Remove deprecated stat.clustering package.
This commit is contained in:
parent
745d383af1
commit
2c94388179
|
@ -312,28 +312,12 @@
|
|||
<Bug pattern="EQ_UNUSUAL" />
|
||||
</Match>
|
||||
<Match>
|
||||
<Class name="org.apache.commons.math4.stat.clustering.EuclideanIntegerPoint"/>
|
||||
<Method name="<init>" params="int[]" returns="void" />
|
||||
<Bug pattern="EI_EXPOSE_REP2" />
|
||||
</Match>
|
||||
<Match>
|
||||
<Class name="org.apache.commons.math4.stat.clustering.EuclideanIntegerPoint"/>
|
||||
<Method name="getPoint" params="" returns="int[]" />
|
||||
<Bug pattern="EI_EXPOSE_REP" />
|
||||
</Match>
|
||||
<Match>
|
||||
<Or>
|
||||
<Class name="org.apache.commons.math4.stat.clustering.EuclideanDoublePoint"/>
|
||||
<Class name="org.apache.commons.math4.ml.clustering.DoublePoint"/>
|
||||
</Or>
|
||||
<Class name="org.apache.commons.math4.ml.clustering.DoublePoint"/>
|
||||
<Method name="<init>" params="double[]" returns="void" />
|
||||
<Bug pattern="EI_EXPOSE_REP2" />
|
||||
</Match>
|
||||
<Match>
|
||||
<Or>
|
||||
<Class name="org.apache.commons.math4.stat.clustering.EuclideanDoublePoint"/>
|
||||
<Class name="org.apache.commons.math4.ml.clustering.DoublePoint"/>
|
||||
</Or>
|
||||
<Class name="org.apache.commons.math4.ml.clustering.DoublePoint"/>
|
||||
<Method name="getPoint" params="" returns="double[]" />
|
||||
<Bug pattern="EI_EXPOSE_REP" />
|
||||
</Match>
|
||||
|
|
|
@ -1,76 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* Cluster holding a set of {@link Clusterable} points.
|
||||
* @param <T> the type of points that can be clustered
|
||||
* @since 2.0
|
||||
* @deprecated As of 3.2 (to be removed in 4.0),
|
||||
* use {@link org.apache.commons.math4.ml.clustering.Cluster} instead
|
||||
*/
|
||||
@Deprecated
|
||||
public class Cluster<T extends Clusterable<T>> implements Serializable {
|
||||
|
||||
/** Serializable version identifier. */
|
||||
private static final long serialVersionUID = -3442297081515880464L;
|
||||
|
||||
/** The points contained in this cluster. */
|
||||
private final List<T> points;
|
||||
|
||||
/** Center of the cluster. */
|
||||
private final T center;
|
||||
|
||||
/**
|
||||
* Build a cluster centered at a specified point.
|
||||
* @param center the point which is to be the center of this cluster
|
||||
*/
|
||||
public Cluster(final T center) {
|
||||
this.center = center;
|
||||
points = new ArrayList<T>();
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a point to this cluster.
|
||||
* @param point point to add
|
||||
*/
|
||||
public void addPoint(final T point) {
|
||||
points.add(point);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the points contained in the cluster.
|
||||
* @return points contained in the cluster
|
||||
*/
|
||||
public List<T> getPoints() {
|
||||
return points;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the point chosen to be the center of this cluster.
|
||||
* @return chosen cluster center
|
||||
*/
|
||||
public T getCenter() {
|
||||
return center;
|
||||
}
|
||||
|
||||
}
|
|
@ -1,48 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
import java.util.Collection;
|
||||
|
||||
/**
|
||||
* Interface for points that can be clustered together.
|
||||
* @param <T> the type of point that can be clustered
|
||||
* @since 2.0
|
||||
* @deprecated As of 3.2 (to be removed in 4.0),
|
||||
* use {@link org.apache.commons.math4.ml.clustering.Clusterable} instead
|
||||
*/
|
||||
@Deprecated
|
||||
public interface Clusterable<T> {
|
||||
|
||||
/**
|
||||
* Returns the distance from the given point.
|
||||
*
|
||||
* @param p the point to compute the distance from
|
||||
* @return the distance from the given point
|
||||
*/
|
||||
double distanceFrom(T p);
|
||||
|
||||
/**
|
||||
* Returns the centroid of the given Collection of points.
|
||||
*
|
||||
* @param p the Collection of points to compute the centroid of
|
||||
* @return the centroid of the given Collection of Points
|
||||
*/
|
||||
T centroidOf(Collection<T> p);
|
||||
|
||||
}
|
|
@ -1,226 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.HashMap;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Set;
|
||||
|
||||
import org.apache.commons.math4.exception.NotPositiveException;
|
||||
import org.apache.commons.math4.exception.NullArgumentException;
|
||||
import org.apache.commons.math4.util.MathUtils;
|
||||
|
||||
/**
|
||||
* DBSCAN (density-based spatial clustering of applications with noise) algorithm.
|
||||
* <p>
|
||||
* The DBSCAN algorithm forms clusters based on the idea of density connectivity, i.e.
|
||||
* a point p is density connected to another point q, if there exists a chain of
|
||||
* points p<sub>i</sub>, with i = 1 .. n and p<sub>1</sub> = p and p<sub>n</sub> = q,
|
||||
* such that each pair <p<sub>i</sub>, p<sub>i+1</sub>> is directly density-reachable.
|
||||
* A point q is directly density-reachable from point p if it is in the ε-neighborhood
|
||||
* of this point.
|
||||
* <p>
|
||||
* Any point that is not density-reachable from a formed cluster is treated as noise, and
|
||||
* will thus not be present in the result.
|
||||
* <p>
|
||||
* The algorithm requires two parameters:
|
||||
* <ul>
|
||||
* <li>eps: the distance that defines the ε-neighborhood of a point
|
||||
* <li>minPoints: the minimum number of density-connected points required to form a cluster
|
||||
* </ul>
|
||||
* <p>
|
||||
* <b>Note:</b> as DBSCAN is not a centroid-based clustering algorithm, the resulting
|
||||
* {@link Cluster} objects will have no defined center, i.e. {@link Cluster#getCenter()} will
|
||||
* return {@code null}.
|
||||
*
|
||||
* @param <T> type of the points to cluster
|
||||
* @see <a href="http://en.wikipedia.org/wiki/DBSCAN">DBSCAN (wikipedia)</a>
|
||||
* @see <a href="http://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pdf">
|
||||
* A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise</a>
|
||||
* @since 3.1
|
||||
* @deprecated As of 3.2 (to be removed in 4.0),
|
||||
* use {@link org.apache.commons.math4.ml.clustering.DBSCANClusterer} instead
|
||||
*/
|
||||
@Deprecated
|
||||
public class DBSCANClusterer<T extends Clusterable<T>> {
|
||||
|
||||
/** Maximum radius of the neighborhood to be considered. */
|
||||
private final double eps;
|
||||
|
||||
/** Minimum number of points needed for a cluster. */
|
||||
private final int minPts;
|
||||
|
||||
/** Status of a point during the clustering process. */
|
||||
private enum PointStatus {
|
||||
/** The point has is considered to be noise. */
|
||||
NOISE,
|
||||
/** The point is already part of a cluster. */
|
||||
PART_OF_CLUSTER
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new instance of a DBSCANClusterer.
|
||||
*
|
||||
* @param eps maximum radius of the neighborhood to be considered
|
||||
* @param minPts minimum number of points needed for a cluster
|
||||
* @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0}
|
||||
*/
|
||||
public DBSCANClusterer(final double eps, final int minPts)
|
||||
throws NotPositiveException {
|
||||
if (eps < 0.0d) {
|
||||
throw new NotPositiveException(eps);
|
||||
}
|
||||
if (minPts < 0) {
|
||||
throw new NotPositiveException(minPts);
|
||||
}
|
||||
this.eps = eps;
|
||||
this.minPts = minPts;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the maximum radius of the neighborhood to be considered.
|
||||
*
|
||||
* @return maximum radius of the neighborhood
|
||||
*/
|
||||
public double getEps() {
|
||||
return eps;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the minimum number of points needed for a cluster.
|
||||
*
|
||||
* @return minimum number of points needed for a cluster
|
||||
*/
|
||||
public int getMinPts() {
|
||||
return minPts;
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs DBSCAN cluster analysis.
|
||||
* <p>
|
||||
* <b>Note:</b> as DBSCAN is not a centroid-based clustering algorithm, the resulting
|
||||
* {@link Cluster} objects will have no defined center, i.e. {@link Cluster#getCenter()} will
|
||||
* return {@code null}.
|
||||
*
|
||||
* @param points the points to cluster
|
||||
* @return the list of clusters
|
||||
* @throws NullArgumentException if the data points are null
|
||||
*/
|
||||
public List<Cluster<T>> cluster(final Collection<T> points) throws NullArgumentException {
|
||||
|
||||
// sanity checks
|
||||
MathUtils.checkNotNull(points);
|
||||
|
||||
final List<Cluster<T>> clusters = new ArrayList<Cluster<T>>();
|
||||
final Map<Clusterable<T>, PointStatus> visited = new HashMap<Clusterable<T>, PointStatus>();
|
||||
|
||||
for (final T point : points) {
|
||||
if (visited.get(point) != null) {
|
||||
continue;
|
||||
}
|
||||
final List<T> neighbors = getNeighbors(point, points);
|
||||
if (neighbors.size() >= minPts) {
|
||||
// DBSCAN does not care about center points
|
||||
final Cluster<T> cluster = new Cluster<T>(null);
|
||||
clusters.add(expandCluster(cluster, point, neighbors, points, visited));
|
||||
} else {
|
||||
visited.put(point, PointStatus.NOISE);
|
||||
}
|
||||
}
|
||||
|
||||
return clusters;
|
||||
}
|
||||
|
||||
/**
|
||||
* Expands the cluster to include density-reachable items.
|
||||
*
|
||||
* @param cluster Cluster to expand
|
||||
* @param point Point to add to cluster
|
||||
* @param neighbors List of neighbors
|
||||
* @param points the data set
|
||||
* @param visited the set of already visited points
|
||||
* @return the expanded cluster
|
||||
*/
|
||||
private Cluster<T> expandCluster(final Cluster<T> cluster,
|
||||
final T point,
|
||||
final List<T> neighbors,
|
||||
final Collection<T> points,
|
||||
final Map<Clusterable<T>, PointStatus> visited) {
|
||||
cluster.addPoint(point);
|
||||
visited.put(point, PointStatus.PART_OF_CLUSTER);
|
||||
|
||||
List<T> seeds = new ArrayList<T>(neighbors);
|
||||
int index = 0;
|
||||
while (index < seeds.size()) {
|
||||
final T current = seeds.get(index);
|
||||
PointStatus pStatus = visited.get(current);
|
||||
// only check non-visited points
|
||||
if (pStatus == null) {
|
||||
final List<T> currentNeighbors = getNeighbors(current, points);
|
||||
if (currentNeighbors.size() >= minPts) {
|
||||
seeds = merge(seeds, currentNeighbors);
|
||||
}
|
||||
}
|
||||
|
||||
if (pStatus != PointStatus.PART_OF_CLUSTER) {
|
||||
visited.put(current, PointStatus.PART_OF_CLUSTER);
|
||||
cluster.addPoint(current);
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
return cluster;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a list of density-reachable neighbors of a {@code point}.
|
||||
*
|
||||
* @param point the point to look for
|
||||
* @param points possible neighbors
|
||||
* @return the List of neighbors
|
||||
*/
|
||||
private List<T> getNeighbors(final T point, final Collection<T> points) {
|
||||
final List<T> neighbors = new ArrayList<T>();
|
||||
for (final T neighbor : points) {
|
||||
if (point != neighbor && neighbor.distanceFrom(point) <= eps) {
|
||||
neighbors.add(neighbor);
|
||||
}
|
||||
}
|
||||
return neighbors;
|
||||
}
|
||||
|
||||
/**
|
||||
* Merges two lists together.
|
||||
*
|
||||
* @param one first list
|
||||
* @param two second list
|
||||
* @return merged lists
|
||||
*/
|
||||
private List<T> merge(final List<T> one, final List<T> two) {
|
||||
final Set<T> oneSet = new HashSet<T>(one);
|
||||
for (T item : two) {
|
||||
if (!oneSet.contains(item)) {
|
||||
one.add(item);
|
||||
}
|
||||
}
|
||||
return one;
|
||||
}
|
||||
}
|
|
@ -1,100 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.Collection;
|
||||
import java.util.Arrays;
|
||||
|
||||
import org.apache.commons.math4.util.MathArrays;
|
||||
|
||||
/**
|
||||
* A simple implementation of {@link Clusterable} for points with double coordinates.
|
||||
* @since 3.1
|
||||
* @deprecated As of 3.2 (to be removed in 4.0),
|
||||
* use {@link org.apache.commons.math4.ml.clustering.DoublePoint} instead
|
||||
*/
|
||||
@Deprecated
|
||||
public class EuclideanDoublePoint implements Clusterable<EuclideanDoublePoint>, Serializable {
|
||||
|
||||
/** Serializable version identifier. */
|
||||
private static final long serialVersionUID = 8026472786091227632L;
|
||||
|
||||
/** Point coordinates. */
|
||||
private final double[] point;
|
||||
|
||||
/**
|
||||
* Build an instance wrapping an integer array.
|
||||
* <p>
|
||||
* The wrapped array is referenced, it is <em>not</em> copied.
|
||||
*
|
||||
* @param point the n-dimensional point in integer space
|
||||
*/
|
||||
public EuclideanDoublePoint(final double[] point) {
|
||||
this.point = point;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public EuclideanDoublePoint centroidOf(final Collection<EuclideanDoublePoint> points) {
|
||||
final double[] centroid = new double[getPoint().length];
|
||||
for (final EuclideanDoublePoint p : points) {
|
||||
for (int i = 0; i < centroid.length; i++) {
|
||||
centroid[i] += p.getPoint()[i];
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < centroid.length; i++) {
|
||||
centroid[i] /= points.size();
|
||||
}
|
||||
return new EuclideanDoublePoint(centroid);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double distanceFrom(final EuclideanDoublePoint p) {
|
||||
return MathArrays.distance(point, p.getPoint());
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public boolean equals(final Object other) {
|
||||
if (!(other instanceof EuclideanDoublePoint)) {
|
||||
return false;
|
||||
}
|
||||
return Arrays.equals(point, ((EuclideanDoublePoint) other).point);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the n-dimensional point in integer space.
|
||||
*
|
||||
* @return a reference (not a copy!) to the wrapped array
|
||||
*/
|
||||
public double[] getPoint() {
|
||||
return point;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Arrays.hashCode(point);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public String toString() {
|
||||
return Arrays.toString(point);
|
||||
}
|
||||
|
||||
}
|
|
@ -1,101 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collection;
|
||||
|
||||
import org.apache.commons.math4.util.MathArrays;
|
||||
|
||||
/**
|
||||
* A simple implementation of {@link Clusterable} for points with integer coordinates.
|
||||
* @since 2.0
|
||||
* @deprecated As of 3.2 (to be removed in 4.0),
|
||||
* use {@link org.apache.commons.math4.ml.clustering.DoublePoint} instead
|
||||
*/
|
||||
@Deprecated
|
||||
public class EuclideanIntegerPoint implements Clusterable<EuclideanIntegerPoint>, Serializable {
|
||||
|
||||
/** Serializable version identifier. */
|
||||
private static final long serialVersionUID = 3946024775784901369L;
|
||||
|
||||
/** Point coordinates. */
|
||||
private final int[] point;
|
||||
|
||||
/**
|
||||
* Build an instance wrapping an integer array.
|
||||
* <p>The wrapped array is referenced, it is <em>not</em> copied.</p>
|
||||
* @param point the n-dimensional point in integer space
|
||||
*/
|
||||
public EuclideanIntegerPoint(final int[] point) {
|
||||
this.point = point;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the n-dimensional point in integer space.
|
||||
* @return a reference (not a copy!) to the wrapped array
|
||||
*/
|
||||
public int[] getPoint() {
|
||||
return point;
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public double distanceFrom(final EuclideanIntegerPoint p) {
|
||||
return MathArrays.distance(point, p.getPoint());
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
public EuclideanIntegerPoint centroidOf(final Collection<EuclideanIntegerPoint> points) {
|
||||
int[] centroid = new int[getPoint().length];
|
||||
for (EuclideanIntegerPoint p : points) {
|
||||
for (int i = 0; i < centroid.length; i++) {
|
||||
centroid[i] += p.getPoint()[i];
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < centroid.length; i++) {
|
||||
centroid[i] /= points.size();
|
||||
}
|
||||
return new EuclideanIntegerPoint(centroid);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public boolean equals(final Object other) {
|
||||
if (!(other instanceof EuclideanIntegerPoint)) {
|
||||
return false;
|
||||
}
|
||||
return Arrays.equals(point, ((EuclideanIntegerPoint) other).point);
|
||||
}
|
||||
|
||||
/** {@inheritDoc} */
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return Arrays.hashCode(point);
|
||||
}
|
||||
|
||||
/**
|
||||
* {@inheritDoc}
|
||||
* @since 2.1
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return Arrays.toString(point);
|
||||
}
|
||||
|
||||
}
|
|
@ -1,514 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collection;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
|
||||
import org.apache.commons.math4.exception.ConvergenceException;
|
||||
import org.apache.commons.math4.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math4.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math4.exception.util.LocalizedFormats;
|
||||
import org.apache.commons.math4.stat.descriptive.moment.Variance;
|
||||
import org.apache.commons.math4.util.MathUtils;
|
||||
|
||||
/**
|
||||
* Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.
|
||||
* @param <T> type of the points to cluster
|
||||
* @see <a href="http://en.wikipedia.org/wiki/K-means%2B%2B">K-means++ (wikipedia)</a>
|
||||
* @since 2.0
|
||||
* @deprecated As of 3.2 (to be removed in 4.0),
|
||||
* use {@link org.apache.commons.math4.ml.clustering.KMeansPlusPlusClusterer} instead
|
||||
*/
|
||||
@Deprecated
|
||||
public class KMeansPlusPlusClusterer<T extends Clusterable<T>> {
|
||||
|
||||
/** Strategies to use for replacing an empty cluster. */
|
||||
public static enum EmptyClusterStrategy {
|
||||
|
||||
/** Split the cluster with largest distance variance. */
|
||||
LARGEST_VARIANCE,
|
||||
|
||||
/** Split the cluster with largest number of points. */
|
||||
LARGEST_POINTS_NUMBER,
|
||||
|
||||
/** Create a cluster around the point farthest from its centroid. */
|
||||
FARTHEST_POINT,
|
||||
|
||||
/** Generate an error. */
|
||||
ERROR
|
||||
|
||||
}
|
||||
|
||||
/** Random generator for choosing initial centers. */
|
||||
private final Random random;
|
||||
|
||||
/** Selected strategy for empty clusters. */
|
||||
private final EmptyClusterStrategy emptyStrategy;
|
||||
|
||||
/** Build a clusterer.
|
||||
* <p>
|
||||
* The default strategy for handling empty clusters that may appear during
|
||||
* algorithm iterations is to split the cluster with largest distance variance.
|
||||
* </p>
|
||||
* @param random random generator to use for choosing initial centers
|
||||
*/
|
||||
public KMeansPlusPlusClusterer(final Random random) {
|
||||
this(random, EmptyClusterStrategy.LARGEST_VARIANCE);
|
||||
}
|
||||
|
||||
/** Build a clusterer.
|
||||
* @param random random generator to use for choosing initial centers
|
||||
* @param emptyStrategy strategy to use for handling empty clusters that
|
||||
* may appear during algorithm iterations
|
||||
* @since 2.2
|
||||
*/
|
||||
public KMeansPlusPlusClusterer(final Random random, final EmptyClusterStrategy emptyStrategy) {
|
||||
this.random = random;
|
||||
this.emptyStrategy = emptyStrategy;
|
||||
}
|
||||
|
||||
/**
|
||||
* Runs the K-means++ clustering algorithm.
|
||||
*
|
||||
* @param points the points to cluster
|
||||
* @param k the number of clusters to split the data into
|
||||
* @param numTrials number of trial runs
|
||||
* @param maxIterationsPerTrial the maximum number of iterations to run the algorithm
|
||||
* for at each trial run. If negative, no maximum will be used
|
||||
* @return a list of clusters containing the points
|
||||
* @throws MathIllegalArgumentException if the data points are null or the number
|
||||
* of clusters is larger than the number of data points
|
||||
* @throws ConvergenceException if an empty cluster is encountered and the
|
||||
* {@link #emptyStrategy} is set to {@code ERROR}
|
||||
*/
|
||||
public List<Cluster<T>> cluster(final Collection<T> points, final int k,
|
||||
int numTrials, int maxIterationsPerTrial)
|
||||
throws MathIllegalArgumentException, ConvergenceException {
|
||||
|
||||
// at first, we have not found any clusters list yet
|
||||
List<Cluster<T>> best = null;
|
||||
double bestVarianceSum = Double.POSITIVE_INFINITY;
|
||||
|
||||
// do several clustering trials
|
||||
for (int i = 0; i < numTrials; ++i) {
|
||||
|
||||
// compute a clusters list
|
||||
List<Cluster<T>> clusters = cluster(points, k, maxIterationsPerTrial);
|
||||
|
||||
// compute the variance of the current list
|
||||
double varianceSum = 0.0;
|
||||
for (final Cluster<T> cluster : clusters) {
|
||||
if (!cluster.getPoints().isEmpty()) {
|
||||
|
||||
// compute the distance variance of the current cluster
|
||||
final T center = cluster.getCenter();
|
||||
final Variance stat = new Variance();
|
||||
for (final T point : cluster.getPoints()) {
|
||||
stat.increment(point.distanceFrom(center));
|
||||
}
|
||||
varianceSum += stat.getResult();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if (varianceSum <= bestVarianceSum) {
|
||||
// this one is the best we have found so far, remember it
|
||||
best = clusters;
|
||||
bestVarianceSum = varianceSum;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// return the best clusters list found
|
||||
return best;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Runs the K-means++ clustering algorithm.
|
||||
*
|
||||
* @param points the points to cluster
|
||||
* @param k the number of clusters to split the data into
|
||||
* @param maxIterations the maximum number of iterations to run the algorithm
|
||||
* for. If negative, no maximum will be used
|
||||
* @return a list of clusters containing the points
|
||||
* @throws MathIllegalArgumentException if the data points are null or the number
|
||||
* of clusters is larger than the number of data points
|
||||
* @throws ConvergenceException if an empty cluster is encountered and the
|
||||
* {@link #emptyStrategy} is set to {@code ERROR}
|
||||
*/
|
||||
public List<Cluster<T>> cluster(final Collection<T> points, final int k,
|
||||
final int maxIterations)
|
||||
throws MathIllegalArgumentException, ConvergenceException {
|
||||
|
||||
// sanity checks
|
||||
MathUtils.checkNotNull(points);
|
||||
|
||||
// number of clusters has to be smaller or equal the number of data points
|
||||
if (points.size() < k) {
|
||||
throw new NumberIsTooSmallException(points.size(), k, false);
|
||||
}
|
||||
|
||||
// create the initial clusters
|
||||
List<Cluster<T>> clusters = chooseInitialCenters(points, k, random);
|
||||
|
||||
// create an array containing the latest assignment of a point to a cluster
|
||||
// no need to initialize the array, as it will be filled with the first assignment
|
||||
int[] assignments = new int[points.size()];
|
||||
assignPointsToClusters(clusters, points, assignments);
|
||||
|
||||
// iterate through updating the centers until we're done
|
||||
final int max = (maxIterations < 0) ? Integer.MAX_VALUE : maxIterations;
|
||||
for (int count = 0; count < max; count++) {
|
||||
boolean emptyCluster = false;
|
||||
List<Cluster<T>> newClusters = new ArrayList<Cluster<T>>();
|
||||
for (final Cluster<T> cluster : clusters) {
|
||||
final T newCenter;
|
||||
if (cluster.getPoints().isEmpty()) {
|
||||
switch (emptyStrategy) {
|
||||
case LARGEST_VARIANCE :
|
||||
newCenter = getPointFromLargestVarianceCluster(clusters);
|
||||
break;
|
||||
case LARGEST_POINTS_NUMBER :
|
||||
newCenter = getPointFromLargestNumberCluster(clusters);
|
||||
break;
|
||||
case FARTHEST_POINT :
|
||||
newCenter = getFarthestPoint(clusters);
|
||||
break;
|
||||
default :
|
||||
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
|
||||
}
|
||||
emptyCluster = true;
|
||||
} else {
|
||||
newCenter = cluster.getCenter().centroidOf(cluster.getPoints());
|
||||
}
|
||||
newClusters.add(new Cluster<T>(newCenter));
|
||||
}
|
||||
int changes = assignPointsToClusters(newClusters, points, assignments);
|
||||
clusters = newClusters;
|
||||
|
||||
// if there were no more changes in the point-to-cluster assignment
|
||||
// and there are no empty clusters left, return the current clusters
|
||||
if (changes == 0 && !emptyCluster) {
|
||||
return clusters;
|
||||
}
|
||||
}
|
||||
return clusters;
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds the given points to the closest {@link Cluster}.
|
||||
*
|
||||
* @param <T> type of the points to cluster
|
||||
* @param clusters the {@link Cluster}s to add the points to
|
||||
* @param points the points to add to the given {@link Cluster}s
|
||||
* @param assignments points assignments to clusters
|
||||
* @return the number of points assigned to different clusters as the iteration before
|
||||
*/
|
||||
private static <T extends Clusterable<T>> int
|
||||
assignPointsToClusters(final List<Cluster<T>> clusters, final Collection<T> points,
|
||||
final int[] assignments) {
|
||||
int assignedDifferently = 0;
|
||||
int pointIndex = 0;
|
||||
for (final T p : points) {
|
||||
int clusterIndex = getNearestCluster(clusters, p);
|
||||
if (clusterIndex != assignments[pointIndex]) {
|
||||
assignedDifferently++;
|
||||
}
|
||||
|
||||
Cluster<T> cluster = clusters.get(clusterIndex);
|
||||
cluster.addPoint(p);
|
||||
assignments[pointIndex++] = clusterIndex;
|
||||
}
|
||||
|
||||
return assignedDifferently;
|
||||
}
|
||||
|
||||
/**
|
||||
* Use K-means++ to choose the initial centers.
|
||||
*
|
||||
* @param <T> type of the points to cluster
|
||||
* @param points the points to choose the initial centers from
|
||||
* @param k the number of centers to choose
|
||||
* @param random random generator to use
|
||||
* @return the initial centers
|
||||
*/
|
||||
private static <T extends Clusterable<T>> List<Cluster<T>>
|
||||
chooseInitialCenters(final Collection<T> points, final int k, final Random random) {
|
||||
|
||||
// Convert to list for indexed access. Make it unmodifiable, since removal of items
|
||||
// would screw up the logic of this method.
|
||||
final List<T> pointList = Collections.unmodifiableList(new ArrayList<T> (points));
|
||||
|
||||
// The number of points in the list.
|
||||
final int numPoints = pointList.size();
|
||||
|
||||
// Set the corresponding element in this array to indicate when
|
||||
// elements of pointList are no longer available.
|
||||
final boolean[] taken = new boolean[numPoints];
|
||||
|
||||
// The resulting list of initial centers.
|
||||
final List<Cluster<T>> resultSet = new ArrayList<Cluster<T>>();
|
||||
|
||||
// Choose one center uniformly at random from among the data points.
|
||||
final int firstPointIndex = random.nextInt(numPoints);
|
||||
|
||||
final T firstPoint = pointList.get(firstPointIndex);
|
||||
|
||||
resultSet.add(new Cluster<T>(firstPoint));
|
||||
|
||||
// Must mark it as taken
|
||||
taken[firstPointIndex] = true;
|
||||
|
||||
// To keep track of the minimum distance squared of elements of
|
||||
// pointList to elements of resultSet.
|
||||
final double[] minDistSquared = new double[numPoints];
|
||||
|
||||
// Initialize the elements. Since the only point in resultSet is firstPoint,
|
||||
// this is very easy.
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (i != firstPointIndex) { // That point isn't considered
|
||||
double d = firstPoint.distanceFrom(pointList.get(i));
|
||||
minDistSquared[i] = d*d;
|
||||
}
|
||||
}
|
||||
|
||||
while (resultSet.size() < k) {
|
||||
|
||||
// Sum up the squared distances for the points in pointList not
|
||||
// already taken.
|
||||
double distSqSum = 0.0;
|
||||
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (!taken[i]) {
|
||||
distSqSum += minDistSquared[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Add one new data point as a center. Each point x is chosen with
|
||||
// probability proportional to D(x)2
|
||||
final double r = random.nextDouble() * distSqSum;
|
||||
|
||||
// The index of the next point to be added to the resultSet.
|
||||
int nextPointIndex = -1;
|
||||
|
||||
// Sum through the squared min distances again, stopping when
|
||||
// sum >= r.
|
||||
double sum = 0.0;
|
||||
for (int i = 0; i < numPoints; i++) {
|
||||
if (!taken[i]) {
|
||||
sum += minDistSquared[i];
|
||||
if (sum >= r) {
|
||||
nextPointIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If it's not set to >= 0, the point wasn't found in the previous
|
||||
// for loop, probably because distances are extremely small. Just pick
|
||||
// the last available point.
|
||||
if (nextPointIndex == -1) {
|
||||
for (int i = numPoints - 1; i >= 0; i--) {
|
||||
if (!taken[i]) {
|
||||
nextPointIndex = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We found one.
|
||||
if (nextPointIndex >= 0) {
|
||||
|
||||
final T p = pointList.get(nextPointIndex);
|
||||
|
||||
resultSet.add(new Cluster<T> (p));
|
||||
|
||||
// Mark it as taken.
|
||||
taken[nextPointIndex] = true;
|
||||
|
||||
if (resultSet.size() < k) {
|
||||
// Now update elements of minDistSquared. We only have to compute
|
||||
// the distance to the new center to do this.
|
||||
for (int j = 0; j < numPoints; j++) {
|
||||
// Only have to worry about the points still not taken.
|
||||
if (!taken[j]) {
|
||||
double d = p.distanceFrom(pointList.get(j));
|
||||
double d2 = d * d;
|
||||
if (d2 < minDistSquared[j]) {
|
||||
minDistSquared[j] = d2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else {
|
||||
// None found --
|
||||
// Break from the while loop to prevent
|
||||
// an infinite loop.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return resultSet;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get a random point from the {@link Cluster} with the largest distance variance.
|
||||
*
|
||||
* @param clusters the {@link Cluster}s to search
|
||||
* @return a random point from the selected cluster
|
||||
* @throws ConvergenceException if clusters are all empty
|
||||
*/
|
||||
private T getPointFromLargestVarianceCluster(final Collection<Cluster<T>> clusters)
|
||||
throws ConvergenceException {
|
||||
|
||||
double maxVariance = Double.NEGATIVE_INFINITY;
|
||||
Cluster<T> selected = null;
|
||||
for (final Cluster<T> cluster : clusters) {
|
||||
if (!cluster.getPoints().isEmpty()) {
|
||||
|
||||
// compute the distance variance of the current cluster
|
||||
final T center = cluster.getCenter();
|
||||
final Variance stat = new Variance();
|
||||
for (final T point : cluster.getPoints()) {
|
||||
stat.increment(point.distanceFrom(center));
|
||||
}
|
||||
final double variance = stat.getResult();
|
||||
|
||||
// select the cluster with the largest variance
|
||||
if (variance > maxVariance) {
|
||||
maxVariance = variance;
|
||||
selected = cluster;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// did we find at least one non-empty cluster ?
|
||||
if (selected == null) {
|
||||
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
|
||||
}
|
||||
|
||||
// extract a random point from the cluster
|
||||
final List<T> selectedPoints = selected.getPoints();
|
||||
return selectedPoints.remove(random.nextInt(selectedPoints.size()));
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Get a random point from the {@link Cluster} with the largest number of points
|
||||
*
|
||||
* @param clusters the {@link Cluster}s to search
|
||||
* @return a random point from the selected cluster
|
||||
* @throws ConvergenceException if clusters are all empty
|
||||
*/
|
||||
private T getPointFromLargestNumberCluster(final Collection<Cluster<T>> clusters) throws ConvergenceException {
|
||||
|
||||
int maxNumber = 0;
|
||||
Cluster<T> selected = null;
|
||||
for (final Cluster<T> cluster : clusters) {
|
||||
|
||||
// get the number of points of the current cluster
|
||||
final int number = cluster.getPoints().size();
|
||||
|
||||
// select the cluster with the largest number of points
|
||||
if (number > maxNumber) {
|
||||
maxNumber = number;
|
||||
selected = cluster;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// did we find at least one non-empty cluster ?
|
||||
if (selected == null) {
|
||||
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
|
||||
}
|
||||
|
||||
// extract a random point from the cluster
|
||||
final List<T> selectedPoints = selected.getPoints();
|
||||
return selectedPoints.remove(random.nextInt(selectedPoints.size()));
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the point farthest to its cluster center
|
||||
*
|
||||
* @param clusters the {@link Cluster}s to search
|
||||
* @return point farthest to its cluster center
|
||||
* @throws ConvergenceException if clusters are all empty
|
||||
*/
|
||||
private T getFarthestPoint(final Collection<Cluster<T>> clusters) throws ConvergenceException {
|
||||
|
||||
double maxDistance = Double.NEGATIVE_INFINITY;
|
||||
Cluster<T> selectedCluster = null;
|
||||
int selectedPoint = -1;
|
||||
for (final Cluster<T> cluster : clusters) {
|
||||
|
||||
// get the farthest point
|
||||
final T center = cluster.getCenter();
|
||||
final List<T> points = cluster.getPoints();
|
||||
for (int i = 0; i < points.size(); ++i) {
|
||||
final double distance = points.get(i).distanceFrom(center);
|
||||
if (distance > maxDistance) {
|
||||
maxDistance = distance;
|
||||
selectedCluster = cluster;
|
||||
selectedPoint = i;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// did we find at least one non-empty cluster ?
|
||||
if (selectedCluster == null) {
|
||||
throw new ConvergenceException(LocalizedFormats.EMPTY_CLUSTER_IN_K_MEANS);
|
||||
}
|
||||
|
||||
return selectedCluster.getPoints().remove(selectedPoint);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the nearest {@link Cluster} to the given point
|
||||
*
|
||||
* @param <T> type of the points to cluster
|
||||
* @param clusters the {@link Cluster}s to search
|
||||
* @param point the point to find the nearest {@link Cluster} for
|
||||
* @return the index of the nearest {@link Cluster} to the given point
|
||||
*/
|
||||
private static <T extends Clusterable<T>> int
|
||||
getNearestCluster(final Collection<Cluster<T>> clusters, final T point) {
|
||||
double minDistance = Double.MAX_VALUE;
|
||||
int clusterIndex = 0;
|
||||
int minCluster = 0;
|
||||
for (final Cluster<T> c : clusters) {
|
||||
final double distance = point.distanceFrom(c.getCenter());
|
||||
if (distance < minDistance) {
|
||||
minDistance = distance;
|
||||
minCluster = clusterIndex;
|
||||
}
|
||||
clusterIndex++;
|
||||
}
|
||||
return minCluster;
|
||||
}
|
||||
|
||||
}
|
|
@ -1,29 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
/**
|
||||
* <h2>All classes and sub-packages of this package are deprecated.</h2>
|
||||
* <h3>Please use their replacements, to be found under
|
||||
* <ul>
|
||||
* <li>{@link org.apache.commons.math4.ml.clustering}</li>
|
||||
* </ul>
|
||||
* </h3>
|
||||
*
|
||||
* <p>
|
||||
* Clustering algorithms.
|
||||
* </p>
|
||||
*/
|
||||
package org.apache.commons.math4.stat.clustering;
|
|
@ -1,195 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math4.exception.MathIllegalArgumentException;
|
||||
import org.apache.commons.math4.exception.NullArgumentException;
|
||||
import org.apache.commons.math4.stat.clustering.Cluster;
|
||||
import org.apache.commons.math4.stat.clustering.DBSCANClusterer;
|
||||
import org.apache.commons.math4.stat.clustering.EuclideanDoublePoint;
|
||||
import org.apache.commons.math4.stat.clustering.EuclideanIntegerPoint;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
@Deprecated
|
||||
public class DBSCANClustererTest {
|
||||
|
||||
@Test
|
||||
public void testCluster() {
|
||||
// Test data generated using: http://people.cs.nctu.edu.tw/~rsliang/dbscan/testdatagen.html
|
||||
final EuclideanDoublePoint[] points = new EuclideanDoublePoint[] {
|
||||
new EuclideanDoublePoint(new double[] { 83.08303244924173, 58.83387754182331 }),
|
||||
new EuclideanDoublePoint(new double[] { 45.05445510940626, 23.469642649637535 }),
|
||||
new EuclideanDoublePoint(new double[] { 14.96417921432294, 69.0264096390456 }),
|
||||
new EuclideanDoublePoint(new double[] { 73.53189604333602, 34.896145021310076 }),
|
||||
new EuclideanDoublePoint(new double[] { 73.28498173551634, 33.96860806993209 }),
|
||||
new EuclideanDoublePoint(new double[] { 73.45828098873608, 33.92584423092194 }),
|
||||
new EuclideanDoublePoint(new double[] { 73.9657889183145, 35.73191006924026 }),
|
||||
new EuclideanDoublePoint(new double[] { 74.0074097183533, 36.81735596177168 }),
|
||||
new EuclideanDoublePoint(new double[] { 73.41247541410848, 34.27314856695011 }),
|
||||
new EuclideanDoublePoint(new double[] { 73.9156256353017, 36.83206791547127 }),
|
||||
new EuclideanDoublePoint(new double[] { 74.81499205809087, 37.15682749846019 }),
|
||||
new EuclideanDoublePoint(new double[] { 74.03144880081527, 37.57399178552441 }),
|
||||
new EuclideanDoublePoint(new double[] { 74.51870941207744, 38.674258946906775 }),
|
||||
new EuclideanDoublePoint(new double[] { 74.50754595105536, 35.58903978415765 }),
|
||||
new EuclideanDoublePoint(new double[] { 74.51322752749547, 36.030572259100154 }),
|
||||
new EuclideanDoublePoint(new double[] { 59.27900996617973, 46.41091720294207 }),
|
||||
new EuclideanDoublePoint(new double[] { 59.73744793841615, 46.20015558367595 }),
|
||||
new EuclideanDoublePoint(new double[] { 58.81134076672606, 45.71150126331486 }),
|
||||
new EuclideanDoublePoint(new double[] { 58.52225539437495, 47.416083617601544 }),
|
||||
new EuclideanDoublePoint(new double[] { 58.218626647023484, 47.36228902172297 }),
|
||||
new EuclideanDoublePoint(new double[] { 60.27139669447206, 46.606106348801404 }),
|
||||
new EuclideanDoublePoint(new double[] { 60.894962462363765, 46.976924697402865 }),
|
||||
new EuclideanDoublePoint(new double[] { 62.29048673878424, 47.66970563563518 }),
|
||||
new EuclideanDoublePoint(new double[] { 61.03857608977705, 46.212924720020965 }),
|
||||
new EuclideanDoublePoint(new double[] { 60.16916214139201, 45.18193661351688 }),
|
||||
new EuclideanDoublePoint(new double[] { 59.90036905976012, 47.555364347063005 }),
|
||||
new EuclideanDoublePoint(new double[] { 62.33003634144552, 47.83941489877179 }),
|
||||
new EuclideanDoublePoint(new double[] { 57.86035536718555, 47.31117930193432 }),
|
||||
new EuclideanDoublePoint(new double[] { 58.13715479685925, 48.985960494028404 }),
|
||||
new EuclideanDoublePoint(new double[] { 56.131923963548616, 46.8508904252667 }),
|
||||
new EuclideanDoublePoint(new double[] { 55.976329887053, 47.46384037658572 }),
|
||||
new EuclideanDoublePoint(new double[] { 56.23245975235477, 47.940035191131756 }),
|
||||
new EuclideanDoublePoint(new double[] { 58.51687048212625, 46.622885352699086 }),
|
||||
new EuclideanDoublePoint(new double[] { 57.85411081905477, 45.95394361577928 }),
|
||||
new EuclideanDoublePoint(new double[] { 56.445776311447844, 45.162093662656844 }),
|
||||
new EuclideanDoublePoint(new double[] { 57.36691949656233, 47.50097194337286 }),
|
||||
new EuclideanDoublePoint(new double[] { 58.243626387557015, 46.114052729681134 }),
|
||||
new EuclideanDoublePoint(new double[] { 56.27224595635198, 44.799080066150054 }),
|
||||
new EuclideanDoublePoint(new double[] { 57.606924816500396, 46.94291057763621 }),
|
||||
new EuclideanDoublePoint(new double[] { 30.18714230041951, 13.877149710431695 }),
|
||||
new EuclideanDoublePoint(new double[] { 30.449448810657486, 13.490778346545994 }),
|
||||
new EuclideanDoublePoint(new double[] { 30.295018390286714, 13.264889000216499 }),
|
||||
new EuclideanDoublePoint(new double[] { 30.160201832884923, 11.89278262341395 }),
|
||||
new EuclideanDoublePoint(new double[] { 31.341509791789576, 15.282655921997502 }),
|
||||
new EuclideanDoublePoint(new double[] { 31.68601630325429, 14.756873246748 }),
|
||||
new EuclideanDoublePoint(new double[] { 29.325963742565364, 12.097849250072613 }),
|
||||
new EuclideanDoublePoint(new double[] { 29.54820742388256, 13.613295356975868 }),
|
||||
new EuclideanDoublePoint(new double[] { 28.79359608888626, 10.36352064087987 }),
|
||||
new EuclideanDoublePoint(new double[] { 31.01284597092308, 12.788479208014905 }),
|
||||
new EuclideanDoublePoint(new double[] { 27.58509216737002, 11.47570110601373 }),
|
||||
new EuclideanDoublePoint(new double[] { 28.593799561727792, 10.780998203903437 }),
|
||||
new EuclideanDoublePoint(new double[] { 31.356105766724795, 15.080316198524088 }),
|
||||
new EuclideanDoublePoint(new double[] { 31.25948503636755, 13.674329151166603 }),
|
||||
new EuclideanDoublePoint(new double[] { 32.31590076372959, 14.95261758659035 }),
|
||||
new EuclideanDoublePoint(new double[] { 30.460413702763617, 15.88402809202671 }),
|
||||
new EuclideanDoublePoint(new double[] { 32.56178203062154, 14.586076852632686 }),
|
||||
new EuclideanDoublePoint(new double[] { 32.76138648530468, 16.239837325178087 }),
|
||||
new EuclideanDoublePoint(new double[] { 30.1829453331884, 14.709592407103628 }),
|
||||
new EuclideanDoublePoint(new double[] { 29.55088173528202, 15.0651247180067 }),
|
||||
new EuclideanDoublePoint(new double[] { 29.004155302187428, 14.089665298582986 }),
|
||||
new EuclideanDoublePoint(new double[] { 29.339624439831823, 13.29096065578051 }),
|
||||
new EuclideanDoublePoint(new double[] { 30.997460327576846, 14.551914158277214 }),
|
||||
new EuclideanDoublePoint(new double[] { 30.66784126125276, 16.269703107886016 })
|
||||
};
|
||||
|
||||
final DBSCANClusterer<EuclideanDoublePoint> transformer =
|
||||
new DBSCANClusterer<EuclideanDoublePoint>(2.0, 5);
|
||||
final List<Cluster<EuclideanDoublePoint>> clusters = transformer.cluster(Arrays.asList(points));
|
||||
|
||||
final List<EuclideanDoublePoint> clusterOne =
|
||||
Arrays.asList(points[3], points[4], points[5], points[6], points[7], points[8], points[9], points[10],
|
||||
points[11], points[12], points[13], points[14]);
|
||||
final List<EuclideanDoublePoint> clusterTwo =
|
||||
Arrays.asList(points[15], points[16], points[17], points[18], points[19], points[20], points[21],
|
||||
points[22], points[23], points[24], points[25], points[26], points[27], points[28],
|
||||
points[29], points[30], points[31], points[32], points[33], points[34], points[35],
|
||||
points[36], points[37], points[38]);
|
||||
final List<EuclideanDoublePoint> clusterThree =
|
||||
Arrays.asList(points[39], points[40], points[41], points[42], points[43], points[44], points[45],
|
||||
points[46], points[47], points[48], points[49], points[50], points[51], points[52],
|
||||
points[53], points[54], points[55], points[56], points[57], points[58], points[59],
|
||||
points[60], points[61], points[62]);
|
||||
|
||||
boolean cluster1Found = false;
|
||||
boolean cluster2Found = false;
|
||||
boolean cluster3Found = false;
|
||||
Assert.assertEquals(3, clusters.size());
|
||||
for (final Cluster<EuclideanDoublePoint> cluster : clusters) {
|
||||
if (cluster.getPoints().containsAll(clusterOne)) {
|
||||
cluster1Found = true;
|
||||
}
|
||||
if (cluster.getPoints().containsAll(clusterTwo)) {
|
||||
cluster2Found = true;
|
||||
}
|
||||
if (cluster.getPoints().containsAll(clusterThree)) {
|
||||
cluster3Found = true;
|
||||
}
|
||||
}
|
||||
Assert.assertTrue(cluster1Found);
|
||||
Assert.assertTrue(cluster2Found);
|
||||
Assert.assertTrue(cluster3Found);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSingleLink() {
|
||||
final EuclideanIntegerPoint[] points = {
|
||||
new EuclideanIntegerPoint(new int[] {10, 10}), // A
|
||||
new EuclideanIntegerPoint(new int[] {12, 9}),
|
||||
new EuclideanIntegerPoint(new int[] {10, 8}),
|
||||
new EuclideanIntegerPoint(new int[] {8, 8}),
|
||||
new EuclideanIntegerPoint(new int[] {8, 6}),
|
||||
new EuclideanIntegerPoint(new int[] {7, 7}),
|
||||
new EuclideanIntegerPoint(new int[] {5, 6}), // B
|
||||
new EuclideanIntegerPoint(new int[] {14, 8}), // C
|
||||
new EuclideanIntegerPoint(new int[] {7, 15}), // N - Noise, should not be present
|
||||
new EuclideanIntegerPoint(new int[] {17, 8}), // D - single-link connected to C should not be present
|
||||
|
||||
};
|
||||
|
||||
final DBSCANClusterer<EuclideanIntegerPoint> clusterer = new DBSCANClusterer<EuclideanIntegerPoint>(3, 3);
|
||||
List<Cluster<EuclideanIntegerPoint>> clusters = clusterer.cluster(Arrays.asList(points));
|
||||
|
||||
Assert.assertEquals(1, clusters.size());
|
||||
|
||||
final List<EuclideanIntegerPoint> clusterOne =
|
||||
Arrays.asList(points[0], points[1], points[2], points[3], points[4], points[5], points[6], points[7]);
|
||||
Assert.assertTrue(clusters.get(0).getPoints().containsAll(clusterOne));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGetEps() {
|
||||
final DBSCANClusterer<EuclideanDoublePoint> transformer = new DBSCANClusterer<EuclideanDoublePoint>(2.0, 5);
|
||||
Assert.assertEquals(2.0, transformer.getEps(), 0.0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGetMinPts() {
|
||||
final DBSCANClusterer<EuclideanDoublePoint> transformer = new DBSCANClusterer<EuclideanDoublePoint>(2.0, 5);
|
||||
Assert.assertEquals(5, transformer.getMinPts());
|
||||
}
|
||||
|
||||
@Test(expected = MathIllegalArgumentException.class)
|
||||
public void testNegativeEps() {
|
||||
new DBSCANClusterer<EuclideanDoublePoint>(-2.0, 5);
|
||||
}
|
||||
|
||||
@Test(expected = MathIllegalArgumentException.class)
|
||||
public void testNegativeMinPts() {
|
||||
new DBSCANClusterer<EuclideanDoublePoint>(2.0, -5);
|
||||
}
|
||||
|
||||
@Test(expected = NullArgumentException.class)
|
||||
public void testNullDataset() {
|
||||
DBSCANClusterer<EuclideanDoublePoint> clusterer = new DBSCANClusterer<EuclideanDoublePoint>(2.0, 5);
|
||||
clusterer.cluster(null);
|
||||
}
|
||||
|
||||
}
|
|
@ -1,64 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math4.TestUtils;
|
||||
import org.apache.commons.math4.stat.clustering.EuclideanDoublePoint;
|
||||
import org.apache.commons.math4.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
@Deprecated
|
||||
public class EuclideanDoublePointTest {
|
||||
|
||||
@Test
|
||||
public void testArrayIsReference() {
|
||||
final double[] array = { -3.0, -2.0, -1.0, 0.0, 1.0 };
|
||||
Assert.assertArrayEquals(array, new EuclideanDoublePoint(array).getPoint(), 1.0e-15);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistance() {
|
||||
final EuclideanDoublePoint e1 = new EuclideanDoublePoint(new double[] { -3.0, -2.0, -1.0, 0.0, 1.0 });
|
||||
final EuclideanDoublePoint e2 = new EuclideanDoublePoint(new double[] { 1.0, 0.0, -1.0, 1.0, 1.0 });
|
||||
Assert.assertEquals(FastMath.sqrt(21.0), e1.distanceFrom(e2), 1.0e-15);
|
||||
Assert.assertEquals(0.0, e1.distanceFrom(e1), 1.0e-15);
|
||||
Assert.assertEquals(0.0, e2.distanceFrom(e2), 1.0e-15);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCentroid() {
|
||||
final List<EuclideanDoublePoint> list = new ArrayList<EuclideanDoublePoint>();
|
||||
list.add(new EuclideanDoublePoint(new double[] { 1.0, 3.0 }));
|
||||
list.add(new EuclideanDoublePoint(new double[] { 2.0, 2.0 }));
|
||||
list.add(new EuclideanDoublePoint(new double[] { 3.0, 3.0 }));
|
||||
list.add(new EuclideanDoublePoint(new double[] { 2.0, 4.0 }));
|
||||
final EuclideanDoublePoint c = list.get(0).centroidOf(list);
|
||||
Assert.assertEquals(2.0, c.getPoint()[0], 1.0e-15);
|
||||
Assert.assertEquals(3.0, c.getPoint()[1], 1.0e-15);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSerial() {
|
||||
final EuclideanDoublePoint p = new EuclideanDoublePoint(new double[] { -3.0, -2.0, -1.0, 0.0, 1.0 });
|
||||
Assert.assertEquals(p, TestUtils.serializeAndRecover(p));
|
||||
}
|
||||
|
||||
}
|
|
@ -1,66 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import org.apache.commons.math4.TestUtils;
|
||||
import org.apache.commons.math4.stat.clustering.EuclideanIntegerPoint;
|
||||
import org.apache.commons.math4.util.FastMath;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
@Deprecated
|
||||
public class EuclideanIntegerPointTest {
|
||||
|
||||
@Test
|
||||
public void testArrayIsReference() {
|
||||
int[] array = { -3, -2, -1, 0, 1 };
|
||||
Assert.assertTrue(array == new EuclideanIntegerPoint(array).getPoint());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDistance() {
|
||||
EuclideanIntegerPoint e1 = new EuclideanIntegerPoint(new int[] { -3, -2, -1, 0, 1 });
|
||||
EuclideanIntegerPoint e2 = new EuclideanIntegerPoint(new int[] { 1, 0, -1, 1, 1 });
|
||||
Assert.assertEquals(FastMath.sqrt(21.0), e1.distanceFrom(e2), 1.0e-15);
|
||||
Assert.assertEquals(0.0, e1.distanceFrom(e1), 1.0e-15);
|
||||
Assert.assertEquals(0.0, e2.distanceFrom(e2), 1.0e-15);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCentroid() {
|
||||
List<EuclideanIntegerPoint> list = new ArrayList<EuclideanIntegerPoint>();
|
||||
list.add(new EuclideanIntegerPoint(new int[] { 1, 3 }));
|
||||
list.add(new EuclideanIntegerPoint(new int[] { 2, 2 }));
|
||||
list.add(new EuclideanIntegerPoint(new int[] { 3, 3 }));
|
||||
list.add(new EuclideanIntegerPoint(new int[] { 2, 4 }));
|
||||
EuclideanIntegerPoint c = list.get(0).centroidOf(list);
|
||||
Assert.assertEquals(2, c.getPoint()[0]);
|
||||
Assert.assertEquals(3, c.getPoint()[1]);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSerial() {
|
||||
EuclideanIntegerPoint p = new EuclideanIntegerPoint(new int[] { -3, -2, -1, 0, 1 });
|
||||
Assert.assertEquals(p, TestUtils.serializeAndRecover(p));
|
||||
}
|
||||
|
||||
}
|
|
@ -1,277 +0,0 @@
|
|||
/*
|
||||
* Licensed to the Apache Software Foundation (ASF) under one or more
|
||||
* contributor license agreements. See the NOTICE file distributed with
|
||||
* this work for additional information regarding copyright ownership.
|
||||
* The ASF licenses this file to You under the Apache License, Version 2.0
|
||||
* (the "License"); you may not use this file except in compliance with
|
||||
* the License. You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.commons.math4.stat.clustering;
|
||||
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collection;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
|
||||
import org.apache.commons.math4.exception.NumberIsTooSmallException;
|
||||
import org.apache.commons.math4.stat.clustering.Cluster;
|
||||
import org.apache.commons.math4.stat.clustering.Clusterable;
|
||||
import org.apache.commons.math4.stat.clustering.EuclideanIntegerPoint;
|
||||
import org.apache.commons.math4.stat.clustering.KMeansPlusPlusClusterer;
|
||||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
@Deprecated
|
||||
public class KMeansPlusPlusClustererTest {
|
||||
|
||||
@Test
|
||||
public void dimension2() {
|
||||
KMeansPlusPlusClusterer<EuclideanIntegerPoint> transformer =
|
||||
new KMeansPlusPlusClusterer<EuclideanIntegerPoint>(new Random(1746432956321l));
|
||||
EuclideanIntegerPoint[] points = new EuclideanIntegerPoint[] {
|
||||
|
||||
// first expected cluster
|
||||
new EuclideanIntegerPoint(new int[] { -15, 3 }),
|
||||
new EuclideanIntegerPoint(new int[] { -15, 4 }),
|
||||
new EuclideanIntegerPoint(new int[] { -15, 5 }),
|
||||
new EuclideanIntegerPoint(new int[] { -14, 3 }),
|
||||
new EuclideanIntegerPoint(new int[] { -14, 5 }),
|
||||
new EuclideanIntegerPoint(new int[] { -13, 3 }),
|
||||
new EuclideanIntegerPoint(new int[] { -13, 4 }),
|
||||
new EuclideanIntegerPoint(new int[] { -13, 5 }),
|
||||
|
||||
// second expected cluster
|
||||
new EuclideanIntegerPoint(new int[] { -1, 0 }),
|
||||
new EuclideanIntegerPoint(new int[] { -1, -1 }),
|
||||
new EuclideanIntegerPoint(new int[] { 0, -1 }),
|
||||
new EuclideanIntegerPoint(new int[] { 1, -1 }),
|
||||
new EuclideanIntegerPoint(new int[] { 1, -2 }),
|
||||
|
||||
// third expected cluster
|
||||
new EuclideanIntegerPoint(new int[] { 13, 3 }),
|
||||
new EuclideanIntegerPoint(new int[] { 13, 4 }),
|
||||
new EuclideanIntegerPoint(new int[] { 14, 4 }),
|
||||
new EuclideanIntegerPoint(new int[] { 14, 7 }),
|
||||
new EuclideanIntegerPoint(new int[] { 16, 5 }),
|
||||
new EuclideanIntegerPoint(new int[] { 16, 6 }),
|
||||
new EuclideanIntegerPoint(new int[] { 17, 4 }),
|
||||
new EuclideanIntegerPoint(new int[] { 17, 7 })
|
||||
|
||||
};
|
||||
List<Cluster<EuclideanIntegerPoint>> clusters =
|
||||
transformer.cluster(Arrays.asList(points), 3, 5, 10);
|
||||
|
||||
Assert.assertEquals(3, clusters.size());
|
||||
boolean cluster1Found = false;
|
||||
boolean cluster2Found = false;
|
||||
boolean cluster3Found = false;
|
||||
for (Cluster<EuclideanIntegerPoint> cluster : clusters) {
|
||||
int[] center = cluster.getCenter().getPoint();
|
||||
if (center[0] < 0) {
|
||||
cluster1Found = true;
|
||||
Assert.assertEquals(8, cluster.getPoints().size());
|
||||
Assert.assertEquals(-14, center[0]);
|
||||
Assert.assertEquals( 4, center[1]);
|
||||
} else if (center[1] < 0) {
|
||||
cluster2Found = true;
|
||||
Assert.assertEquals(5, cluster.getPoints().size());
|
||||
Assert.assertEquals( 0, center[0]);
|
||||
Assert.assertEquals(-1, center[1]);
|
||||
} else {
|
||||
cluster3Found = true;
|
||||
Assert.assertEquals(8, cluster.getPoints().size());
|
||||
Assert.assertEquals(15, center[0]);
|
||||
Assert.assertEquals(5, center[1]);
|
||||
}
|
||||
}
|
||||
Assert.assertTrue(cluster1Found);
|
||||
Assert.assertTrue(cluster2Found);
|
||||
Assert.assertTrue(cluster3Found);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* JIRA: MATH-305
|
||||
*
|
||||
* Two points, one cluster, one iteration
|
||||
*/
|
||||
@Test
|
||||
public void testPerformClusterAnalysisDegenerate() {
|
||||
KMeansPlusPlusClusterer<EuclideanIntegerPoint> transformer = new KMeansPlusPlusClusterer<EuclideanIntegerPoint>(
|
||||
new Random(1746432956321l));
|
||||
EuclideanIntegerPoint[] points = new EuclideanIntegerPoint[] {
|
||||
new EuclideanIntegerPoint(new int[] { 1959, 325100 }),
|
||||
new EuclideanIntegerPoint(new int[] { 1960, 373200 }), };
|
||||
List<Cluster<EuclideanIntegerPoint>> clusters = transformer.cluster(Arrays.asList(points), 1, 1);
|
||||
Assert.assertEquals(1, clusters.size());
|
||||
Assert.assertEquals(2, (clusters.get(0).getPoints().size()));
|
||||
EuclideanIntegerPoint pt1 = new EuclideanIntegerPoint(new int[] { 1959, 325100 });
|
||||
EuclideanIntegerPoint pt2 = new EuclideanIntegerPoint(new int[] { 1960, 373200 });
|
||||
Assert.assertTrue(clusters.get(0).getPoints().contains(pt1));
|
||||
Assert.assertTrue(clusters.get(0).getPoints().contains(pt2));
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testCertainSpace() {
|
||||
KMeansPlusPlusClusterer.EmptyClusterStrategy[] strategies = {
|
||||
KMeansPlusPlusClusterer.EmptyClusterStrategy.LARGEST_VARIANCE,
|
||||
KMeansPlusPlusClusterer.EmptyClusterStrategy.LARGEST_POINTS_NUMBER,
|
||||
KMeansPlusPlusClusterer.EmptyClusterStrategy.FARTHEST_POINT
|
||||
};
|
||||
for (KMeansPlusPlusClusterer.EmptyClusterStrategy strategy : strategies) {
|
||||
KMeansPlusPlusClusterer<EuclideanIntegerPoint> transformer =
|
||||
new KMeansPlusPlusClusterer<EuclideanIntegerPoint>(new Random(1746432956321l), strategy);
|
||||
int numberOfVariables = 27;
|
||||
// initialise testvalues
|
||||
int position1 = 1;
|
||||
int position2 = position1 + numberOfVariables;
|
||||
int position3 = position2 + numberOfVariables;
|
||||
int position4 = position3 + numberOfVariables;
|
||||
// testvalues will be multiplied
|
||||
int multiplier = 1000000;
|
||||
|
||||
EuclideanIntegerPoint[] breakingPoints = new EuclideanIntegerPoint[numberOfVariables];
|
||||
// define the space which will break the cluster algorithm
|
||||
for (int i = 0; i < numberOfVariables; i++) {
|
||||
int points[] = { position1, position2, position3, position4 };
|
||||
// multiply the values
|
||||
for (int j = 0; j < points.length; j++) {
|
||||
points[j] *= multiplier;
|
||||
}
|
||||
EuclideanIntegerPoint euclideanIntegerPoint = new EuclideanIntegerPoint(points);
|
||||
breakingPoints[i] = euclideanIntegerPoint;
|
||||
position1 += numberOfVariables;
|
||||
position2 += numberOfVariables;
|
||||
position3 += numberOfVariables;
|
||||
position4 += numberOfVariables;
|
||||
}
|
||||
|
||||
for (int n = 2; n < 27; ++n) {
|
||||
List<Cluster<EuclideanIntegerPoint>> clusters =
|
||||
transformer.cluster(Arrays.asList(breakingPoints), n, 100);
|
||||
Assert.assertEquals(n, clusters.size());
|
||||
int sum = 0;
|
||||
for (Cluster<EuclideanIntegerPoint> cluster : clusters) {
|
||||
sum += cluster.getPoints().size();
|
||||
}
|
||||
Assert.assertEquals(numberOfVariables, sum);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* A helper class for testSmallDistances(). This class is similar to EuclideanIntegerPoint, but
|
||||
* it defines a different distanceFrom() method that tends to return distances less than 1.
|
||||
*/
|
||||
private class CloseIntegerPoint implements Clusterable<CloseIntegerPoint> {
|
||||
public CloseIntegerPoint(EuclideanIntegerPoint point) {
|
||||
euclideanPoint = point;
|
||||
}
|
||||
|
||||
public double distanceFrom(CloseIntegerPoint p) {
|
||||
return euclideanPoint.distanceFrom(p.euclideanPoint) * 0.001;
|
||||
}
|
||||
|
||||
public CloseIntegerPoint centroidOf(Collection<CloseIntegerPoint> p) {
|
||||
Collection<EuclideanIntegerPoint> euclideanPoints =
|
||||
new ArrayList<EuclideanIntegerPoint>();
|
||||
for (CloseIntegerPoint point : p) {
|
||||
euclideanPoints.add(point.euclideanPoint);
|
||||
}
|
||||
return new CloseIntegerPoint(euclideanPoint.centroidOf(euclideanPoints));
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (!(o instanceof CloseIntegerPoint)) {
|
||||
return false;
|
||||
}
|
||||
CloseIntegerPoint p = (CloseIntegerPoint) o;
|
||||
|
||||
return euclideanPoint.equals(p.euclideanPoint);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
return euclideanPoint.hashCode();
|
||||
}
|
||||
|
||||
private EuclideanIntegerPoint euclideanPoint;
|
||||
}
|
||||
|
||||
/**
|
||||
* Test points that are very close together. See issue MATH-546.
|
||||
*/
|
||||
@Test
|
||||
public void testSmallDistances() {
|
||||
// Create a bunch of CloseIntegerPoints. Most are identical, but one is different by a
|
||||
// small distance.
|
||||
int[] repeatedArray = { 0 };
|
||||
int[] uniqueArray = { 1 };
|
||||
CloseIntegerPoint repeatedPoint =
|
||||
new CloseIntegerPoint(new EuclideanIntegerPoint(repeatedArray));
|
||||
CloseIntegerPoint uniquePoint =
|
||||
new CloseIntegerPoint(new EuclideanIntegerPoint(uniqueArray));
|
||||
|
||||
Collection<CloseIntegerPoint> points = new ArrayList<CloseIntegerPoint>();
|
||||
final int NUM_REPEATED_POINTS = 10 * 1000;
|
||||
for (int i = 0; i < NUM_REPEATED_POINTS; ++i) {
|
||||
points.add(repeatedPoint);
|
||||
}
|
||||
points.add(uniquePoint);
|
||||
|
||||
// Ask a KMeansPlusPlusClusterer to run zero iterations (i.e., to simply choose initial
|
||||
// cluster centers).
|
||||
final long RANDOM_SEED = 0;
|
||||
final int NUM_CLUSTERS = 2;
|
||||
final int NUM_ITERATIONS = 0;
|
||||
KMeansPlusPlusClusterer<CloseIntegerPoint> clusterer =
|
||||
new KMeansPlusPlusClusterer<CloseIntegerPoint>(new Random(RANDOM_SEED));
|
||||
List<Cluster<CloseIntegerPoint>> clusters =
|
||||
clusterer.cluster(points, NUM_CLUSTERS, NUM_ITERATIONS);
|
||||
|
||||
// Check that one of the chosen centers is the unique point.
|
||||
boolean uniquePointIsCenter = false;
|
||||
for (Cluster<CloseIntegerPoint> cluster : clusters) {
|
||||
if (cluster.getCenter().equals(uniquePoint)) {
|
||||
uniquePointIsCenter = true;
|
||||
}
|
||||
}
|
||||
Assert.assertTrue(uniquePointIsCenter);
|
||||
}
|
||||
|
||||
/**
|
||||
* 2 variables cannot be clustered into 3 clusters. See issue MATH-436.
|
||||
*/
|
||||
@Test(expected=NumberIsTooSmallException.class)
|
||||
public void testPerformClusterAnalysisToManyClusters() {
|
||||
KMeansPlusPlusClusterer<EuclideanIntegerPoint> transformer =
|
||||
new KMeansPlusPlusClusterer<EuclideanIntegerPoint>(
|
||||
new Random(1746432956321l));
|
||||
|
||||
EuclideanIntegerPoint[] points = new EuclideanIntegerPoint[] {
|
||||
new EuclideanIntegerPoint(new int[] {
|
||||
1959, 325100
|
||||
}), new EuclideanIntegerPoint(new int[] {
|
||||
1960, 373200
|
||||
})
|
||||
};
|
||||
|
||||
transformer.cluster(Arrays.asList(points), 3, 1);
|
||||
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue