MATH-621
Function "altmov": All local variables defined at initialization. git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1158716 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
9c4571dd50
commit
2b4bc7c5a9
|
@ -1304,40 +1304,17 @@ public class BOBYQAOptimizer
|
|||
final ArrayRealVector work1 = new ArrayRealVector(n);
|
||||
final ArrayRealVector work2 = new ArrayRealVector(n);
|
||||
|
||||
double alpha = Double.NaN;
|
||||
double cauchy = Double.NaN;
|
||||
|
||||
// System generated locals
|
||||
double d__1, d__2, d__3, d__4;
|
||||
|
||||
// Local variables
|
||||
double ha, gw, diff;
|
||||
int ilbd, isbd;
|
||||
double slbd;
|
||||
int iubd;
|
||||
double vlag, subd, temp;
|
||||
int ksav = 0;
|
||||
double step = 0, curv = 0;
|
||||
int iflag;
|
||||
double scale = 0, csave = 0, tempa = 0, tempb = 0, tempd = 0, const__ = 0, sumin = 0,
|
||||
ggfree = 0;
|
||||
int ibdsav = 0;
|
||||
double dderiv = 0, bigstp = 0, predsq = 0, presav = 0, distsq = 0, stpsav = 0, wfixsq = 0, wsqsav = 0;
|
||||
|
||||
|
||||
// Function Body
|
||||
const__ = ONE + Math.sqrt(2.);
|
||||
for (int k = 0; k < npt; k++) {
|
||||
hcol.setEntry(k, ZERO);
|
||||
}
|
||||
for (int j = 0, max = npt - n - 1; j < max; j++) {
|
||||
temp = zmat.getEntry(knew, j);
|
||||
final double tmp = zmat.getEntry(knew, j);
|
||||
for (int k = 0; k < npt; k++) {
|
||||
hcol.setEntry(k, hcol.getEntry(k) + temp * zmat.getEntry(k, j));
|
||||
hcol.setEntry(k, hcol.getEntry(k) + tmp * zmat.getEntry(k, j));
|
||||
}
|
||||
}
|
||||
alpha = hcol.getEntry(knew);
|
||||
ha = HALF * alpha;
|
||||
final double alpha = hcol.getEntry(knew);
|
||||
final double ha = HALF * alpha;
|
||||
|
||||
// Calculate the gradient of the KNEW-th Lagrange function at XOPT.
|
||||
|
||||
|
@ -1345,13 +1322,13 @@ public class BOBYQAOptimizer
|
|||
glag.setEntry(i, bmat.getEntry(knew, i));
|
||||
}
|
||||
for (int k = 0; k < npt; k++) {
|
||||
temp = ZERO;
|
||||
double tmp = ZERO;
|
||||
for (int j = 0; j < n; j++) {
|
||||
temp += xpt.getEntry(k, j) * xopt.getEntry(j);
|
||||
tmp += xpt.getEntry(k, j) * xopt.getEntry(j);
|
||||
}
|
||||
temp = hcol.getEntry(k) * temp;
|
||||
tmp *= hcol.getEntry(k);
|
||||
for (int i = 0; i < n; i++) {
|
||||
glag.setEntry(i, glag.getEntry(i) + temp * xpt.getEntry(k, i));
|
||||
glag.setEntry(i, glag.getEntry(i) + tmp * xpt.getEntry(k, i));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1361,50 +1338,52 @@ public class BOBYQAOptimizer
|
|||
// set to the square of the predicted denominator for each line. PRESAV
|
||||
// will be set to the largest admissible value of PREDSQ that occurs.
|
||||
|
||||
presav = ZERO;
|
||||
double presav = ZERO;
|
||||
double step = Double.NaN;
|
||||
int ksav = 0;
|
||||
int ibdsav = 0;
|
||||
double stpsav = 0;
|
||||
for (int k = 0; k < npt; k++) {
|
||||
if (k == trustRegionCenterInterpolationPointIndex) {
|
||||
continue;
|
||||
}
|
||||
dderiv = ZERO;
|
||||
distsq = ZERO;
|
||||
double dderiv = ZERO;
|
||||
double distsq = ZERO;
|
||||
for (int i = 0; i < n; i++) {
|
||||
temp = xpt.getEntry(k, i) - xopt.getEntry(i);
|
||||
dderiv += glag.getEntry(i) * temp;
|
||||
distsq += temp * temp;
|
||||
final double tmp = xpt.getEntry(k, i) - xopt.getEntry(i);
|
||||
dderiv += glag.getEntry(i) * tmp;
|
||||
distsq += tmp * tmp;
|
||||
}
|
||||
subd = adelt / Math.sqrt(distsq);
|
||||
slbd = -subd;
|
||||
ilbd = 0;
|
||||
iubd = 0;
|
||||
sumin = Math.min(ONE, subd);
|
||||
double subd = adelt / Math.sqrt(distsq);
|
||||
double slbd = -subd;
|
||||
int ilbd = 0;
|
||||
int iubd = 0;
|
||||
final double sumin = Math.min(ONE, subd);
|
||||
|
||||
// Revise SLBD and SUBD if necessary because of the bounds in SL and SU.
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
temp = xpt.getEntry(k, i) - xopt.getEntry(i);
|
||||
if (temp > ZERO) {
|
||||
if (slbd * temp < sl.getEntry(i) - xopt.getEntry(i)) {
|
||||
slbd = (sl.getEntry(i) - xopt.getEntry(i)) / temp;
|
||||
final double tmp = xpt.getEntry(k, i) - xopt.getEntry(i);
|
||||
if (tmp > ZERO) {
|
||||
if (slbd * tmp < sl.getEntry(i) - xopt.getEntry(i)) {
|
||||
slbd = (sl.getEntry(i) - xopt.getEntry(i)) / tmp;
|
||||
ilbd = -i - 1;
|
||||
}
|
||||
if (subd * temp > su.getEntry(i) - xopt.getEntry(i)) {
|
||||
if (subd * tmp > su.getEntry(i) - xopt.getEntry(i)) {
|
||||
// Computing MAX
|
||||
d__1 = sumin;
|
||||
d__2 = (su.getEntry(i) - xopt.getEntry(i)) / temp;
|
||||
subd = Math.max(d__1, d__2);
|
||||
iubd = i+1;
|
||||
subd = Math.max(sumin,
|
||||
(su.getEntry(i) - xopt.getEntry(i)) / tmp);
|
||||
iubd = i + 1;
|
||||
}
|
||||
} else if (temp < ZERO) {
|
||||
if (slbd * temp > su.getEntry(i) - xopt.getEntry(i)) {
|
||||
slbd = (su.getEntry(i) - xopt.getEntry(i)) / temp;
|
||||
ilbd = i+1;
|
||||
} else if (tmp < ZERO) {
|
||||
if (slbd * tmp > su.getEntry(i) - xopt.getEntry(i)) {
|
||||
slbd = (su.getEntry(i) - xopt.getEntry(i)) / tmp;
|
||||
ilbd = i + 1;
|
||||
}
|
||||
if (subd * temp < sl.getEntry(i) - xopt.getEntry(i)) {
|
||||
if (subd * tmp < sl.getEntry(i) - xopt.getEntry(i)) {
|
||||
// Computing MAX
|
||||
d__1 = sumin;
|
||||
d__2 = (sl.getEntry(i) - xopt.getEntry(i)) / temp;
|
||||
subd = Math.max(d__1, d__2);
|
||||
subd = Math.max(sumin,
|
||||
(sl.getEntry(i) - xopt.getEntry(i)) / tmp);
|
||||
iubd = -i - 1;
|
||||
}
|
||||
}
|
||||
|
@ -1413,25 +1392,26 @@ public class BOBYQAOptimizer
|
|||
// Seek a large modulus of the KNEW-th Lagrange function when the index
|
||||
// of the other interpolation point on the line through XOPT is KNEW.
