Javadoc fixes.

This commit is contained in:
Phil Steitz 2015-12-26 15:12:26 -07:00
parent 971a778650
commit 2d0d2ff142
7 changed files with 30 additions and 29 deletions

View File

@ -101,7 +101,7 @@ public abstract class BaseAbstractUnivariateIntegrator implements UnivariateInte
* the "reasonable value" varies widely for different algorithms. Users are
* advised to use the default value supplied by the algorithm.</li>
* </ul>
* </p>
*
* @param relativeAccuracy relative accuracy of the result
* @param absoluteAccuracy absolute accuracy of the result
* @param minimalIterationCount minimum number of iterations

View File

@ -30,13 +30,14 @@ import org.apache.commons.math3.exception.TooManyEvaluationsException;
public interface UnivariateIntegrator {
/**
* Get the actual relative accuracy.
* Get the relative accuracy.
*
* @return the accuracy
*/
double getRelativeAccuracy();
/**
* Get the actual absolute accuracy.
* Get the absolute accuracy.
*
* @return the accuracy
*/
@ -61,14 +62,14 @@ public interface UnivariateIntegrator {
*
* @param maxEval Maximum number of evaluations.
* @param f the integrand function
* @param min the min bound for the interval
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @return the value of integral
* @throws TooManyEvaluationsException if the maximum number of function
* evaluations is exceeded.
* evaluations is exceeded
* @throws MaxCountExceededException if the maximum iteration count is exceeded
* or the integrator detects convergence problems otherwise
* @throws MathIllegalArgumentException if min > max or the endpoints do not
* @throws MathIllegalArgumentException if {@code min > max} or the endpoints do not
* satisfy the requirements specified by the integrator
* @throws NullArgumentException if {@code f} is {@code null}.
*/
@ -79,12 +80,14 @@ public interface UnivariateIntegrator {
/**
* Get the number of function evaluations of the last run of the integrator.
*
* @return number of function evaluations
*/
int getEvaluations();
/**
* Get the number of iterations of the last run of the integrator.
*
* @return number of iterations
*/
int getIterations();

View File

@ -110,11 +110,9 @@ public class GaussIntegratorFactory {
* The call to the
* {@link SymmetricGaussIntegrator#integrate(org.apache.commons.math3.analysis.UnivariateFunction)
* integrate} method will perform a weighted integration on the interval
* {@code [-&inf;, +&inf;]}: the computed value is the improper integral of
* <code>
* e<sup>-x<sup>2</sup></sup> f(x)
* </code>
* where {@code f(x)} is the function passed to the
* \([-\infty, +\infty]\): the computed value is the improper integral of
* \(e^{-x^2}f(x)\)
* where \(f(x)\) is the function passed to the
* {@link SymmetricGaussIntegrator#integrate(org.apache.commons.math3.analysis.UnivariateFunction)
* integrate} method.
*

View File

@ -23,28 +23,27 @@ import org.apache.commons.math3.util.FastMath;
/**
* Factory that creates a
* <a href="http://en.wikipedia.org/wiki/Gauss-Hermite_quadrature">
* Gauss-type quadrature rule using Hermite polynomials</a>
* Gauss-type quadrature rule using Hermite polynomials</a>
* of the first kind.
* Such a quadrature rule allows the calculation of improper integrals
* of a function
* <code>
* f(x) e<sup>-x<sup>2</sup></sup>
* </code>
* <br/>
* <p>
* \(f(x) e^{-x^2}\)
* </p><p>
* Recurrence relation and weights computation follow
* <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
* Abramowitz and Stegun, 1964</a>.
* <br/>
* The coefficients of the standard Hermite polynomials grow very rapidly;
* in order to avoid overflows, each Hermite polynomial is normalized with
* </p><p>
* The coefficients of the standard Hermite polynomials grow very rapidly.
* In order to avoid overflows, each Hermite polynomial is normalized with
* respect to the underlying scalar product.
* The initial interval for the application of the bisection method is
* based on the roots of the previous Hermite polynomial (interlacing).
* Upper and lower bounds of these roots are provided by
* Upper and lower bounds of these roots are provided by </p>
* <blockquote>
* I. Krasikov,<br>
* <em>Nonnegative quadratic forms and bounds on orthogonal polynomials</em>,<br>
* Journal of Approximation theory <b>111</b>, 31-49<br>
* I. Krasikov,
* <em>Nonnegative quadratic forms and bounds on orthogonal polynomials</em>,
* Journal of Approximation theory <b>111</b>, 31-49
* </blockquote>
*
* @since 3.3

View File

@ -27,7 +27,7 @@ import org.apache.commons.math3.util.Pair;
* In this implementation, the lower and upper bounds of the natural interval
* of integration are -1 and 1, respectively.
* The Legendre polynomials are evaluated using the recurrence relation
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun"
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
* Abramowitz and Stegun, 1964</a>.
*
* @since 3.1

View File

@ -24,7 +24,7 @@ import org.apache.commons.math3.util.Pair;
* In this implementation, the lower and upper bounds of the natural interval
* of integration are -1 and 1, respectively.
* The Legendre polynomials are evaluated using the recurrence relation
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun"
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
* Abramowitz and Stegun, 1964</a>.
*
* @since 3.1

View File

@ -24,8 +24,8 @@ import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
/**
* Implements the <a href="
* http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html">
* Implements the <a href=
* "http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html">
* Divided Difference Algorithm</a> for interpolation of real univariate
* functions. For reference, see <b>Introduction to Numerical Analysis</b>,
* ISBN 038795452X, chapter 2.
@ -83,9 +83,10 @@ public class DividedDifferenceInterpolator
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
* </pre></p>
* </pre>
* <p>
* The computational complexity is O(N^2).</p>
* The computational complexity is \(O(n^2)\) where \(n\) is the common
* length of {@code x} and {@code y}.</p>
*
* @param x Interpolating points array.
* @param y Interpolating values array.