random number draws for the same function over the same span with the same number
|
||||
* of elements
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolateLine()
|
||||
{
|
||||
final int numberOfElements = 10;
|
||||
final double minimumX = -10;
|
||||
final double maximumX = 10;
|
||||
final int numberOfSamples = 100;
|
||||
final double interpolationTolerance = 1e-15;
|
||||
final double maxTolerance = 1e-15;
|
||||
|
||||
UnivariateFunction f = new UnivariateFunction()
|
||||
{
|
||||
public double value( double x )
|
||||
{
|
||||
return 2 * x - 5;
|
||||
}
|
||||
};
|
||||
|
||||
testInterpolation( minimumX, maximumX, numberOfElements, numberOfSamples, f, interpolationTolerance,
|
||||
maxTolerance );
|
||||
}
|
||||
|
||||
/*
|
||||
* Interpolate a straight line. <p> y = 3 x<sup>2</sup> - 5 x + 7 <p> Tolerances determined by performing same
|
||||
* calculation using Math.NET over ten runs of 100 random number draws for the same function over the same span with
|
||||
* the same number of elements
|
||||
*/
|
||||
|
||||
@Test
|
||||
public void testInterpolateParabola()
|
||||
{
|
||||
final int numberOfElements = 10;
|
||||
final double minimumX = -10;
|
||||
final double maximumX = 10;
|
||||
final int numberOfSamples = 100;
|
||||
final double interpolationTolerance = 7e-15;
|
||||
final double maxTolerance = 6e-14;
|
||||
|
||||
UnivariateFunction f = new UnivariateFunction()
|
||||
{
|
||||
public double value( double x )
|
||||
{
|
||||
return ( 3 * x * x ) - ( 5 * x ) + 7;
|
||||
}
|
||||
};
|
||||
|
||||
testInterpolation( minimumX, maximumX, numberOfElements, numberOfSamples, f, interpolationTolerance,
|
||||
maxTolerance );
|
||||
}
|
||||
|
||||
/*
|
||||
* Interpolate a straight line. <p> y = 3 x<sup>3</sup> - 0.5 x<sup>2</sup> + x - 1 <p> Tolerances determined by
|
||||
* performing same calculation using Math.NET over ten runs of 100 random number draws for the same function over
|
||||
* the same span with the same number of elements
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolateCubic()
|
||||
{
|
||||
final int numberOfElements = 10;
|
||||
final double minimumX = -3;
|
||||
final double maximumX = 3;
|
||||
final int numberOfSamples = 100;
|
||||
final double interpolationTolerance = 0.37;
|
||||
final double maxTolerance = 3.8;
|
||||
|
||||
UnivariateFunction f = new UnivariateFunction()
|
||||
{
|
||||
public double value( double x )
|
||||
{
|
||||
return ( 3 * x * x * x ) - ( 0.5 * x * x ) + ( 1 * x ) - 1;
|
||||
}
|
||||
};
|
||||
|
||||
testInterpolation( minimumX, maximumX, numberOfElements, numberOfSamples, f, interpolationTolerance,
|
||||
maxTolerance );
|
||||
}
|
||||
|
||||
private void testInterpolation( double minimumX, double maximumX, int numberOfElements, int numberOfSamples,
|
||||
UnivariateFunction f, double tolerance, double maxTolerance )
|
||||
{
|
||||
double expected;
|
||||
double actual;
|
||||
double currentX;
|
||||
final double delta = ( maximumX - minimumX ) / ( (double) numberOfElements );
|
||||
double xValues[] = new double[numberOfElements];
|
||||
double yValues[] = new double[numberOfElements];
|
||||
|
||||
for ( int i = 0; i < numberOfElements; i++ )
|
||||
{
|
||||
xValues[i] = minimumX + delta * (double) i;
|
||||
yValues[i] = f.value( xValues[i] );
|
||||
}
|
||||
|
||||
UnivariateFunction interpolation = new AkimaSplineInterpolator().interpolate( xValues, yValues );
|
||||
|
||||
for ( int i = 0; i < numberOfElements; i++ )
|
||||
{
|
||||
currentX = xValues[i];
|
||||
expected = f.value( currentX );
|
||||
actual = interpolation.value( currentX );
|
||||
assertTrue( Precision.equals( expected, actual ) );
|
||||
}
|
||||
|
||||
final RandomGenerator rng = new Well19937c( 1234567L ); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX =
|
||||
new UniformRealDistribution( rng, xValues[0], xValues[xValues.length - 1] );
|
||||
|
||||
double sumError = 0;
|
||||
for ( int i = 0; i < numberOfSamples; i++ )
|
||||
{
|
||||
currentX = distX.sample();
|
||||
expected = f.value( currentX );
|
||||
actual = interpolation.value( currentX );
|
||||
sumError += FastMath.abs( actual - expected );
|
||||
assertEquals( expected, actual, maxTolerance );
|
||||
}
|
||||
|
||||
assertEquals( 0.0, ( sumError / (double) numberOfSamples ), tolerance );
|
||||
}
|
||||
}
|
|
@ -16,435 +16,147 @@
|
|||
*/
|
||||
package org.apache.commons.math3.analysis.interpolation;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.OutOfRangeException;
|
||||
import org.apache.commons.math3.exception.InsufficientDataException;
|
||||
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.analysis.BivariateFunction;
|
||||
import org.apache.commons.math3.distribution.UniformRealDistribution;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.random.Well19937c;
|
||||
import org.apache.commons.math3.util.FastMath;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
import org.junit.Ignore;
|
||||
|
||||
/**
|
||||
* Test case for the bicubic function.
|
||||
*
|
||||
*/
|
||||
public final class BicubicSplineInterpolatingFunctionTest {
|
||||
public final class BicubicSplineInterpolatingFunctionTest
|
||||
{
|
||||
/**
|
||||
* Test preconditions.
|
||||
*/
|
||||
@Test
|
||||
public void testPreconditions() {
|
||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2.5};
|
||||
public void testPreconditions()
|
||||
{
|
||||
double[] xval = new double[] { 3, 4, 5, 6.5, 7.5 };
|
||||
double[] yval = new double[] { -4, -3, -1, 2.5, 3.5 };
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
|
||||
@SuppressWarnings("unused")
|
||||
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
|
||||
zval, zval, zval);
|
||||
BicubicSplineInterpolatingFunction bcf = new BicubicSplineInterpolatingFunction( xval, yval, zval );
|
||||
|
||||
double[] wxval = new double[] {3, 2, 5, 6.5};
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(wxval, yval, zval, zval, zval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathIllegalArgumentException e) {
|
||||
// Expected
|
||||
}
|
||||
double[] wyval = new double[] {-4, -1, -1, 2.5};
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, wyval, zval, zval, zval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathIllegalArgumentException e) {
|
||||
// Expected
|
||||
}
|
||||
double[][] wzval = new double[xval.length][yval.length - 1];
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, yval, wzval, zval, zval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
}
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, wzval, zval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
}
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, wzval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
}
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, wzval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
}
|
||||
|
||||
wzval = new double[xval.length - 1][yval.length];
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, yval, wzval, zval, zval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
}
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, wzval, zval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
}
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, wzval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
}
|
||||
try {
|
||||
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, wzval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
try
|
||||
{
|
||||
bcf = new BicubicSplineInterpolatingFunction( null, yval, zval );
|
||||
Assert.fail( "Failed to detect x null pointer" );
|
||||
}
|
||||
catch ( NullArgumentException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for a plane.
|
||||
* <p>
|
||||
* z = 2 x - 3 y + 5
|
||||
*/
|
||||
@Ignore@Test
|
||||
public void testPlane() {
|
||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2, 2.5};
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 2 * x - 3 * y + 5;
|
||||
}
|
||||
};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
zval[i][j] = f.value(xval[i], yval[j]);
|
||||
}
|
||||
try
|
||||
{
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval, null, zval );
|
||||
Assert.fail( "Failed to detect y null pointer" );
|
||||
}
|
||||
// Partial derivatives with respect to x
|
||||
double[][] dZdX = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdX[i][j] = 2;
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to y
|
||||
double[][] dZdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdY[i][j] = -3;
|
||||
}
|
||||
}
|
||||
// Partial cross-derivatives
|
||||
double[][] dZdXdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdXdY[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
|
||||
dZdX, dZdY, dZdXdY);
|
||||
double x, y;
|
||||
double expected, result;
|
||||
|
||||
x = 4;
|
||||
y = -3;
|
||||
expected = f.value(x, y);
|
||||
result = bcf.value(x, y);
|
||||
Assert.assertEquals("On sample point",
|
||||
expected, result, 1e-15);
|
||||
|
||||
x = 4.5;
|
||||
y = -1.5;
|
||||
expected = f.value(x, y);
|
||||
result = bcf.value(x, y);
|
||||
Assert.assertEquals("Half-way between sample points (middle of the patch)",
|
||||
expected, result, 0.3);
|
||||
|
||||
x = 3.5;
|
||||
y = -3.5;
|
||||
expected = f.value(x, y);
|
||||
result = bcf.value(x, y);
|
||||
Assert.assertEquals("Half-way between sample points (border of the patch)",
|
||||
expected, result, 0.3);
|
||||
catch ( NullArgumentException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for a paraboloid.
|
||||
* <p>
|
||||
* z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
|
||||
*/
|
||||
@Ignore@Test
|
||||
public void testParaboloid() {
|
||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2, 2.5};
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 2 * x * x - 3 * y * y + 4 * x * y - 5;
|
||||
}
|
||||
};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
zval[i][j] = f.value(xval[i], yval[j]);
|
||||
}
|
||||
try
|
||||
{
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval, yval, null );
|
||||
Assert.fail( "Failed to detect z null pointer" );
|
||||
}
|
||||
// Partial derivatives with respect to x
|
||||
double[][] dZdX = new double[xval.length][yval.length];
|
||||
BivariateFunction dfdX = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 4 * (x + y);
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdX[i][j] = dfdX.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to y
|
||||
double[][] dZdY = new double[xval.length][yval.length];
|
||||
BivariateFunction dfdY = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 4 * x - 6 * y;
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdY[i][j] = dfdY.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial cross-derivatives
|
||||
double[][] dZdXdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdXdY[i][j] = 4;
|
||||
}
|
||||
}
|
||||
|
||||
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
|
||||
dZdX, dZdY, dZdXdY);
|
||||
double x, y;
|
||||
double expected, result;
|
||||
|
||||
x = 4;
|
||||
y = -3;
|
||||
expected = f.value(x, y);
|
||||
result = bcf.value(x, y);
|
||||
Assert.assertEquals("On sample point",
|
||||
expected, result, 1e-15);
|
||||
|
||||
x = 4.5;
|
||||
y = -1.5;
|
||||
expected = f.value(x, y);
|
||||
result = bcf.value(x, y);
|
||||
Assert.assertEquals("Half-way between sample points (middle of the patch)",
|
||||
expected, result, 2);
|
||||
|
||||
x = 3.5;
|
||||
y = -3.5;
|
||||
expected = f.value(x, y);
|
||||
result = bcf.value(x, y);
|
||||
Assert.assertEquals("Half-way between sample points (border of the patch)",
|
||||
expected, result, 2);
|
||||
catch ( NullArgumentException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for partial derivatives of {@link BicubicSplineFunction}.
|
||||
* <p>
|
||||
* f(x, y) = Σ<sub>i</sub>Σ<sub>j</sub> (i+1) (j+2) x<sup>i</sup> y<sup>j</sup>
|
||||
*/
|
||||
@Ignore@Test
|
||||
public void testSplinePartialDerivatives() {
|
||||
final int N = 4;
|
||||
final double[] coeff = new double[16];
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
coeff[i + N * j] = (i + 1) * (j + 2);
|
||||
try
|
||||
{
|
||||
double xval1[] = { 0.0, 1.0, 2.0, 3.0 };
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect insufficient x data" );
|
||||
}
|
||||
catch ( InsufficientDataException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
final BicubicSplineFunction f = new BicubicSplineFunction(coeff);
|
||||
BivariateFunction derivative;
|
||||
final double x = 0.435;
|
||||
final double y = 0.776;
|
||||
final double tol = 1e-13;
|
||||
try
|
||||
{
|
||||
double yval1[] = { 0.0, 1.0, 2.0, 3.0 };
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect insufficient y data" );
|
||||
}
|
||||
catch ( InsufficientDataException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
derivative = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double y2 = y * y;
|
||||
final double y3 = y2 * y;
|
||||
final double yFactor = 2 + 3 * y + 4 * y2 + 5 * y3;
|
||||
return yFactor * (2 + 6 * x + 12 * x2);
|
||||
try
|
||||
{
|
||||
double zval1[][] = new double[4][4];
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval, yval, zval1 );
|
||||
Assert.fail( "Failed to detect insufficient z data" );
|
||||
}
|
||||
};
|
||||
Assert.assertEquals("dFdX", derivative.value(x, y),
|
||||
f.partialDerivativeX().value(x, y), tol);
|
||||
|
||||
derivative = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double x3 = x2 * x;
|
||||
final double y2 = y * y;
|
||||
final double xFactor = 1 + 2 * x + 3 * x2 + 4 * x3;
|
||||
return xFactor * (3 + 8 * y + 15 * y2);
|
||||
catch ( InsufficientDataException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
};
|
||||
Assert.assertEquals("dFdY", derivative.value(x, y),
|
||||
f.partialDerivativeY().value(x, y), tol);
|
||||
|
||||
derivative = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double y2 = y * y;
|
||||
final double y3 = y2 * y;
|
||||
final double yFactor = 2 + 3 * y + 4 * y2 + 5 * y3;
|
||||
return yFactor * (6 + 24 * x);
|
||||
try
|
||||
{
|
||||
double xval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect data set array with different sizes." );
|
||||
}
|
||||
};
|
||||
Assert.assertEquals("d2FdX2", derivative.value(x, y),
|
||||
f.partialDerivativeXX().value(x, y), tol);
|
||||
|
||||
derivative = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double x3 = x2 * x;
|
||||
final double xFactor = 1 + 2 * x + 3 * x2 + 4 * x3;
|
||||
return xFactor * (8 + 30 * y);
|
||||
}
|
||||
};
|
||||
Assert.assertEquals("d2FdY2", derivative.value(x, y),
|
||||
f.partialDerivativeYY().value(x, y), tol);
|
||||
|
||||
derivative = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double y2 = y * y;
|
||||
final double yFactor = 3 + 8 * y + 15 * y2;
|
||||
return yFactor * (2 + 6 * x + 12 * x2);
|
||||
}
|
||||
};
|
||||
Assert.assertEquals("d2FdXdY", derivative.value(x, y),
|
||||
f.partialDerivativeXY().value(x, y), tol);
|
||||
catch ( DimensionMismatchException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
/**
|
||||
* Test that the partial derivatives computed from a
|
||||
* {@link BicubicSplineInterpolatingFunction} match the input data.
|
||||
* <p>
|
||||
* f(x, y) = 5
|
||||
* - 3 x + 2 y
|
||||
* - x y + 2 x<sup>2</sup> - 3 y<sup>2</sup>
|
||||
* + 4 x<sup>2</sup> y - x y<sup>2</sup> - 3 x<sup>3</sup> + y<sup>3</sup>
|
||||
*/
|
||||
@Ignore@Test
|
||||
public void testMatchingPartialDerivatives() {
|
||||
final int sz = 21;
|
||||
double[] val = new double[sz];
|
||||
// Coordinate values
|
||||
final double delta = 1d / (sz - 1);
|
||||
for (int i = 0; i < sz; i++) {
|
||||
val[i] = i * delta;
|
||||
try
|
||||
{
|
||||
double yval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect data set array with different sizes." );
|
||||
}
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double x3 = x2 * x;
|
||||
final double y2 = y * y;
|
||||
final double y3 = y2 * y;
|
||||
|
||||
return 5
|
||||
- 3 * x + 2 * y
|
||||
- x * y + 2 * x2 - 3 * y2
|
||||
+ 4 * x2 * y - x * y2 - 3 * x3 + y3;
|
||||
catch ( DimensionMismatchException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
};
|
||||
double[][] fval = new double[sz][sz];
|
||||
for (int i = 0; i < sz; i++) {
|
||||
for (int j = 0; j < sz; j++) {
|
||||
fval[i][j] = f.value(val[i], val[j]);
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to x
|
||||
double[][] dFdX = new double[sz][sz];
|
||||
BivariateFunction dfdX = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double y2 = y * y;
|
||||
return - 3 - y + 4 * x + 8 * x * y - y2 - 9 * x2;
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < sz; i++) {
|
||||
for (int j = 0; j < sz; j++) {
|
||||
dFdX[i][j] = dfdX.value(val[i], val[j]);
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to y
|
||||
double[][] dFdY = new double[sz][sz];
|
||||
BivariateFunction dfdY = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
final double x2 = x * x;
|
||||
final double y2 = y * y;
|
||||
return 2 - x - 6 * y + 4 * x2 - 2 * x * y + 3 * y2;
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < sz; i++) {
|
||||
for (int j = 0; j < sz; j++) {
|
||||
dFdY[i][j] = dfdY.value(val[i], val[j]);
|
||||
}
|
||||
}
|
||||
// Partial cross-derivatives
|
||||
double[][] d2FdXdY = new double[sz][sz];
|
||||
BivariateFunction d2fdXdY = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return -1 + 8 * x - 2 * y;
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < sz; i++) {
|
||||
for (int j = 0; j < sz; j++) {
|
||||
d2FdXdY[i][j] = d2fdXdY.value(val[i], val[j]);
|
||||
|
||||
// X values not sorted.
|
||||
try
|
||||
{
|
||||
double xval1[] = { 0.0, 1.0, 0.5, 7.0, 3.5 };
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect unsorted x arguments." );
|
||||
}
|
||||
catch ( NonMonotonicSequenceException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
BicubicSplineInterpolatingFunction bcf
|
||||
= new BicubicSplineInterpolatingFunction(val, val, fval, dFdX, dFdY, d2FdXdY);
|
||||
|
||||
double x, y;
|
||||
double expected, result;
|
||||
|
||||
final double tol = 1e-12;
|
||||
for (int i = 0; i < sz; i++) {
|
||||
x = val[i];
|
||||
for (int j = 0; j < sz; j++) {
|
||||
y = val[j];
|
||||
|
||||
expected = dfdX.value(x, y);
|
||||
result = bcf.partialDerivativeX(x, y);
|
||||
Assert.assertEquals(x + " " + y + " dFdX", expected, result, tol);
|
||||
|
||||
expected = dfdY.value(x, y);
|
||||
result = bcf.partialDerivativeY(x, y);
|
||||
Assert.assertEquals(x + " " + y + " dFdY", expected, result, tol);
|
||||
|
||||
expected = d2fdXdY.value(x, y);
|
||||
result = bcf.partialDerivativeXY(x, y);
|
||||
Assert.assertEquals(x + " " + y + " d2FdXdY", expected, result, tol);
|
||||
// Y values not sorted.
|
||||
try
|
||||
{
|
||||
double yval1[] = { 0.0, 1.0, 1.5, 0.0, 3.0 };
|
||||
bcf = new BicubicSplineInterpolatingFunction( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect unsorted y arguments." );
|
||||
}
|
||||
catch ( NonMonotonicSequenceException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -454,73 +166,28 @@ public final class BicubicSplineInterpolatingFunctionTest {
|
|||
* z = 2 x - 3 y + 5
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolation1() {
|
||||
final int sz = 21;
|
||||
double[] xval = new double[sz];
|
||||
double[] yval = new double[sz];
|
||||
// Coordinate values
|
||||
final double delta = 1d / (sz - 1);
|
||||
for (int i = 0; i < sz; i++) {
|
||||
xval[i] = -1 + 15 * i * delta;
|
||||
yval[i] = -20 + 30 * i * delta;
|
||||
}
|
||||
public void testInterpolatePlane()
|
||||
{
|
||||
final int numberOfElements = 10;
|
||||
final double minimumX = -10;
|
||||
final double maximumX = 10;
|
||||
final double minimumY = -10;
|
||||
final double maximumY = 10;
|
||||
final int numberOfSamples = 100;
|
||||
final double interpolationTolerance = 7e-15;
|
||||
final double maxTolerance = 6e-14;
|
||||
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
BivariateFunction f = new BivariateFunction()
|
||||
{
|
||||
public double value( double x, double y )
|
||||
{
|
||||
return 2 * x - 3 * y + 5;
|
||||
}
|
||||
};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
zval[i][j] = f.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to x
|
||||
double[][] dZdX = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdX[i][j] = 2;
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to y
|
||||
double[][] dZdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdY[i][j] = -3;
|
||||
}
|
||||
}
|
||||
// Partial cross-derivatives
|
||||
double[][] dZdXdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdXdY[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
final BivariateFunction bcf
|
||||
= new BicubicSplineInterpolatingFunction(xval, yval, zval,
|
||||
dZdX, dZdY, dZdXdY);
|
||||
double x, y;
|
||||
|
||||
final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX
|
||||
= new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
|
||||
final UniformRealDistribution distY
|
||||
= new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
|
||||
|
||||
final int numSamples = 50;
|
||||
final double tol = 6;
|
||||
for (int i = 0; i < numSamples; i++) {
|
||||
x = distX.sample();
|
||||
for (int j = 0; j < numSamples; j++) {
|
||||
y = distY.sample();
|
||||
// System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y));
|
||||
Assert.assertEquals(f.value(x, y), bcf.value(x, y), tol);
|
||||
}
|
||||
// System.out.println();
|
||||
}
|
||||
testInterpolation( minimumX, maximumX, minimumY, maximumY, numberOfElements, numberOfSamples, f,
|
||||
interpolationTolerance, maxTolerance );
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -529,140 +196,85 @@ public final class BicubicSplineInterpolatingFunctionTest {
|
|||
* z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolation2() {
|
||||
final int sz = 21;
|
||||
double[] xval = new double[sz];
|
||||
double[] yval = new double[sz];
|
||||
// Coordinate values
|
||||
final double delta = 1d / (sz - 1);
|
||||
for (int i = 0; i < sz; i++) {
|
||||
xval[i] = -1 + 15 * i * delta;
|
||||
yval[i] = -20 + 30 * i * delta;
|
||||
}
|
||||
public void testInterpolationParabaloid()
|
||||
{
|
||||
final int numberOfElements = 10;
|
||||
final double minimumX = -10;
|
||||
final double maximumX = 10;
|
||||
final double minimumY = -10;
|
||||
final double maximumY = 10;
|
||||
final int numberOfSamples = 100;
|
||||
final double interpolationTolerance = 2e-14;
|
||||
final double maxTolerance = 6e-14;
|
||||
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
BivariateFunction f = new BivariateFunction()
|
||||
{
|
||||
public double value( double x, double y )
|
||||
{
|
||||
return 2 * x * x - 3 * y * y + 4 * x * y - 5;
|
||||
}
|
||||
};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
zval[i][j] = f.value(xval[i], yval[j]);
|
||||
}
|
||||
|
||||
testInterpolation( minimumX, maximumX, minimumY, maximumY, numberOfElements, numberOfSamples, f,
|
||||
interpolationTolerance, maxTolerance );
|
||||
}
|
||||
// Partial derivatives with respect to x
|
||||
double[][] dZdX = new double[xval.length][yval.length];
|
||||
BivariateFunction dfdX = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 4 * (x + y);
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdX[i][j] = dfdX.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial derivatives with respect to y
|
||||
double[][] dZdY = new double[xval.length][yval.length];
|
||||
BivariateFunction dfdY = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
return 4 * x - 6 * y;
|
||||
}
|
||||
};
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdY[i][j] = dfdY.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
// Partial cross-derivatives
|
||||
double[][] dZdXdY = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
dZdXdY[i][j] = 4;
|
||||
|
||||
private void testInterpolation( double minimumX, double maximumX, double minimumY, double maximumY,
|
||||
int numberOfElements, int numberOfSamples, BivariateFunction f, double tolerance,
|
||||
double maxTolerance )
|
||||
{
|
||||
double expected;
|
||||
double actual;
|
||||
double currentX;
|
||||
double currentY;
|
||||
final double deltaX = ( maximumX - minimumX ) / ( (double) numberOfElements );
|
||||
final double deltaY = ( maximumY - minimumY ) / ( (double) numberOfElements );
|
||||
double xValues[] = new double[numberOfElements];
|
||||
double yValues[] = new double[numberOfElements];
|
||||
double zValues[][] = new double[numberOfElements][numberOfElements];
|
||||
|
||||
for ( int i = 0; i < numberOfElements; i++ )
|
||||
{
|
||||
xValues[i] = minimumX + deltaX * (double) i;
|
||||
for ( int j = 0; j < numberOfElements; j++ )
|
||||
{
|
||||
yValues[j] = minimumY + deltaY * (double) j;
|
||||
zValues[i][j] = f.value( xValues[i], yValues[j] );
|
||||
}
|
||||
}
|
||||
|
||||
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
|
||||
dZdX, dZdY, dZdXdY);
|
||||
double x, y;
|
||||
BivariateFunction interpolation = new BicubicSplineInterpolatingFunction( xValues, yValues, zValues );
|
||||
|
||||
final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX
|
||||
= new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
|
||||
final UniformRealDistribution distY
|
||||
= new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
|
||||
|
||||
final double tol = 224;
|
||||
for (int i = 0; i < sz; i++) {
|
||||
x = distX.sample();
|
||||
for (int j = 0; j < sz; j++) {
|
||||
y = distY.sample();
|
||||
// System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y));
|
||||
Assert.assertEquals(f.value(x, y), bcf.value(x, y), tol);
|
||||
for ( int i = 0; i < numberOfElements; i++ )
|
||||
{
|
||||
currentX = xValues[i];
|
||||
for ( int j = 0; j < numberOfElements; j++ )
|
||||
{
|
||||
currentY = yValues[j];
|
||||
expected = f.value( currentX, currentY );
|
||||
actual = interpolation.value( currentX, currentY );
|
||||
assertTrue( Precision.equals( expected, actual ) );
|
||||
}
|
||||
// System.out.println();
|
||||
}
|
||||
|
||||
final RandomGenerator rng = new Well19937c( 1234567L ); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX =
|
||||
new UniformRealDistribution( rng, xValues[0], xValues[xValues.length - 1] );
|
||||
final UniformRealDistribution distY =
|
||||
new UniformRealDistribution( rng, yValues[0], yValues[yValues.length - 1] );
|
||||
|
||||
double sumError = 0;
|
||||
for ( int i = 0; i < numberOfSamples; i++ )
|
||||
{
|
||||
currentX = distX.sample();
|
||||
currentY = distY.sample();
|
||||
expected = f.value( currentX, currentY );
|
||||
actual = interpolation.value( currentX, currentY );
|
||||
sumError += FastMath.abs( actual - expected );
|
||||
assertEquals( expected, actual, maxTolerance );
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testIsValidPoint() {
|
||||
final double xMin = -12;
|
||||
final double xMax = 34;
|
||||
final double yMin = 5;
|
||||
final double yMax = 67;
|
||||
final double[] xval = new double[] { xMin, xMax };
|
||||
final double[] yval = new double[] { yMin, yMax };
|
||||
final double[][] f = new double[][] { { 1, 2 },
|
||||
{ 3, 4 } };
|
||||
final double[][] dFdX = f;
|
||||
final double[][] dFdY = f;
|
||||
final double[][] dFdXdY = f;
|
||||
|
||||
final BicubicSplineInterpolatingFunction bcf
|
||||
= new BicubicSplineInterpolatingFunction(xval, yval, f,
|
||||
dFdX, dFdY, dFdXdY);
|
||||
|
||||
double x, y;
|
||||
|
||||
x = xMin;
|
||||
y = yMin;
|
||||
Assert.assertTrue(bcf.isValidPoint(x, y));
|
||||
// Ensure that no exception is thrown.
|
||||
bcf.value(x, y);
|
||||
|
||||
x = xMax;
|
||||
y = yMax;
|
||||
Assert.assertTrue(bcf.isValidPoint(x, y));
|
||||
// Ensure that no exception is thrown.
|
||||
bcf.value(x, y);
|
||||
|
||||
final double xRange = xMax - xMin;
|
||||
final double yRange = yMax - yMin;
|
||||
x = xMin + xRange / 3.4;
|
||||
y = yMin + yRange / 1.2;
|
||||
Assert.assertTrue(bcf.isValidPoint(x, y));
|
||||
// Ensure that no exception is thrown.
|
||||
bcf.value(x, y);
|
||||
|
||||
final double small = 1e-8;
|
||||
x = xMin - small;
|
||||
y = yMax;
|
||||
Assert.assertFalse(bcf.isValidPoint(x, y));
|
||||
// Ensure that an exception would have been thrown.
|
||||
try {
|
||||
bcf.value(x, y);
|
||||
Assert.fail("OutOfRangeException expected");
|
||||
} catch (OutOfRangeException expected) {}
|
||||
|
||||
x = xMin;
|
||||
y = yMax + small;
|
||||
Assert.assertFalse(bcf.isValidPoint(x, y));
|
||||
// Ensure that an exception would have been thrown.
|
||||
try {
|
||||
bcf.value(x, y);
|
||||
Assert.fail("OutOfRangeException expected");
|
||||
} catch (OutOfRangeException expected) {}
|
||||
assertEquals( 0.0, ( sumError / (double) numberOfSamples ), tolerance );
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,7 +17,10 @@
|
|||
package org.apache.commons.math3.analysis.interpolation;
|
||||
|
||||
import org.apache.commons.math3.exception.DimensionMismatchException;
|
||||
import org.apache.commons.math3.exception.InsufficientDataException;
|
||||
import org.apache.commons.math3.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
|
||||
import org.apache.commons.math3.exception.NullArgumentException;
|
||||
import org.apache.commons.math3.analysis.BivariateFunction;
|
||||
import org.apache.commons.math3.distribution.UniformRealDistribution;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
|
@ -27,53 +30,131 @@ import org.junit.Test;
|
|||
|
||||
/**
|
||||
* Test case for the bicubic interpolator.
|
||||
*
|
||||
*/
|
||||
public final class BicubicSplineInterpolatorTest {
|
||||
public final class BicubicSplineInterpolatorTest
|
||||
{
|
||||
/**
|
||||
* Test preconditions.
|
||||
*/
|
||||
@Test
|
||||
public void testPreconditions() {
|
||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2.5};
|
||||
public void testPreconditions()
|
||||
{
|
||||
double[] xval = new double[] { 3, 4, 5, 6.5, 7.5 };
|
||||
double[] yval = new double[] { -4, -3, -1, 2.5, 3.5 };
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
|
||||
@SuppressWarnings( "unused" )
|
||||
BivariateGridInterpolator interpolator = new BicubicSplineInterpolator();
|
||||
|
||||
@SuppressWarnings("unused")
|
||||
BivariateFunction p = interpolator.interpolate(xval, yval, zval);
|
||||
try
|
||||
{
|
||||
interpolator.interpolate( null, yval, zval );
|
||||
Assert.fail( "Failed to detect x null pointer" );
|
||||
}
|
||||
catch ( NullArgumentException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
interpolator.interpolate( xval, null, zval );
|
||||
Assert.fail( "Failed to detect y null pointer" );
|
||||
}
|
||||
catch ( NullArgumentException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
interpolator.interpolate( xval, yval, null );
|
||||
Assert.fail( "Failed to detect z null pointer" );
|
||||
}
|
||||
catch ( NullArgumentException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
double xval1[] = { 0.0, 1.0, 2.0, 3.0 };
|
||||
interpolator.interpolate( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect insufficient x data" );
|
||||
}
|
||||
catch ( InsufficientDataException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
double yval1[] = { 0.0, 1.0, 2.0, 3.0 };
|
||||
interpolator.interpolate( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect insufficient y data" );
|
||||
}
|
||||
catch ( InsufficientDataException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
double zval1[][] = new double[4][4];
|
||||
interpolator.interpolate( xval, yval, zval1 );
|
||||
Assert.fail( "Failed to detect insufficient z data" );
|
||||
}
|
||||
catch ( InsufficientDataException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
try
|
||||
{
|
||||
double xval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
|
||||
interpolator.interpolate( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect data set array with different sizes." );
|
||||
}
|
||||
catch ( DimensionMismatchException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
double[] wxval = new double[] {3, 2, 5, 6.5};
|
||||
try {
|
||||
p = interpolator.interpolate(wxval, yval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathIllegalArgumentException e) {
|
||||
// Expected
|
||||
try
|
||||
{
|
||||
double yval1[] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
|
||||
interpolator.interpolate( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect data set array with different sizes." );
|
||||
}
|
||||
catch ( DimensionMismatchException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
double[] wyval = new double[] {-4, -3, -1, -1};
|
||||
try {
|
||||
p = interpolator.interpolate(xval, wyval, zval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathIllegalArgumentException e) {
|
||||
// Expected
|
||||
// X values not sorted.
|
||||
try
|
||||
{
|
||||
double xval1[] = { 0.0, 1.0, 0.5, 7.0, 3.5 };
|
||||
interpolator.interpolate( xval1, yval, zval );
|
||||
Assert.fail( "Failed to detect unsorted x arguments." );
|
||||
}
|
||||
catch ( NonMonotonicSequenceException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
double[][] wzval = new double[xval.length][yval.length + 1];
|
||||
try {
|
||||
p = interpolator.interpolate(xval, yval, wzval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
// Y values not sorted.
|
||||
try
|
||||
{
|
||||
double yval1[] = { 0.0, 1.0, 1.5, 0.0, 3.0 };
|
||||
interpolator.interpolate( xval, yval1, zval );
|
||||
Assert.fail( "Failed to detect unsorted y arguments." );
|
||||
}
|
||||
wzval = new double[xval.length - 1][yval.length];
|
||||
try {
|
||||
p = interpolator.interpolate(xval, yval, wzval);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (DimensionMismatchException e) {
|
||||
// Expected
|
||||
catch ( NonMonotonicSequenceException iae )
|
||||
{
|
||||
// Expected.
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -82,26 +163,32 @@ public final class BicubicSplineInterpolatorTest {
|
|||
* z = 2 x - 3 y + 5
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolation1() {
|
||||
public void testInterpolation1()
|
||||
{
|
||||
final int sz = 21;
|
||||
double[] xval = new double[sz];
|
||||
double[] yval = new double[sz];
|
||||
// Coordinate values
|
||||
final double delta = 1d / (sz - 1);
|
||||
for (int i = 0; i < sz; i++) {
|
||||
for ( int i = 0; i < sz; i++ )
|
||||
{
|
||||
xval[i] = -1 + 15 * i * delta;
|
||||
yval[i] = -20 + 30 * i * delta;
|
||||
}
|
||||
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
BivariateFunction f = new BivariateFunction()
|
||||
{
|
||||
public double value( double x, double y )
|
||||
{
|
||||
return 2 * x - 3 * y + 5;
|
||||
}
|
||||
};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
for ( int i = 0; i < xval.length; i++ )
|
||||
{
|
||||
for ( int j = 0; j < yval.length; j++ )
|
||||
{
|
||||
zval[i][j] = f.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
|
@ -111,16 +198,16 @@ public final class BicubicSplineInterpolatorTest {
|
|||
double x, y;
|
||||
|
||||
final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX
|
||||
= new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
|
||||
final UniformRealDistribution distY
|
||||
= new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
|
||||
final UniformRealDistribution distX = new UniformRealDistribution( rng, xval[0], xval[xval.length - 1] );
|
||||
final UniformRealDistribution distY = new UniformRealDistribution( rng, yval[0], yval[yval.length - 1] );
|
||||
|
||||
final int numSamples = 50;
|
||||
final double tol = 6;
|
||||
for (int i = 0; i < numSamples; i++) {
|
||||
final double tol = 2e-14;
|
||||
for ( int i = 0; i < numSamples; i++ )
|
||||
{
|
||||
x = distX.sample();
|
||||
for (int j = 0; j < numSamples; j++) {
|
||||
for ( int j = 0; j < numSamples; j++ )
|
||||
{
|
||||
y = distY.sample();
|
||||
// System.out.println(x + " " + y + " " + f.value(x, y) + " " + p.value(x, y));
|
||||
Assert.assertEquals(f.value(x, y), p.value(x, y), tol);
|
||||
|
@ -135,26 +222,32 @@ public final class BicubicSplineInterpolatorTest {
|
|||
* z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
|
||||
*/
|
||||
@Test
|
||||
public void testInterpolation2() {
|
||||
public void testInterpolation2()
|
||||
{
|
||||
final int sz = 21;
|
||||
double[] xval = new double[sz];
|
||||
double[] yval = new double[sz];
|
||||
// Coordinate values
|
||||
final double delta = 1d / (sz - 1);
|
||||
for (int i = 0; i < sz; i++) {
|
||||
for ( int i = 0; i < sz; i++ )
|
||||
{
|
||||
xval[i] = -1 + 15 * i * delta;
|
||||
yval[i] = -20 + 30 * i * delta;
|
||||
}
|
||||
|
||||
// Function values
|
||||
BivariateFunction f = new BivariateFunction() {
|
||||
public double value(double x, double y) {
|
||||
BivariateFunction f = new BivariateFunction()
|
||||
{
|
||||
public double value( double x, double y )
|
||||
{
|
||||
return 2 * x * x - 3 * y * y + 4 * x * y - 5;
|
||||
}
|
||||
};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
for ( int i = 0; i < xval.length; i++ )
|
||||
{
|
||||
for ( int j = 0; j < yval.length; j++ )
|
||||
{
|
||||
zval[i][j] = f.value(xval[i], yval[j]);
|
||||
}
|
||||
}
|
||||
|
@ -164,16 +257,16 @@ public final class BicubicSplineInterpolatorTest {
|
|||
double x, y;
|
||||
|
||||
final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
|
||||
final UniformRealDistribution distX
|
||||
= new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
|
||||
final UniformRealDistribution distY
|
||||
= new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
|
||||
final UniformRealDistribution distX = new UniformRealDistribution( rng, xval[0], xval[xval.length - 1] );
|
||||
final UniformRealDistribution distY = new UniformRealDistribution( rng, yval[0], yval[yval.length - 1] );
|
||||
|
||||
final int numSamples = 50;
|
||||
final double tol = 251;
|
||||
for (int i = 0; i < numSamples; i++) {
|
||||
final double tol = 5e-13;
|
||||
for ( int i = 0; i < numSamples; i++ )
|
||||
{
|
||||
x = distX.sample();
|
||||
for (int j = 0; j < numSamples; j++) {
|
||||
for ( int j = 0; j < numSamples; j++ )
|
||||
{
|
||||
y = distY.sample();
|
||||
// System.out.println(x + " " + y + " " + f.value(x, y) + " " + p.value(x, y));
|
||||
Assert.assertEquals(f.value(x, y), p.value(x, y), tol);
|
||||
|
|
|
@ -33,8 +33,8 @@ public final class SmoothingPolynomialBicubicSplineInterpolatorTest {
|
|||
*/
|
||||
@Test
|
||||
public void testPreconditions() {
|
||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2.5};
|
||||
double[] xval = new double[] {3, 4, 5, 6.5, 7.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2.5, 3};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
|
||||
BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(0);
|
||||
|
@ -97,8 +97,8 @@ public final class SmoothingPolynomialBicubicSplineInterpolatorTest {
|
|||
|
||||
BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(1);
|
||||
|
||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2, 2.5};
|
||||
double[] xval = new double[] {3, 4, 5, 6.5, 7.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2, 2.5, 3.5};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
for (int j = 0; j < yval.length; j++) {
|
||||
|
@ -145,7 +145,7 @@ public final class SmoothingPolynomialBicubicSplineInterpolatorTest {
|
|||
|
||||
BivariateGridInterpolator interpolator = new SmoothingPolynomialBicubicSplineInterpolator(4);
|
||||
|
||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
||||
double[] xval = new double[] {3, 4, 5, 6.5, 7.5, 8};
|
||||
double[] yval = new double[] {-4, -3, -2, -1, 0.5, 2.5};
|
||||
double[][] zval = new double[xval.length][yval.length];
|
||||
for (int i = 0; i < xval.length; i++) {
|
||||
|
|
|
@ -34,17 +34,18 @@ import org.junit.Test;
|
|||
public class SplineInterpolatorTest {
|
||||
|
||||
/** error tolerance for spline interpolator value at knot points */
|
||||
protected double knotTolerance = 1E-12;
|
||||
protected double knotTolerance = 1E-14;
|
||||
|
||||
/** error tolerance for interpolating polynomial coefficients */
|
||||
protected double coefficientTolerance = 1E-6;
|
||||
protected double coefficientTolerance = 1E-14;
|
||||
|
||||
/** error tolerance for interpolated values -- high value is from sin test */
|
||||
protected double interpolationTolerance = 1E-2;
|
||||
protected double interpolationTolerance = 1E-14;
|
||||
|
||||
@Test
|
||||
public void testInterpolateLinearDegenerateTwoSegment()
|
||||
{
|
||||
double tolerance = 1e-15;
|
||||
double x[] = { 0.0, 0.5, 1.0 };
|
||||
double y[] = { 0.0, 0.5, 1.0 };
|
||||
UnivariateInterpolator i = new SplineInterpolator();
|
||||
|
@ -60,14 +61,15 @@ public class SplineInterpolatorTest {
|
|||
TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
|
||||
|
||||
// Check interpolation
|
||||
Assert.assertEquals(0.0,f.value(0.0), interpolationTolerance);
|
||||
Assert.assertEquals(0.4,f.value(0.4), interpolationTolerance);
|
||||
Assert.assertEquals(1.0,f.value(1.0), interpolationTolerance);
|
||||
Assert.assertEquals(0.0,f.value(0.0), tolerance);
|
||||
Assert.assertEquals(0.4,f.value(0.4), tolerance);
|
||||
Assert.assertEquals(1.0,f.value(1.0), tolerance);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testInterpolateLinearDegenerateThreeSegment()
|
||||
{
|
||||
double tolerance = 1e-15;
|
||||
double x[] = { 0.0, 0.5, 1.0, 1.5 };
|
||||
double y[] = { 0.0, 0.5, 1.0, 1.5 };
|
||||
UnivariateInterpolator i = new SplineInterpolator();
|
||||
|
@ -84,9 +86,9 @@ public class SplineInterpolatorTest {
|
|||
TestUtils.assertEquals(polynomials[2].getCoefficients(), target, coefficientTolerance);
|
||||
|
||||
// Check interpolation
|
||||
Assert.assertEquals(0,f.value(0), interpolationTolerance);
|
||||
Assert.assertEquals(1.4,f.value(1.4), interpolationTolerance);
|
||||
Assert.assertEquals(1.5,f.value(1.5), interpolationTolerance);
|
||||
Assert.assertEquals(0,f.value(0), tolerance);
|
||||
Assert.assertEquals(1.4,f.value(1.4), tolerance);
|
||||
Assert.assertEquals(1.5,f.value(1.5), tolerance);
|
||||
}
|
||||
|
||||
@Test
|
||||
|
@ -108,6 +110,8 @@ public class SplineInterpolatorTest {
|
|||
|
||||
@Test
|
||||
public void testInterpolateSin() {
|
||||
double sineCoefficientTolerance = 1e-6;
|
||||
double sineInterpolationTolerance = 0.0043;
|
||||
double x[] =
|
||||
{
|
||||
0.0,
|
||||
|
@ -136,25 +140,25 @@ public class SplineInterpolatorTest {
|
|||
*/
|
||||
PolynomialFunction polynomials[] = ((PolynomialSplineFunction) f).getPolynomials();
|
||||
double target[] = {y[0], 1.002676d, 0d, -0.17415829d};
|
||||
TestUtils.assertEquals(polynomials[0].getCoefficients(), target, coefficientTolerance);
|
||||
TestUtils.assertEquals(polynomials[0].getCoefficients(), target, sineCoefficientTolerance);
|
||||
target = new double[]{y[1], 8.594367e-01, -2.735672e-01, -0.08707914};
|
||||
TestUtils.assertEquals(polynomials[1].getCoefficients(), target, coefficientTolerance);
|
||||
TestUtils.assertEquals(polynomials[1].getCoefficients(), target, sineCoefficientTolerance);
|
||||
target = new double[]{y[2], 1.471804e-17,-5.471344e-01, 0.08707914};
|
||||
TestUtils.assertEquals(polynomials[2].getCoefficients(), target, coefficientTolerance);
|
||||
TestUtils.assertEquals(polynomials[2].getCoefficients(), target, sineCoefficientTolerance);
|
||||
target = new double[]{y[3], -8.594367e-01, -2.735672e-01, 0.17415829};
|
||||
TestUtils.assertEquals(polynomials[3].getCoefficients(), target, coefficientTolerance);
|
||||
TestUtils.assertEquals(polynomials[3].getCoefficients(), target, sineCoefficientTolerance);
|
||||
target = new double[]{y[4], -1.002676, 6.548562e-17, 0.17415829};
|
||||
TestUtils.assertEquals(polynomials[4].getCoefficients(), target, coefficientTolerance);
|
||||
TestUtils.assertEquals(polynomials[4].getCoefficients(), target, sineCoefficientTolerance);
|
||||
target = new double[]{y[5], -8.594367e-01, 2.735672e-01, 0.08707914};
|
||||
TestUtils.assertEquals(polynomials[5].getCoefficients(), target, coefficientTolerance);
|
||||
TestUtils.assertEquals(polynomials[5].getCoefficients(), target, sineCoefficientTolerance);
|
||||
target = new double[]{y[6], 3.466465e-16, 5.471344e-01, -0.08707914};
|
||||
TestUtils.assertEquals(polynomials[6].getCoefficients(), target, coefficientTolerance);
|
||||
TestUtils.assertEquals(polynomials[6].getCoefficients(), target, sineCoefficientTolerance);
|
||||
target = new double[]{y[7], 8.594367e-01, 2.735672e-01, -0.17415829};
|
||||
TestUtils.assertEquals(polynomials[7].getCoefficients(), target, coefficientTolerance);
|
||||
TestUtils.assertEquals(polynomials[7].getCoefficients(), target, sineCoefficientTolerance);
|
||||
|
||||
//Check interpolation
|
||||
Assert.assertEquals(FastMath.sqrt(2d) / 2d,f.value(FastMath.PI/4d),interpolationTolerance);
|
||||
Assert.assertEquals(FastMath.sqrt(2d) / 2d,f.value(3d*FastMath.PI/4d),interpolationTolerance);
|
||||
Assert.assertEquals(FastMath.sqrt(2d) / 2d,f.value(FastMath.PI/4d),sineInterpolationTolerance);
|
||||
Assert.assertEquals(FastMath.sqrt(2d) / 2d,f.value(3d*FastMath.PI/4d),sineInterpolationTolerance);
|
||||
}
|
||||
|
||||
@Test
|
||||
|
|
|
@ -32,7 +32,7 @@ public final class TricubicSplineInterpolatorTest {
|
|||
/**
|
||||
* Test preconditions.
|
||||
*/
|
||||
@Test
|
||||
@Ignore@Test
|
||||
public void testPreconditions() {
|
||||
double[] xval = new double[] {3, 4, 5, 6.5};
|
||||
double[] yval = new double[] {-4, -3, -1, 2.5};
|
||||
|
|
|
@ -27,6 +27,25 @@ public class AbstractIntegerDistributionTest {
|
|||
protected final DiceDistribution diceDistribution = new DiceDistribution();
|
||||
protected final double p = diceDistribution.probability(1);
|
||||
|
||||
@Test
|
||||
public void testInverseCumulativeProbabilityMethod()
|
||||
{
|
||||
double precision = 0.000000000000001;
|
||||
Assert.assertEquals(1, diceDistribution.inverseCumulativeProbability(0));
|
||||
Assert.assertEquals(1, diceDistribution.inverseCumulativeProbability((1d-Double.MIN_VALUE)/6d));
|
||||
Assert.assertEquals(2, diceDistribution.inverseCumulativeProbability((1d+precision)/6d));
|
||||
Assert.assertEquals(2, diceDistribution.inverseCumulativeProbability((2d-Double.MIN_VALUE)/6d));
|
||||
Assert.assertEquals(3, diceDistribution.inverseCumulativeProbability((2d+precision)/6d));
|
||||
Assert.assertEquals(3, diceDistribution.inverseCumulativeProbability((3d-Double.MIN_VALUE)/6d));
|
||||
Assert.assertEquals(4, diceDistribution.inverseCumulativeProbability((3d+precision)/6d));
|
||||
Assert.assertEquals(4, diceDistribution.inverseCumulativeProbability((4d-Double.MIN_VALUE)/6d));
|
||||
Assert.assertEquals(5, diceDistribution.inverseCumulativeProbability((4d+precision)/6d));
|
||||
Assert.assertEquals(5, diceDistribution.inverseCumulativeProbability((5d-precision)/6d));//Can't use Double.MIN
|
||||
Assert.assertEquals(6, diceDistribution.inverseCumulativeProbability((5d+precision)/6d));
|
||||
Assert.assertEquals(6, diceDistribution.inverseCumulativeProbability((6d-precision)/6d));//Can't use Double.MIN
|
||||
Assert.assertEquals(6, diceDistribution.inverseCumulativeProbability((6d)/6d));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCumulativeProbabilitiesSingleArguments() {
|
||||
for (int i = 1; i < 7; i++) {
|
||||
|
@ -90,7 +109,7 @@ public class AbstractIntegerDistributionTest {
|
|||
}
|
||||
|
||||
public double getNumericalVariance() {
|
||||
return 12.5 - 3.5 * 3.5; // E(X^2) - E(X)^2
|
||||
return 70/24; // E(X^2) - E(X)^2
|
||||
}
|
||||
|
||||
public int getSupportLowerBound() {
|
||||
|
|
|
@ -23,14 +23,13 @@ import java.util.Locale;
|
|||
import java.util.ResourceBundle;
|
||||
|
||||
import org.junit.Assert;
|
||||
|
||||
import org.junit.Test;
|
||||
|
||||
public class LocalizedFormatsTest {
|
||||
|
||||
@Test
|
||||
public void testMessageNumber() {
|
||||
Assert.assertEquals(319, LocalizedFormats.values().length);
|
||||
Assert.assertEquals(320, LocalizedFormats.values().length);
|
||||
}
|
||||
|
||||
@Test
|
||||
|
|
|
@ -26,7 +26,7 @@ import org.junit.Test;
|
|||
/** Unit tests for {@link EvaluationRmsChecker}. */
|
||||
public class EvaluationRmsCheckerTest {
|
||||
|
||||
/** check {@link EvaluationRmsChecker#converged(int, Evaluation, Evaluation)}. */
|
||||
/** check {@link ConvergenceChecker#converged(int, Object, Object)}. */
|
||||
@Test
|
||||
public void testConverged() {
|
||||
//setup
|
||||
|
|
|
@ -310,4 +310,28 @@ public class ClassicalRungeKuttaIntegratorTest {
|
|||
}, 0.0, new double[] { 0.0 }, 5.0, new double[1]);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testTooLargeFirstStep() {
|
||||
|
||||
RungeKuttaIntegrator integ = new ClassicalRungeKuttaIntegrator(0.5);
|
||||
final double start = 0.0;
|
||||
final double end = 0.001;
|
||||
FirstOrderDifferentialEquations equations = new FirstOrderDifferentialEquations() {
|
||||
|
||||
public int getDimension() {
|
||||
return 1;
|
||||
}
|
||||
|
||||
public void computeDerivatives(double t, double[] y, double[] yDot) {
|
||||
Assert.assertTrue(t >= FastMath.nextAfter(start, Double.NEGATIVE_INFINITY));
|
||||
Assert.assertTrue(t <= FastMath.nextAfter(end, Double.POSITIVE_INFINITY));
|
||||
yDot[0] = -100.0 * y[0];
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
integ.integrate(equations, start, new double[] { 1.0 }, end, new double[1]);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -24,6 +24,7 @@ import java.util.ArrayList;
|
|||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math3.exception.MathArithmeticException;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
import org.junit.runner.RunWith;
|
||||
|
@ -159,12 +160,23 @@ public class FastMathStrictComparisonTest {
|
|||
}
|
||||
|
||||
private static void callMethods(Method mathMethod, Method fastMethod,
|
||||
Object[] params, int[] entries) throws IllegalAccessException,
|
||||
InvocationTargetException {
|
||||
Object[] params, int[] entries) throws IllegalAccessException {
|
||||
try {
|
||||
Object expected = mathMethod.invoke(mathMethod, params);
|
||||
Object actual = fastMethod.invoke(mathMethod, params);
|
||||
if (!expected.equals(actual)) {
|
||||
Object expected;
|
||||
try {
|
||||
expected = mathMethod.invoke(mathMethod, params);
|
||||
} catch (InvocationTargetException ite) {
|
||||
expected = ite.getCause();
|
||||
}
|
||||
Object actual;
|
||||
try {
|
||||
actual = fastMethod.invoke(mathMethod, params);
|
||||
} catch (InvocationTargetException ite) {
|
||||
actual = ite.getCause();
|
||||
}
|
||||
if (expected instanceof ArithmeticException) {
|
||||
Assert.assertEquals(MathArithmeticException.class, actual.getClass());
|
||||
} else if (!expected.equals(actual)) {
|
||||
reportFailedResults(mathMethod, params, expected, actual, entries);
|
||||
}
|
||||
} catch (IllegalArgumentException e) {
|
||||
|
|
|
@ -19,13 +19,16 @@ package org.apache.commons.math3.util;
|
|||
import java.lang.reflect.Method;
|
||||
import java.lang.reflect.Modifier;
|
||||
import java.lang.reflect.Type;
|
||||
import java.math.BigInteger;
|
||||
|
||||
import org.apache.commons.math3.TestUtils;
|
||||
import org.apache.commons.math3.dfp.Dfp;
|
||||
import org.apache.commons.math3.dfp.DfpField;
|
||||
import org.apache.commons.math3.dfp.DfpMath;
|
||||
import org.apache.commons.math3.exception.MathArithmeticException;
|
||||
import org.apache.commons.math3.random.MersenneTwister;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.random.Well1024a;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Before;
|
||||
import org.junit.Ignore;
|
||||
|
@ -958,13 +961,13 @@ public class FastMathTest {
|
|||
@Test
|
||||
public void testNextAfter() {
|
||||
// 0x402fffffffffffff 0x404123456789abcd -> 4030000000000000
|
||||
Assert.assertEquals(16.0, FastMath.nextAfter(15.999999999999998, 34.27555555555555), 0.0);
|
||||
Assert.assertEquals(16.0, FastMath.nextUp(15.999999999999998), 0.0);
|
||||
|
||||
// 0xc02fffffffffffff 0x404123456789abcd -> c02ffffffffffffe
|
||||
Assert.assertEquals(-15.999999999999996, FastMath.nextAfter(-15.999999999999998, 34.27555555555555), 0.0);
|
||||
|
||||
// 0x402fffffffffffff 0x400123456789abcd -> 402ffffffffffffe
|
||||
Assert.assertEquals(15.999999999999996, FastMath.nextAfter(15.999999999999998, 2.142222222222222), 0.0);
|
||||
Assert.assertEquals(15.999999999999996, FastMath.nextDown(15.999999999999998), 0.0);
|
||||
|
||||
// 0xc02fffffffffffff 0x400123456789abcd -> c02ffffffffffffe
|
||||
Assert.assertEquals(-15.999999999999996, FastMath.nextAfter(-15.999999999999998, 2.142222222222222), 0.0);
|
||||
|
@ -1037,8 +1040,8 @@ public class FastMathTest {
|
|||
Assert.assertEquals(-Float.MAX_VALUE,FastMath.nextAfter(Float.NEGATIVE_INFINITY, 0F), 0F);
|
||||
Assert.assertEquals(Float.MAX_VALUE,FastMath.nextAfter(Float.POSITIVE_INFINITY, 0F), 0F);
|
||||
Assert.assertEquals(Float.NaN,FastMath.nextAfter(Float.NaN, 0F), 0F);
|
||||
Assert.assertEquals(Float.POSITIVE_INFINITY,FastMath.nextAfter(Float.MAX_VALUE, Float.POSITIVE_INFINITY), 0F);
|
||||
Assert.assertEquals(Float.NEGATIVE_INFINITY,FastMath.nextAfter(-Float.MAX_VALUE, Float.NEGATIVE_INFINITY), 0F);
|
||||
Assert.assertEquals(Float.POSITIVE_INFINITY,FastMath.nextUp(Float.MAX_VALUE), 0F);
|
||||
Assert.assertEquals(Float.NEGATIVE_INFINITY,FastMath.nextDown(-Float.MAX_VALUE), 0F);
|
||||
Assert.assertEquals(Float.MIN_VALUE, FastMath.nextAfter(0F, 1F), 0F);
|
||||
Assert.assertEquals(-Float.MIN_VALUE, FastMath.nextAfter(0F, -1F), 0F);
|
||||
Assert.assertEquals(0F, FastMath.nextAfter(Float.MIN_VALUE, -1F), 0F);
|
||||
|
@ -1182,4 +1185,422 @@ public class FastMathTest {
|
|||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testIncrementExactInt() {
|
||||
int[] specialValues = new int[] {
|
||||
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
|
||||
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
|
||||
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
|
||||
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
|
||||
};
|
||||
for (int a : specialValues) {
|
||||
BigInteger bdA = BigInteger.valueOf(a);
|
||||
BigInteger bdSum = bdA.add(BigInteger.ONE);
|
||||
if (bdSum.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
|
||||
bdSum.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
|
||||
try {
|
||||
FastMath.incrementExact(a);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
Assert.assertEquals(bdSum, BigInteger.valueOf(FastMath.incrementExact(a)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDecrementExactInt() {
|
||||
int[] specialValues = new int[] {
|
||||
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
|
||||
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
|
||||
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
|
||||
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
|
||||
};
|
||||
for (int a : specialValues) {
|
||||
BigInteger bdA = BigInteger.valueOf(a);
|
||||
BigInteger bdSub = bdA.subtract(BigInteger.ONE);
|
||||
if (bdSub.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
|
||||
bdSub.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
|
||||
try {
|
||||
FastMath.decrementExact(a);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
Assert.assertEquals(bdSub, BigInteger.valueOf(FastMath.decrementExact(a)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAddExactInt() {
|
||||
int[] specialValues = new int[] {
|
||||
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
|
||||
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
|
||||
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
|
||||
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
|
||||
};
|
||||
for (int a : specialValues) {
|
||||
for (int b : specialValues) {
|
||||
BigInteger bdA = BigInteger.valueOf(a);
|
||||
BigInteger bdB = BigInteger.valueOf(b);
|
||||
BigInteger bdSum = bdA.add(bdB);
|
||||
if (bdSum.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
|
||||
bdSum.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
|
||||
try {
|
||||
FastMath.addExact(a, b);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
Assert.assertEquals(bdSum, BigInteger.valueOf(FastMath.addExact(a, b)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testAddExactLong() {
|
||||
long[] specialValues = new long[] {
|
||||
Long.MIN_VALUE, Long.MIN_VALUE + 1, Long.MIN_VALUE + 2,
|
||||
Long.MAX_VALUE, Long.MAX_VALUE - 1, Long.MAX_VALUE - 2,
|
||||
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
-1 - (Long.MIN_VALUE / 2), 0 - (Long.MIN_VALUE / 2), 1 - (Long.MIN_VALUE / 2),
|
||||
-1 + (Long.MAX_VALUE / 2), 0 + (Long.MAX_VALUE / 2), 1 + (Long.MAX_VALUE / 2),
|
||||
};
|
||||
for (long a : specialValues) {
|
||||
for (long b : specialValues) {
|
||||
BigInteger bdA = BigInteger.valueOf(a);
|
||||
BigInteger bdB = BigInteger.valueOf(b);
|
||||
BigInteger bdSum = bdA.add(bdB);
|
||||
if (bdSum.compareTo(BigInteger.valueOf(Long.MIN_VALUE)) < 0 ||
|
||||
bdSum.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
|
||||
try {
|
||||
FastMath.addExact(a, b);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
Assert.assertEquals(bdSum, BigInteger.valueOf(FastMath.addExact(a, b)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubtractExactInt() {
|
||||
int[] specialValues = new int[] {
|
||||
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
|
||||
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
|
||||
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
|
||||
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
|
||||
};
|
||||
for (int a : specialValues) {
|
||||
for (int b : specialValues) {
|
||||
BigInteger bdA = BigInteger.valueOf(a);
|
||||
BigInteger bdB = BigInteger.valueOf(b);
|
||||
BigInteger bdSub = bdA.subtract(bdB);
|
||||
if (bdSub.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
|
||||
bdSub.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
|
||||
try {
|
||||
FastMath.subtractExact(a, b);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
Assert.assertEquals(bdSub, BigInteger.valueOf(FastMath.subtractExact(a, b)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSubtractExactLong() {
|
||||
long[] specialValues = new long[] {
|
||||
Long.MIN_VALUE, Long.MIN_VALUE + 1, Long.MIN_VALUE + 2,
|
||||
Long.MAX_VALUE, Long.MAX_VALUE - 1, Long.MAX_VALUE - 2,
|
||||
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
-1 - (Long.MIN_VALUE / 2), 0 - (Long.MIN_VALUE / 2), 1 - (Long.MIN_VALUE / 2),
|
||||
-1 + (Long.MAX_VALUE / 2), 0 + (Long.MAX_VALUE / 2), 1 + (Long.MAX_VALUE / 2),
|
||||
};
|
||||
for (long a : specialValues) {
|
||||
for (long b : specialValues) {
|
||||
BigInteger bdA = BigInteger.valueOf(a);
|
||||
BigInteger bdB = BigInteger.valueOf(b);
|
||||
BigInteger bdSub = bdA.subtract(bdB);
|
||||
if (bdSub.compareTo(BigInteger.valueOf(Long.MIN_VALUE)) < 0 ||
|
||||
bdSub.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
|
||||
try {
|
||||
FastMath.subtractExact(a, b);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
Assert.assertEquals(bdSub, BigInteger.valueOf(FastMath.subtractExact(a, b)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMultiplyExactInt() {
|
||||
int[] specialValues = new int[] {
|
||||
Integer.MIN_VALUE, Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 2,
|
||||
Integer.MAX_VALUE, Integer.MAX_VALUE - 1, Integer.MAX_VALUE - 2,
|
||||
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
-1 - (Integer.MIN_VALUE / 2), 0 - (Integer.MIN_VALUE / 2), 1 - (Integer.MIN_VALUE / 2),
|
||||
-1 + (Integer.MAX_VALUE / 2), 0 + (Integer.MAX_VALUE / 2), 1 + (Integer.MAX_VALUE / 2),
|
||||
};
|
||||
for (int a : specialValues) {
|
||||
for (int b : specialValues) {
|
||||
BigInteger bdA = BigInteger.valueOf(a);
|
||||
BigInteger bdB = BigInteger.valueOf(b);
|
||||
BigInteger bdMul = bdA.multiply(bdB);
|
||||
if (bdMul.compareTo(BigInteger.valueOf(Integer.MIN_VALUE)) < 0 ||
|
||||
bdMul.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0) {
|
||||
try {
|
||||
FastMath.multiplyExact(a, b);
|
||||
Assert.fail("an exception should have been thrown " + a + b);
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
Assert.assertEquals(bdMul, BigInteger.valueOf(FastMath.multiplyExact(a, b)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testMultiplyExactLong() {
|
||||
long[] specialValues = new long[] {
|
||||
Long.MIN_VALUE, Long.MIN_VALUE + 1, Long.MIN_VALUE + 2,
|
||||
Long.MAX_VALUE, Long.MAX_VALUE - 1, Long.MAX_VALUE - 2,
|
||||
-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
||||
-1 - (Long.MIN_VALUE / 2), 0 - (Long.MIN_VALUE / 2), 1 - (Long.MIN_VALUE / 2),
|
||||
-1 + (Long.MAX_VALUE / 2), 0 + (Long.MAX_VALUE / 2), 1 + (Long.MAX_VALUE / 2),
|
||||
};
|
||||
for (long a : specialValues) {
|
||||
for (long b : specialValues) {
|
||||
BigInteger bdA = BigInteger.valueOf(a);
|
||||
BigInteger bdB = BigInteger.valueOf(b);
|
||||
BigInteger bdMul = bdA.multiply(bdB);
|
||||
if (bdMul.compareTo(BigInteger.valueOf(Long.MIN_VALUE)) < 0 ||
|
||||
bdMul.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
|
||||
try {
|
||||
FastMath.multiplyExact(a, b);
|
||||
Assert.fail("an exception should have been thrown " + a + b);
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
Assert.assertEquals(bdMul, BigInteger.valueOf(FastMath.multiplyExact(a, b)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test(expected=MathArithmeticException.class)
|
||||
public void testToIntExactTooLow() {
|
||||
FastMath.toIntExact(-1l + Integer.MIN_VALUE);
|
||||
}
|
||||
|
||||
@Test(expected=MathArithmeticException.class)
|
||||
public void testToIntExactTooHigh() {
|
||||
FastMath.toIntExact(+1l + Integer.MAX_VALUE);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testToIntExact() {
|
||||
for (int n = -1000; n < 1000; ++n) {
|
||||
Assert.assertEquals(n, FastMath.toIntExact(0l + n));
|
||||
}
|
||||
Assert.assertEquals(Integer.MIN_VALUE, FastMath.toIntExact(0l + Integer.MIN_VALUE));
|
||||
Assert.assertEquals(Integer.MAX_VALUE, FastMath.toIntExact(0l + Integer.MAX_VALUE));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFloorDivInt() {
|
||||
Assert.assertEquals(+1, FastMath.floorDiv(+4, +3));
|
||||
Assert.assertEquals(-2, FastMath.floorDiv(-4, +3));
|
||||
Assert.assertEquals(-2, FastMath.floorDiv(+4, -3));
|
||||
Assert.assertEquals(+1, FastMath.floorDiv(-4, -3));
|
||||
try {
|
||||
FastMath.floorDiv(1, 0);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
for (int a = -100; a <= 100; ++a) {
|
||||
for (int b = -100; b <= 100; ++b) {
|
||||
if (b != 0) {
|
||||
Assert.assertEquals(poorManFloorDiv(a, b), FastMath.floorDiv(a, b));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFloorModInt() {
|
||||
Assert.assertEquals(+1, FastMath.floorMod(+4, +3));
|
||||
Assert.assertEquals(+2, FastMath.floorMod(-4, +3));
|
||||
Assert.assertEquals(-2, FastMath.floorMod(+4, -3));
|
||||
Assert.assertEquals(-1, FastMath.floorMod(-4, -3));
|
||||
try {
|
||||
FastMath.floorMod(1, 0);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
for (int a = -100; a <= 100; ++a) {
|
||||
for (int b = -100; b <= 100; ++b) {
|
||||
if (b != 0) {
|
||||
Assert.assertEquals(poorManFloorMod(a, b), FastMath.floorMod(a, b));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFloorDivModInt() {
|
||||
RandomGenerator generator = new Well1024a(0x7ccab45edeaab90al);
|
||||
for (int i = 0; i < 10000; ++i) {
|
||||
int a = generator.nextInt();
|
||||
int b = generator.nextInt();
|
||||
if (b == 0) {
|
||||
try {
|
||||
FastMath.floorDiv(a, b);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
int d = FastMath.floorDiv(a, b);
|
||||
int m = FastMath.floorMod(a, b);
|
||||
Assert.assertEquals(FastMath.toIntExact(poorManFloorDiv(a, b)), d);
|
||||
Assert.assertEquals(FastMath.toIntExact(poorManFloorMod(a, b)), m);
|
||||
Assert.assertEquals(a, d * b + m);
|
||||
if (b < 0) {
|
||||
Assert.assertTrue(m <= 0);
|
||||
Assert.assertTrue(-m < -b);
|
||||
} else {
|
||||
Assert.assertTrue(m >= 0);
|
||||
Assert.assertTrue(m < b);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFloorDivLong() {
|
||||
Assert.assertEquals(+1l, FastMath.floorDiv(+4l, +3l));
|
||||
Assert.assertEquals(-2l, FastMath.floorDiv(-4l, +3l));
|
||||
Assert.assertEquals(-2l, FastMath.floorDiv(+4l, -3l));
|
||||
Assert.assertEquals(+1l, FastMath.floorDiv(-4l, -3l));
|
||||
try {
|
||||
FastMath.floorDiv(1l, 0l);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
for (long a = -100l; a <= 100l; ++a) {
|
||||
for (long b = -100l; b <= 100l; ++b) {
|
||||
if (b != 0) {
|
||||
Assert.assertEquals(poorManFloorDiv(a, b), FastMath.floorDiv(a, b));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFloorModLong() {
|
||||
Assert.assertEquals(+1l, FastMath.floorMod(+4l, +3l));
|
||||
Assert.assertEquals(+2l, FastMath.floorMod(-4l, +3l));
|
||||
Assert.assertEquals(-2l, FastMath.floorMod(+4l, -3l));
|
||||
Assert.assertEquals(-1l, FastMath.floorMod(-4l, -3l));
|
||||
try {
|
||||
FastMath.floorMod(1l, 0l);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
for (long a = -100l; a <= 100l; ++a) {
|
||||
for (long b = -100l; b <= 100l; ++b) {
|
||||
if (b != 0) {
|
||||
Assert.assertEquals(poorManFloorMod(a, b), FastMath.floorMod(a, b));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testFloorDivModLong() {
|
||||
RandomGenerator generator = new Well1024a(0xb87b9bc14c96ccd5l);
|
||||
for (int i = 0; i < 10000; ++i) {
|
||||
long a = generator.nextLong();
|
||||
long b = generator.nextLong();
|
||||
if (b == 0) {
|
||||
try {
|
||||
FastMath.floorDiv(a, b);
|
||||
Assert.fail("an exception should have been thrown");
|
||||
} catch (MathArithmeticException mae) {
|
||||
// expected
|
||||
}
|
||||
} else {
|
||||
long d = FastMath.floorDiv(a, b);
|
||||
long m = FastMath.floorMod(a, b);
|
||||
Assert.assertEquals(poorManFloorDiv(a, b), d);
|
||||
Assert.assertEquals(poorManFloorMod(a, b), m);
|
||||
Assert.assertEquals(a, d * b + m);
|
||||
if (b < 0) {
|
||||
Assert.assertTrue(m <= 0);
|
||||
Assert.assertTrue(-m < -b);
|
||||
} else {
|
||||
Assert.assertTrue(m >= 0);
|
||||
Assert.assertTrue(m < b);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private long poorManFloorDiv(long a, long b) {
|
||||
|
||||
// find q0, r0 such that a = q0 b + r0
|
||||
BigInteger q0 = BigInteger.valueOf(a / b);
|
||||
BigInteger r0 = BigInteger.valueOf(a % b);
|
||||
BigInteger fd = BigInteger.valueOf(Integer.MIN_VALUE);
|
||||
BigInteger bigB = BigInteger.valueOf(b);
|
||||
|
||||
for (int k = -2; k < 2; ++k) {
|
||||
// find another pair q, r such that a = q b + r
|
||||
BigInteger bigK = BigInteger.valueOf(k);
|
||||
BigInteger q = q0.subtract(bigK);
|
||||
BigInteger r = r0.add(bigK.multiply(bigB));
|
||||
if (r.abs().compareTo(bigB.abs()) < 0 &&
|
||||
(r.longValue() == 0l || ((r.longValue() ^ b) & 0x8000000000000000l) == 0)) {
|
||||
if (fd.compareTo(q) < 0) {
|
||||
fd = q;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return fd.longValue();
|
||||
|
||||
}
|
||||
|
||||
private long poorManFloorMod(long a, long b) {
|
||||
return a - b * poorManFloorDiv(a, b);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue