Implemented alternative algorithm for generating poisson deviates when the mean is large. JIRA: MATH-294.

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@824214 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Phil Steitz 2009-10-12 02:04:06 +00:00
parent 5fb5e80a15
commit 2c8a114f76
3 changed files with 83 additions and 92 deletions

View File

@ -322,30 +322,17 @@ public class RandomDataImpl implements RandomData, Serializable {
/**
* {@inheritDoc}
* <p>
* <strong>Algorithm Description</strong>: For small means, uses simulation
* of a Poisson process using Uniform deviates, as described <a
* href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a>
* </p>
* <p>
* The Poisson process (and hence value returned) is bounded by 1000 * mean.
* </p>
* <strong>Algorithm Description</strong>:
* <ul><li> For small means, uses simulation of a Poisson process
* using Uniform deviates, as described
* <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a>
* The Poisson process (and hence value returned) is bounded by 1000 * mean.</li>
*
* <p>
* For large means, uses a reject method as described in <a
* href="http://cg.scs.carleton.ca/~luc/rnbookindex.html">Non-Uniform Random
* Variate Generation</a>
* </p>
* <li> For large means, uses the rejection algorithm described in <br/>
* Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
* <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p>
*
* <p>
* References:
* <ul>
* <li>Devroye, Luc. (1986). <i>Non-Uniform Random Variate Generation</i>.
* New York, NY. Springer-Verlag</li>
* </ul>
* </p>
*
* @param mean
* mean of the Poisson distribution.
* @param mean mean of the Poisson distribution.
* @return the random Poisson value.
*/
public long nextPoisson(double mean) {
@ -356,7 +343,7 @@ public class RandomDataImpl implements RandomData, Serializable {
final RandomGenerator generator = getRan();
double pivot = 6.0;
final double pivot = 40.0d;
if (mean < pivot) {
double p = Math.exp(-mean);
long n = 0;
@ -374,68 +361,70 @@ public class RandomDataImpl implements RandomData, Serializable {
}
return n;
} else {
double mu = Math.floor(mean);
double delta = Math.floor(pivot + (mu - pivot) / 2.0); // integer
// between 6
// and mean
double mu2delta = 2.0 * mu + delta;
double muDeltaHalf = mu + delta / 2.0;
double logMeanMu = Math.log(mean / mu);
final double lambda = Math.floor(mean);
final double lambdaFractional = mean - lambda;
final double logLambda = Math.log(lambda);
final double logLambdaFactorial = MathUtils.factorialLog((int) lambda);
final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional);
final double delta = Math.sqrt(lambda * Math.log(32 * lambda / Math.PI + 1));
final double halfDelta = delta / 2;
final double twolpd = 2 * lambda + delta;
final double a1 = Math.sqrt(Math.PI * twolpd) * Math.exp(1 / 8 * lambda);
final double a2 = (twolpd / delta) * Math.exp(-delta * (1 + delta) / twolpd);
final double aSum = a1 + a2 + 1;
final double p1 = a1 / aSum;
final double p2 = a2 / aSum;
final double c1 = 1 / (8 * lambda);
double muFactorialLog = MathUtils.factorialLog((int) mu);
double c1 = Math.sqrt(Math.PI * mu / 2.0);
double c2 = c1 +
Math.sqrt(Math.PI * muDeltaHalf /
(2.0 * Math.exp(1.0 / mu2delta)));
double c3 = c2 + 2.0;
double c4 = c3 + Math.exp(1.0 / 78.0);
double c = c4 + 2.0 / delta * mu2delta *
Math.exp(-delta / mu2delta * (1.0 + delta / 2.0));
double y = 0.0;
double x = 0.0;
double w = Double.POSITIVE_INFINITY;
boolean accept = false;
while (!accept) {
double u = nextUniform(0.0, c);
double e = nextExponential(mean);
if (u <= c1) {
double z = nextGaussian(0.0, 1.0);
y = -Math.abs(z) * Math.sqrt(mu) - 1.0;
x = Math.floor(y);
w = -z * z / 2.0 - e - x * logMeanMu;
if (x < -mu) {
w = Double.POSITIVE_INFINITY;
double x = 0;
double y = 0;
double v = 0;
int a = 0;
double t = 0;
double qr = 0;
double qa = 0;
for (;;) {
final double u = nextUniform(0.0, 1);
if (u <= p1) {
final double n = nextGaussian(0d, 1d);
x = n * Math.sqrt(lambda + halfDelta) - 0.5d;
if (x > delta || x < -lambda) {
continue;
}
} else if (c1 < u && u <= c2) {
double z = nextGaussian(0.0, 1.0);
y = 1.0 + Math.abs(z) * Math.sqrt(muDeltaHalf);
x = Math.ceil(y);
w = (-y * y + 2.0 * y) / mu2delta - e - x * logMeanMu;
if (x > delta) {
w = Double.POSITIVE_INFINITY;
y = x < 0 ? Math.floor(x) : Math.ceil(x);
final double e = nextExponential(1d);
v = -e - (n * n / 2) + c1;
} else {
if (u > p1 + p2) {
y = lambda;
break;
} else {
x = delta + (twolpd / delta) * nextExponential(1d);
y = Math.ceil(x);
v = -nextExponential(1d) - delta * (x + 1) / twolpd;
}
} else if (c2 < u && u <= c3) {
x = 0.0;
w = -e;
} else if (c3 < u && u <= c4) {
x = 1.0;
w = -e - logMeanMu;
} else if (c4 < u) {
double v = nextExponential(mean);
y = delta + v * 2.0 / delta * mu2delta;
x = Math.ceil(y);
w = -delta / mu2delta * (1.0 + y / 2.0) - e - x * logMeanMu;
}
accept = w <= x * Math.log(mu) -
MathUtils.factorialLog((int) (mu + x)) / muFactorialLog;
a = x < 0 ? 1 : 0;
t = y * (y + 1) / (2 * lambda);
if (v < -t && a == 0) {
y = lambda + y;
break;
}
// cast to long is acceptable because both x and mu are whole
// numbers.
return (long) (x + mu);
qr = t * ((2 * y + 1) / (6 * lambda) - 1);
qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
if (v < qa) {
y = lambda + y;
break;
}
if (v > qr) {
continue;
}
if (v < y * logLambda - MathUtils.factorialLog((int) (y + lambda)) + logLambdaFactorial) {
y = lambda + y;
break;
}
}
return y2 + (long) y;
}
}

View File

@ -39,6 +39,10 @@ The <action> type attribute can be add,update,fix,remove.
</properties>
<body>
<release version="2.1" date="TBD" description="TBD">
<action dev="psteitz" tyoe="fix" issue="MATH-294">
Fixed implementation of RandomDataImpl#nextPoisson by implementing an alternative
algorithm for large means.
</action>
<action dev="psteitz" tyoe="add" issue="MATH-300" due-to="Gilles Sadowski">
Added support for multidimensional interpolation using the robust microsphere algorithm.
</action>

View File

@ -228,13 +228,19 @@ public class RandomDataTest extends RetryTestCase {
}
public void testNextPoissionConistency() throws Exception {
// TODO: once MATH-294 is resolved, increase upper bounds on test means
for (int i = 1; i < 6; i++) {
// Small integral means
for (int i = 1; i < 100; i++) {
checkNextPoissonConsistency(i);
}
// non-integer means
RandomData randomData = new RandomDataImpl();
for (int i = 1; i < 10; i++) {
checkNextPoissonConsistency(randomData.nextUniform(1, 6));
checkNextPoissonConsistency(randomData.nextUniform(1, 1000));
}
// large means
// TODO: When MATH-282 is resolved, s/3000/10000 below
for (int i = 1; i < 10; i++) {
checkNextPoissonConsistency(randomData.nextUniform(1000, 3000));
}
}
@ -368,14 +374,6 @@ public class RandomDataTest extends RetryTestCase {
msgBuffer.append(".");
fail(msgBuffer.toString());
}
}
public void testNextPoissonLargeMean() {
for (int i = 0; i < 1000; i++) {
long n = randomData.nextPoisson(1500.0);
assertTrue(0 <= n);
}
}
/** test dispersion and failute modes for nextHex() */