Javadoc fixes.
This commit is contained in:
parent
971a778650
commit
2d0d2ff142
|
@ -101,7 +101,7 @@ public abstract class BaseAbstractUnivariateIntegrator implements UnivariateInte
|
|||
* the "reasonable value" varies widely for different algorithms. Users are
|
||||
* advised to use the default value supplied by the algorithm.</li>
|
||||
* </ul>
|
||||
* </p>
|
||||
*
|
||||
* @param relativeAccuracy relative accuracy of the result
|
||||
* @param absoluteAccuracy absolute accuracy of the result
|
||||
* @param minimalIterationCount minimum number of iterations
|
||||
|
|
|
@ -30,13 +30,14 @@ import org.apache.commons.math3.exception.TooManyEvaluationsException;
|
|||
public interface UnivariateIntegrator {
|
||||
|
||||
/**
|
||||
* Get the actual relative accuracy.
|
||||
* Get the relative accuracy.
|
||||
*
|
||||
* @return the accuracy
|
||||
*/
|
||||
double getRelativeAccuracy();
|
||||
|
||||
/**
|
||||
* Get the actual absolute accuracy.
|
||||
* Get the absolute accuracy.
|
||||
*
|
||||
* @return the accuracy
|
||||
*/
|
||||
|
@ -61,14 +62,14 @@ public interface UnivariateIntegrator {
|
|||
*
|
||||
* @param maxEval Maximum number of evaluations.
|
||||
* @param f the integrand function
|
||||
* @param min the min bound for the interval
|
||||
* @param min the lower bound for the interval
|
||||
* @param max the upper bound for the interval
|
||||
* @return the value of integral
|
||||
* @throws TooManyEvaluationsException if the maximum number of function
|
||||
* evaluations is exceeded.
|
||||
* evaluations is exceeded
|
||||
* @throws MaxCountExceededException if the maximum iteration count is exceeded
|
||||
* or the integrator detects convergence problems otherwise
|
||||
* @throws MathIllegalArgumentException if min > max or the endpoints do not
|
||||
* @throws MathIllegalArgumentException if {@code min > max} or the endpoints do not
|
||||
* satisfy the requirements specified by the integrator
|
||||
* @throws NullArgumentException if {@code f} is {@code null}.
|
||||
*/
|
||||
|
@ -79,12 +80,14 @@ public interface UnivariateIntegrator {
|
|||
|
||||
/**
|
||||
* Get the number of function evaluations of the last run of the integrator.
|
||||
*
|
||||
* @return number of function evaluations
|
||||
*/
|
||||
int getEvaluations();
|
||||
|
||||
/**
|
||||
* Get the number of iterations of the last run of the integrator.
|
||||
*
|
||||
* @return number of iterations
|
||||
*/
|
||||
int getIterations();
|
||||
|
|
|
@ -110,11 +110,9 @@ public class GaussIntegratorFactory {
|
|||
* The call to the
|
||||
* {@link SymmetricGaussIntegrator#integrate(org.apache.commons.math3.analysis.UnivariateFunction)
|
||||
* integrate} method will perform a weighted integration on the interval
|
||||
* {@code [-&inf;, +&inf;]}: the computed value is the improper integral of
|
||||
* <code>
|
||||
* e<sup>-x<sup>2</sup></sup> f(x)
|
||||
* </code>
|
||||
* where {@code f(x)} is the function passed to the
|
||||
* \([-\infty, +\infty]\): the computed value is the improper integral of
|
||||
* \(e^{-x^2}f(x)\)
|
||||
* where \(f(x)\) is the function passed to the
|
||||
* {@link SymmetricGaussIntegrator#integrate(org.apache.commons.math3.analysis.UnivariateFunction)
|
||||
* integrate} method.
|
||||
*
|
||||
|
|
|
@ -23,28 +23,27 @@ import org.apache.commons.math3.util.FastMath;
|
|||
/**
|
||||
* Factory that creates a
|
||||
* <a href="http://en.wikipedia.org/wiki/Gauss-Hermite_quadrature">
|
||||
* Gauss-type quadrature rule using Hermite polynomials</a>
|
||||
* Gauss-type quadrature rule using Hermite polynomials</a>
|
||||
* of the first kind.
|
||||
* Such a quadrature rule allows the calculation of improper integrals
|
||||
* of a function
|
||||
* <code>
|
||||
* f(x) e<sup>-x<sup>2</sup></sup>
|
||||
* </code>
|
||||
* <br/>
|
||||
* <p>
|
||||
* \(f(x) e^{-x^2}\)
|
||||
* </p><p>
|
||||
* Recurrence relation and weights computation follow
|
||||
* <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
|
||||
* Abramowitz and Stegun, 1964</a>.
|
||||
* <br/>
|
||||
* The coefficients of the standard Hermite polynomials grow very rapidly;
|
||||
* in order to avoid overflows, each Hermite polynomial is normalized with
|
||||
* </p><p>
|
||||
* The coefficients of the standard Hermite polynomials grow very rapidly.
|
||||
* In order to avoid overflows, each Hermite polynomial is normalized with
|
||||
* respect to the underlying scalar product.
|
||||
* The initial interval for the application of the bisection method is
|
||||
* based on the roots of the previous Hermite polynomial (interlacing).
|
||||
* Upper and lower bounds of these roots are provided by
|
||||
* Upper and lower bounds of these roots are provided by </p>
|
||||
* <blockquote>
|
||||
* I. Krasikov,<br>
|
||||
* <em>Nonnegative quadratic forms and bounds on orthogonal polynomials</em>,<br>
|
||||
* Journal of Approximation theory <b>111</b>, 31-49<br>
|
||||
* I. Krasikov,
|
||||
* <em>Nonnegative quadratic forms and bounds on orthogonal polynomials</em>,
|
||||
* Journal of Approximation theory <b>111</b>, 31-49
|
||||
* </blockquote>
|
||||
*
|
||||
* @since 3.3
|
||||
|
|
|
@ -27,7 +27,7 @@ import org.apache.commons.math3.util.Pair;
|
|||
* In this implementation, the lower and upper bounds of the natural interval
|
||||
* of integration are -1 and 1, respectively.
|
||||
* The Legendre polynomials are evaluated using the recurrence relation
|
||||
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun"
|
||||
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
|
||||
* Abramowitz and Stegun, 1964</a>.
|
||||
*
|
||||
* @since 3.1
|
||||
|
|
|
@ -24,7 +24,7 @@ import org.apache.commons.math3.util.Pair;
|
|||
* In this implementation, the lower and upper bounds of the natural interval
|
||||
* of integration are -1 and 1, respectively.
|
||||
* The Legendre polynomials are evaluated using the recurrence relation
|
||||
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun"
|
||||
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
|
||||
* Abramowitz and Stegun, 1964</a>.
|
||||
*
|
||||
* @since 3.1
|
||||
|
|
|
@ -24,8 +24,8 @@ import org.apache.commons.math3.exception.NumberIsTooSmallException;
|
|||
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
|
||||
|
||||
/**
|
||||
* Implements the <a href="
|
||||
* http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html">
|
||||
* Implements the <a href=
|
||||
* "http://mathworld.wolfram.com/NewtonsDividedDifferenceInterpolationFormula.html">
|
||||
* Divided Difference Algorithm</a> for interpolation of real univariate
|
||||
* functions. For reference, see <b>Introduction to Numerical Analysis</b>,
|
||||
* ISBN 038795452X, chapter 2.
|
||||
|
@ -83,9 +83,10 @@ public class DividedDifferenceInterpolator
|
|||
* The divided difference array is defined recursively by <pre>
|
||||
* f[x0] = f(x0)
|
||||
* f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
|
||||
* </pre></p>
|
||||
* </pre>
|
||||
* <p>
|
||||
* The computational complexity is O(N^2).</p>
|
||||
* The computational complexity is \(O(n^2)\) where \(n\) is the common
|
||||
* length of {@code x} and {@code y}.</p>
|
||||
*
|
||||
* @param x Interpolating points array.
|
||||
* @param y Interpolating values array.
|
||||
|
|
Loading…
Reference in New Issue