|
||||
|
||||
step = slbd;
|
||||
int isbd = ilbd;
|
||||
double vlag = Double.NaN;
|
||||
if (k == knew) {
|
||||
diff = dderiv - ONE;
|
||||
step = slbd;
|
||||
final double diff = dderiv - ONE;
|
||||
vlag = slbd * (dderiv - slbd * diff);
|
||||
isbd = ilbd;
|
||||
temp = subd * (dderiv - subd * diff);
|
||||
if (Math.abs(temp) > Math.abs(vlag)) {
|
||||
final double d1 = subd * (dderiv - subd * diff);
|
||||
if (Math.abs(d1) > Math.abs(vlag)) {
|
||||
step = subd;
|
||||
vlag = temp;
|
||||
vlag = d1;
|
||||
isbd = iubd;
|
||||
}
|
||||
tempd = HALF * dderiv;
|
||||
tempa = tempd - diff * slbd;
|
||||
tempb = tempd - diff * subd;
|
||||
if (tempa * tempb < ZERO) {
|
||||
temp = tempd * tempd / diff;
|
||||
if (Math.abs(temp) > Math.abs(vlag)) {
|
||||
step = tempd / diff;
|
||||
vlag = temp;
|
||||
final double d2 = HALF * dderiv;
|
||||
final double d3 = d2 - diff * slbd;
|
||||
final double d4 = d2 - diff * subd;
|
||||
if (d3 * d4 < ZERO) {
|
||||
final double d5 = d2 * d2 / diff;
|
||||
if (Math.abs(d5) > Math.abs(vlag)) {
|
||||
step = d2 / diff;
|
||||
vlag = d5;
|
||||
isbd = 0;
|
||||
}
|
||||
}
|
||||
|
@ -1439,17 +1419,15 @@ public class BOBYQAOptimizer
|
|||
// Search along each of the other lines through XOPT and another point.
|
||||
|
||||
} else {
|
||||
step = slbd;
|
||||
vlag = slbd * (ONE - slbd);
|
||||
isbd = ilbd;
|
||||
temp = subd * (ONE - subd);
|
||||
if (Math.abs(temp) > Math.abs(vlag)) {
|
||||
final double tmp = subd * (ONE - subd);
|
||||
if (Math.abs(tmp) > Math.abs(vlag)) {
|
||||
step = subd;
|
||||
vlag = temp;
|
||||
vlag = tmp;
|
||||
isbd = iubd;
|
||||
}
|
||||
if (subd > HALF) {
|
||||
if (Math.abs(vlag) < .25) {
|
||||
if (Math.abs(vlag) < ONE_OVER_FOUR) {
|
||||
step = HALF;
|
||||
vlag = ONE_OVER_FOUR;
|
||||
isbd = 0;
|
||||
|
@ -1460,8 +1438,8 @@ public class BOBYQAOptimizer
|
|||
|
||||
// Calculate PREDSQ for the current line search and maintain PRESAV.
|
||||
|
||||
temp = step * (ONE - step) * distsq;
|
||||
predsq = vlag * vlag * (vlag * vlag + ha * temp * temp);
|
||||
final double tmp = step * (ONE - step) * distsq;
|
||||
final double predsq = vlag * vlag * (vlag * vlag + ha * tmp * tmp);
|
||||
if (predsq > presav) {
|
||||
presav = predsq;
|
||||
ksav = k;
|
||||
|
@ -1473,13 +1451,9 @@ public class BOBYQAOptimizer
|
|||
// Construct XNEW in a way that satisfies the bound constraints exactly.
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
temp = xopt.getEntry(i) + stpsav * (xpt.getEntry(ksav, i) - xopt.getEntry(i));
|
||||
// Computing MAX
|
||||
// Computing MIN
|
||||
d__3 = su.getEntry(i);
|
||||
d__1 = sl.getEntry(i);
|
||||
d__2 = Math.min(d__3, temp);
|
||||
xnew.setEntry(i, Math.max(d__1, d__2));
|
||||
final double tmp = xopt.getEntry(i) + stpsav * (xpt.getEntry(ksav, i) - xopt.getEntry(i));
|
||||
xnew.setEntry(i, Math.max(sl.getEntry(i),
|
||||
Math.min(su.getEntry(i), tmp)));
|
||||
}
|
||||
if (ibdsav < 0) {
|
||||
xnew.setEntry(-ibdsav - 1, sl.getEntry(-ibdsav - 1));
|
||||
|
@ -1492,50 +1466,43 @@ public class BOBYQAOptimizer
|
|||
// step in W. The sum of squares of the fixed components of W is formed in
|
||||
// WFIXSQ, and the free components of W are set to BIGSTP.
|
||||
|
||||
bigstp = adelt + adelt;
|
||||
iflag = 0;
|
||||
|
||||
final double bigstp = adelt + adelt;
|
||||
int iflag = 0;
|
||||
double cauchy = Double.NaN;
|
||||
double csave = ZERO;
|
||||
L100: for(;;) {
|
||||
wfixsq = ZERO;
|
||||
ggfree = ZERO;
|
||||
double wfixsq = ZERO;
|
||||
double ggfree = ZERO;
|
||||
for (int i = 0; i < n; i++) {
|
||||
final double glagValue = glag.getEntry(i);
|
||||
work1.setEntry(i, ZERO);
|
||||
// Computing MIN
|
||||
d__1 = xopt.getEntry(i) - sl.getEntry(i);
|
||||
d__2 = glag.getEntry(i);
|
||||
tempa = Math.min(d__1, d__2);
|
||||
// Computing MAX
|
||||
d__1 = xopt.getEntry(i) - su.getEntry(i);
|
||||
d__2 = glag.getEntry(i);
|
||||
tempb = Math.max(d__1, d__2);
|
||||
if (tempa > ZERO || tempb < ZERO) {
|
||||
if (Math.min(xopt.getEntry(i) - sl.getEntry(i), glagValue) > ZERO ||
|
||||
Math.max(xopt.getEntry(i) - su.getEntry(i), glagValue) < ZERO) {
|
||||
work1.setEntry(i, bigstp);
|
||||
// Computing 2nd power
|
||||
final double d1 = glag.getEntry(i);
|
||||
ggfree += d1 * d1;
|
||||
ggfree += glagValue * glagValue;
|
||||
}
|
||||
}
|
||||
if (ggfree == ZERO) {
|
||||
cauchy = ZERO;
|
||||
return new double[] { alpha, cauchy };
|
||||
return new double[] { alpha, ZERO };
|
||||
}
|
||||
|
||||
// Investigate whether more components of W can be fixed.
|
||||
L120: {
|
||||
temp = adelt * adelt - wfixsq;
|
||||
if (temp > ZERO) {
|
||||
wsqsav = wfixsq;
|
||||
step = Math.sqrt(temp / ggfree);
|
||||
final double tmp = adelt * adelt - wfixsq;
|
||||
if (tmp > ZERO) {
|
||||
final double wsqsav = wfixsq;
|
||||
step = Math.sqrt(tmp / ggfree);
|
||||
ggfree = ZERO;
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (work1.getEntry(i) == bigstp) {
|
||||
temp = xopt.getEntry(i) - step * glag.getEntry(i);
|
||||
if (temp <= sl.getEntry(i)) {
|
||||
final double tmp2 = xopt.getEntry(i) - step * glag.getEntry(i);
|
||||
if (tmp2 <= sl.getEntry(i)) {
|
||||
work1.setEntry(i, sl.getEntry(i) - xopt.getEntry(i));
|
||||
// Computing 2nd power
|
||||
final double d1 = work1.getEntry(i);
|
||||
wfixsq += d1 * d1;
|
||||
} else if (temp >= su.getEntry(i)) {
|
||||
} else if (tmp2 >= su.getEntry(i)) {
|
||||
work1.setEntry(i, su.getEntry(i) - xopt.getEntry(i));
|
||||
// Computing 2nd power
|
||||
final double d1 = work1.getEntry(i);
|
||||
|
@ -1547,7 +1514,8 @@ public class BOBYQAOptimizer
|
|||
}
|
||||
}
|
||||
}
|
||||
if (!(wfixsq > wsqsav && ggfree > ZERO)) {
|
||||
if (!(wfixsq > wsqsav &&
|
||||
ggfree > ZERO)) {
|
||||
break L120;
|
||||
}
|
||||
}} // end L120
|
||||
|
@ -1555,21 +1523,22 @@ public class BOBYQAOptimizer
|
|||
// Set the remaining free components of W and all components of XALT,
|
||||
// except that W may be scaled later.
|
||||
|
||||
gw = ZERO;
|
||||
double gw = ZERO;
|
||||
for (int i = 0; i < n; i++) {
|
||||
final double glagValue = glag.getEntry(i);
|
||||
if (work1.getEntry(i) == bigstp) {
|
||||
work1.setEntry(i, -step * glag.getEntry(i));
|
||||
work1.setEntry(i, -step * glagValue);
|
||||
final double min = Math.min(su.getEntry(i),
|
||||
xopt.getEntry(i) + work1.getEntry(i));
|
||||
xalt.setEntry(i, Math.max(sl.getEntry(i), min));
|
||||
} else if (work1.getEntry(i) == ZERO) {
|
||||
xalt.setEntry(i, xopt.getEntry(i));
|
||||
} else if (glag.getEntry(i) > ZERO) {
|
||||
} else if (glagValue > ZERO) {
|
||||
xalt.setEntry(i, sl.getEntry(i));
|
||||
} else {
|
||||
xalt.setEntry(i, su.getEntry(i));
|
||||
}
|
||||
gw += glag.getEntry(i) * work1.getEntry(i);
|
||||
gw += glagValue * work1.getEntry(i);
|
||||
}
|
||||
|
||||
// Set CURV to the curvature of the KNEW-th Lagrange function along W.
|
||||
|
@ -1577,26 +1546,24 @@ public class BOBYQAOptimizer
|
|||
// the Lagrange function at XOPT+W. Set CAUCHY to the final value of
|
||||
// the square of this function.
|
||||
|
||||
curv = ZERO;
|
||||
double curv = ZERO;
|
||||
for (int k = 0; k < npt; k++) {
|
||||
temp = ZERO;
|
||||
double tmp = ZERO;
|
||||
for (int j = 0; j < n; j++) {
|
||||
temp += xpt.getEntry(k, j) * work1.getEntry(j);
|
||||
tmp += xpt.getEntry(k, j) * work1.getEntry(j);
|
||||
}
|
||||
curv += hcol.getEntry(k) * temp * temp;
|
||||
curv += hcol.getEntry(k) * tmp * tmp;
|
||||
}
|
||||
if (iflag == 1) {
|
||||
curv = -curv;
|
||||
}
|
||||
if (curv > -gw && curv < -const__ * gw) {
|
||||
scale = -gw / curv;
|
||||
if (curv > -gw &&
|
||||
curv < -gw * (ONE + Math.sqrt(TWO))) {
|
||||
final double scale = -gw / curv;
|
||||
for (int i = 0; i < n; i++) {
|
||||
temp = xopt.getEntry(i) + scale * work1.getEntry(i);
|
||||
// Computing MAX
|
||||
// Computing MIN
|
||||
d__3 = su.getEntry(i);
|
||||
d__2 = Math.min(d__3, temp);
|
||||
xalt.setEntry(i, Math.max(sl.getEntry(i), d__2));
|
||||
final double tmp = xopt.getEntry(i) + scale * work1.getEntry(i);
|
||||
xalt.setEntry(i, Math.max(sl.getEntry(i),
|
||||
Math.min(su.getEntry(i), tmp)));
|
||||
}
|
||||
// Computing 2nd power
|
||||
final double d1 = HALF * gw * scale;
|
||||
|
|
Loading…
Reference in New Issue