Separate implementation of secant solver from bracketing solvers.
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1144828 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
afa158afc7
commit
2abc2e6707
|
@ -1,71 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math.analysis.solvers;
|
||||
|
||||
/**
|
||||
* Base class for <em>Secant</em> methods that guarantee convergence
|
||||
* by maintaining a {@link BracketedUnivariateRealSolver bracketed solution}.
|
||||
*
|
||||
* @since 3.0
|
||||
* @version $Id$
|
||||
*/
|
||||
public class BaseBracketedSecantSolver extends BaseSecantSolver
|
||||
implements BracketedUnivariateRealSolver {
|
||||
/**
|
||||
* Construct a solver with default accuracy (1e-6).
|
||||
*
|
||||
* @param method Method.
|
||||
*/
|
||||
protected BaseBracketedSecantSolver(Method method) {
|
||||
super(DEFAULT_ABSOLUTE_ACCURACY, method);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a solver.
|
||||
*
|
||||
* @param absoluteAccuracy absolute accuracy
|
||||
* @param method Method.
|
||||
*/
|
||||
protected BaseBracketedSecantSolver(final double absoluteAccuracy,
|
||||
Method method) {
|
||||
super(absoluteAccuracy, method);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a solver.
|
||||
*
|
||||
* @param relativeAccuracy relative accuracy
|
||||
* @param absoluteAccuracy absolute accuracy
|
||||
* @param method Method.
|
||||
*/
|
||||
protected BaseBracketedSecantSolver(final double relativeAccuracy,
|
||||
final double absoluteAccuracy,
|
||||
Method method) {
|
||||
super(relativeAccuracy, absoluteAccuracy, method);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public AllowedSolutions getAllowedSolutions() {
|
||||
return allowedSolutions;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public void setAllowedSolutions(final AllowedSolutions allowedSolutions) {
|
||||
this.allowedSolutions = allowedSolutions;
|
||||
}
|
||||
}
|
|
@ -18,14 +18,14 @@
|
|||
package org.apache.commons.math.analysis.solvers;
|
||||
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
import org.apache.commons.math.analysis.UnivariateRealFunction;
|
||||
import org.apache.commons.math.exception.MathInternalError;
|
||||
|
||||
/**
|
||||
* Base class for all <em>Secant</em>-based methods for root-finding
|
||||
* Base class for all bracketing <em>Secant</em>-based methods for root-finding
|
||||
* (approximating a zero of a univariate real function).
|
||||
*
|
||||
* <p>Implementation of the {@link SecantSolver <em>Secant</em>},
|
||||
* {@link RegulaFalsiSolver <em>Regula Falsi</em>}, and
|
||||
* <p>Implementation of the {@link RegulaFalsiSolver <em>Regula Falsi</em>}, and
|
||||
* {@link IllinoisSolver <em>Illinois</em>} methods is based on the
|
||||
* following article: M. Dowell and P. Jarratt,
|
||||
* <em>A modified regula falsi method for computing the root of an
|
||||
|
@ -38,14 +38,23 @@ import org.apache.commons.math.exception.MathInternalError;
|
|||
* BIT Numerical Mathematics, volume 12, number 4, pages 503-508, Springer,
|
||||
* 1972.</p>
|
||||
*
|
||||
* <p>The {@link SecantSolver <em>secant<em>} method is <em>not</emp> a
|
||||
* bracketing method so it is not implemented here. It has a separate
|
||||
* implementation.</p>
|
||||
*
|
||||
* @since 3.0
|
||||
* @version $Id$
|
||||
*/
|
||||
public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
||||
public abstract class BaseSecantSolver
|
||||
extends AbstractUnivariateRealSolver
|
||||
implements BracketedUnivariateRealSolver<UnivariateRealFunction> {
|
||||
|
||||
/** Default absolute accuracy. */
|
||||
protected static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
|
||||
|
||||
/** The kinds of solutions that the algorithm may accept. */
|
||||
protected AllowedSolutions allowedSolutions = AllowedSolutions.EITHER_SIDE;
|
||||
private AllowedSolutions allowedSolutions;
|
||||
|
||||
/** The <em>Secant</em>-based root-finding method to use. */
|
||||
private final Method method;
|
||||
|
||||
|
@ -57,6 +66,7 @@ public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
|||
*/
|
||||
protected BaseSecantSolver(final double absoluteAccuracy, final Method method) {
|
||||
super(absoluteAccuracy);
|
||||
this.allowedSolutions = AllowedSolutions.ANY_SIDE;
|
||||
this.method = method;
|
||||
}
|
||||
|
||||
|
@ -71,11 +81,33 @@ public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
|||
final double absoluteAccuracy,
|
||||
final Method method) {
|
||||
super(relativeAccuracy, absoluteAccuracy);
|
||||
this.allowedSolutions = AllowedSolutions.ANY_SIDE;
|
||||
this.method = method;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double solve(final int maxEval, final UnivariateRealFunction f,
|
||||
final double min, final double max,
|
||||
final AllowedSolutions allowedSolutions) {
|
||||
return solve(maxEval, f, min, max, min + 0.5 * (max - min), allowedSolutions);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double solve(final int maxEval, final UnivariateRealFunction f,
|
||||
final double min, final double max, final double startValue,
|
||||
final AllowedSolutions allowedSolutions) {
|
||||
this.allowedSolutions = allowedSolutions;
|
||||
return super.solve(maxEval, f, min, max, startValue);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public double solve(final int maxEval, final UnivariateRealFunction f,
|
||||
final double min, final double max, final double startValue) {
|
||||
return solve(maxEval, f, min, max, startValue, AllowedSolutions.ANY_SIDE);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
protected final double doSolve() {
|
||||
// Get initial solution
|
||||
double x0 = getMin();
|
||||
|
@ -102,8 +134,7 @@ public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
|||
final double rtol = getRelativeAccuracy();
|
||||
|
||||
// Keep track of inverted intervals, meaning that the left bound is
|
||||
// larger than the right bound. Not used for the original Secant
|
||||
// method.
|
||||
// larger than the right bound.
|
||||
boolean inverted = false;
|
||||
|
||||
// Keep finding better approximations.
|
||||
|
@ -120,12 +151,7 @@ public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
|||
}
|
||||
|
||||
// Update the bounds with the new approximation.
|
||||
if (method == Method.SECANT) {
|
||||
x0 = x1;
|
||||
f0 = f1;
|
||||
x1 = x;
|
||||
f1 = fx;
|
||||
} else if (f1 * fx < 0) {
|
||||
if (f1 * fx < 0) {
|
||||
// We had [x0..x1]. We update it to [x1, x]. Note that the
|
||||
// value of x1 has switched to the other bound, thus inverting
|
||||
// the interval.
|
||||
|
@ -151,7 +177,7 @@ public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
|||
// the root than we already are.
|
||||
if (FastMath.abs(f1) <= ftol) {
|
||||
switch (allowedSolutions) {
|
||||
case EITHER_SIDE:
|
||||
case ANY_SIDE:
|
||||
return x1;
|
||||
case LEFT_SIDE:
|
||||
if (inverted) {
|
||||
|
@ -183,7 +209,7 @@ public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
|||
if (FastMath.abs(x1 - x0) < FastMath.max(rtol * FastMath.abs(x1),
|
||||
atol)) {
|
||||
switch (allowedSolutions) {
|
||||
case EITHER_SIDE:
|
||||
case ANY_SIDE:
|
||||
return x1;
|
||||
case LEFT_SIDE:
|
||||
return inverted ? x1 : x0;
|
||||
|
@ -202,8 +228,6 @@ public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
|||
|
||||
/** <em>Secant</em>-based root-finding methods. */
|
||||
protected enum Method {
|
||||
/** The original {@link SecantSolver <em>Secant</em>} method. */
|
||||
SECANT,
|
||||
|
||||
/**
|
||||
* The {@link RegulaFalsiSolver <em>Regula Falsi</em>} or
|
||||
|
@ -215,6 +239,7 @@ public abstract class BaseSecantSolver extends AbstractUnivariateRealSolver {
|
|||
ILLINOIS,
|
||||
|
||||
/** The {@link PegasusSolver <em>Pegasus</em>} method. */
|
||||
PEGASUS,
|
||||
PEGASUS;
|
||||
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,6 +17,8 @@
|
|||
|
||||
package org.apache.commons.math.analysis.solvers;
|
||||
|
||||
import org.apache.commons.math.util.FastMath;
|
||||
|
||||
/**
|
||||
* Implements the <em>Secant</em> method for root-finding (approximating a
|
||||
* zero of a univariate real function). The solution that is maintained is
|
||||
|
@ -36,10 +38,14 @@ package org.apache.commons.math.analysis.solvers;
|
|||
*
|
||||
* @version $Id$
|
||||
*/
|
||||
public class SecantSolver extends BaseSecantSolver {
|
||||
public class SecantSolver extends AbstractUnivariateRealSolver {
|
||||
|
||||
/** Default absolute accuracy. */
|
||||
protected static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
|
||||
|
||||
/** Construct a solver with default accuracy (1e-6). */
|
||||
public SecantSolver() {
|
||||
super(DEFAULT_ABSOLUTE_ACCURACY, Method.SECANT);
|
||||
super(DEFAULT_ABSOLUTE_ACCURACY);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -48,7 +54,7 @@ public class SecantSolver extends BaseSecantSolver {
|
|||
* @param absoluteAccuracy absolute accuracy
|
||||
*/
|
||||
public SecantSolver(final double absoluteAccuracy) {
|
||||
super(absoluteAccuracy, Method.SECANT);
|
||||
super(absoluteAccuracy);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -59,6 +65,69 @@ public class SecantSolver extends BaseSecantSolver {
|
|||
*/
|
||||
public SecantSolver(final double relativeAccuracy,
|
||||
final double absoluteAccuracy) {
|
||||
super(relativeAccuracy, absoluteAccuracy, Method.SECANT);
|
||||
super(relativeAccuracy, absoluteAccuracy);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
protected final double doSolve() {
|
||||
// Get initial solution
|
||||
double x0 = getMin();
|
||||
double x1 = getMax();
|
||||
double f0 = computeObjectiveValue(x0);
|
||||
double f1 = computeObjectiveValue(x1);
|
||||
|
||||
// If one of the bounds is the exact root, return it. Since these are
|
||||
// not under-approximations or over-approximations, we can return them
|
||||
// regardless of the allowed solutions.
|
||||
if (f0 == 0.0) {
|
||||
return x0;
|
||||
}
|
||||
if (f1 == 0.0) {
|
||||
return x1;
|
||||
}
|
||||
|
||||
// Verify bracketing of initial solution.
|
||||
verifyBracketing(x0, x1);
|
||||
|
||||
// Get accuracies.
|
||||
final double ftol = getFunctionValueAccuracy();
|
||||
final double atol = getAbsoluteAccuracy();
|
||||
final double rtol = getRelativeAccuracy();
|
||||
|
||||
// Keep finding better approximations.
|
||||
while (true) {
|
||||
|
||||
// Calculate the next approximation.
|
||||
final double x = x1 - ((f1 * (x1 - x0)) / (f1 - f0));
|
||||
final double fx = computeObjectiveValue(x);
|
||||
|
||||
// If the new approximation is the exact root, return it. Since
|
||||
// this is not an under-approximation or an over-approximation,
|
||||
// we can return it regardless of the allowed solutions.
|
||||
if (fx == 0.0) {
|
||||
return x;
|
||||
}
|
||||
|
||||
// Update the bounds with the new approximation.
|
||||
x0 = x1;
|
||||
f0 = f1;
|
||||
x1 = x;
|
||||
f1 = fx;
|
||||
|
||||
// If the function value of the last approximation is too small,
|
||||
// given the function value accuracy, then we can't get closer to
|
||||
// the root than we already are.
|
||||
if (FastMath.abs(f1) <= ftol) {
|
||||
return x1;
|
||||
}
|
||||
|
||||
// If the current interval is within the given accuracies, we
|
||||
// are satisfied with the current approximation.
|
||||
if (FastMath.abs(x1 - x0) < FastMath.max(rtol * FastMath.abs(x1), atol)) {
|
||||
return x1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue