applied Cyril Briquet's patch (with slight changes) to improve FastFourierTransform efficiency

JIRA: MATH-216

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@740400 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Luc Maisonobe 2009-02-03 19:59:20 +00:00
parent aa0dd1db20
commit 304ae29268
4 changed files with 173 additions and 57 deletions

View File

@ -105,6 +105,9 @@
<contributor>
<name>R&#233;mi Arntzen</name>
</contributor>
<contributor>
<name>Cyril Briquet</name>
</contributor>
<contributor>
<name>Paul Cowan</name>
</contributor>

View File

@ -372,6 +372,10 @@ public class MessagesResources_fr
// org.apache.commons.math.transform.FastFourierTransformer
{ "cannot compute 0-th root of unity, indefinite result",
"impossible de calculer la racine z\u00e9roi\u00e8me de l''unit\u00e9, r\u00e9sultat ind\u00e9fini" },
{ "roots of unity have not been computed yet",
"les racines de l''unit\u00e9 n''ont pas encore \u00e9t\u00e9 calcul\u00e9es" },
{ "out of range root of unity index {0} (must be in [{1};{2}])",
"index de racine de l''unit\u00e9 hors domaine (devrait \u00eatre dans [{1}; {2}])" },
{ "number of sample is not positive: {0}",
"le nombre d''\u00e9chantillons n''est pas positif : {0}" },
{ "{0} is not a power of 2, consider padding for fix",

View File

@ -48,14 +48,8 @@ public class FastFourierTransformer implements Serializable {
/** Serializable version identifier. */
static final long serialVersionUID = 5138259215438106000L;
/** array of the roots of unity */
private Complex omega[] = new Complex[0];
/**
* |omegaCount| is the length of lasted computed omega[]. omegaCount
* is positive for forward transform and negative for inverse transform.
*/
private int omegaCount = 0;
/** roots of unity */
private RootsOfUnity roots = new RootsOfUnity();
/**
* Construct a default transformer.
@ -113,7 +107,7 @@ public class FastFourierTransformer implements Serializable {
*/
public Complex[] transform(Complex f[])
throws IllegalArgumentException {
computeOmega(f.length);
roots.computeOmega(f.length);
return fft(f);
}
@ -171,7 +165,7 @@ public class FastFourierTransformer implements Serializable {
public Complex[] transform2(Complex f[])
throws IllegalArgumentException {
computeOmega(f.length);
roots.computeOmega(f.length);
double scaling_coefficient = 1.0 / Math.sqrt(f.length);
return scaleArray(fft(f), scaling_coefficient);
}
@ -230,7 +224,7 @@ public class FastFourierTransformer implements Serializable {
public Complex[] inversetransform(Complex f[])
throws IllegalArgumentException {
computeOmega(-f.length); // pass negative argument
roots.computeOmega(-f.length); // pass negative argument
double scaling_coefficient = 1.0 / f.length;
return scaleArray(fft(f), scaling_coefficient);
}
@ -289,7 +283,7 @@ public class FastFourierTransformer implements Serializable {
public Complex[] inversetransform2(Complex f[])
throws IllegalArgumentException {
computeOmega(-f.length); // pass negative argument
roots.computeOmega(-f.length); // pass negative argument
double scaling_coefficient = 1.0 / Math.sqrt(f.length);
return scaleArray(fft(f), scaling_coefficient);
}
@ -319,18 +313,20 @@ public class FastFourierTransformer implements Serializable {
for (int i = 0; i < N; i++) {
c[i] = new Complex(f[2*i], f[2*i+1]);
}
computeOmega(isInverse ? -N : N);
roots.computeOmega(isInverse ? -N : N);
Complex z[] = fft(c);
// reconstruct the FFT result for the original array
computeOmega(isInverse ? -2*N : 2*N);
roots.computeOmega(isInverse ? -2*N : 2*N);
F[0] = new Complex(2 * (z[0].getReal() + z[0].getImaginary()), 0.0);
F[N] = new Complex(2 * (z[0].getReal() - z[0].getImaginary()), 0.0);
for (int i = 1; i < N; i++) {
Complex A = z[N-i].conjugate();
Complex B = z[i].add(A);
Complex C = z[i].subtract(A);
Complex D = omega[i].multiply(Complex.I);
//Complex D = roots.getOmega(i).multiply(Complex.I);
Complex D = new Complex(-roots.getOmegaImaginary(i),
roots.getOmegaReal(i));
F[i] = B.subtract(C.multiply(D));
F[2*N-i] = F[i].conjugate();
}
@ -385,8 +381,8 @@ public class FastFourierTransformer implements Serializable {
f[i] = A.add(B);
f[i+2] = A.subtract(B);
// omegaCount indicates forward or inverse transform
f[i+1] = omegaCount < 0 ? E : F;
f[i+3] = omegaCount > 0 ? E : F;
f[i+1] = roots.isForward() ? F : E;
f[i+3] = roots.isForward() ? E : F;
}
// iterations from bottom to top take O(N*logN) time
@ -394,7 +390,17 @@ public class FastFourierTransformer implements Serializable {
m = N / (i<<1);
for (j = 0; j < N; j += i<<1) {
for (k = 0; k < i; k++) {
z = f[i+j+k].multiply(omega[k*m]);
//z = f[i+j+k].multiply(roots.getOmega(k*m));
final int k_times_m = k*m;
final double omega_k_times_m_real = roots.getOmegaReal(k_times_m);
final double omega_k_times_m_imaginary = roots.getOmegaImaginary(k_times_m);
//z = f[i+j+k].multiply(omega[k*m]);
z = new Complex(
f[i+j+k].getReal() * omega_k_times_m_real -
f[i+j+k].getImaginary() * omega_k_times_m_imaginary,
f[i+j+k].getReal() * omega_k_times_m_imaginary +
f[i+j+k].getImaginary() * omega_k_times_m_real);
f[i+j+k] = f[j+k].subtract(z);
f[j+k] = f[j+k].add(z);
}
@ -403,45 +409,6 @@ public class FastFourierTransformer implements Serializable {
return f;
}
/**
* Calculate the n-th roots of unity.
* <p>
* The computed omega[] = { 1, w, w^2, ... w^(n-1) } where
* w = exp(-2 \pi i / n), i = sqrt(-1). Note n is positive for
* forward transform and negative for inverse transform. </p>
*
* @param n the integer passed in
* @throws IllegalArgumentException if n = 0
*/
protected void computeOmega(int n)
throws IllegalArgumentException {
if (n == 0) {
throw MathRuntimeException.createIllegalArgumentException("cannot compute 0-th root of unity, indefinite result",
null);
}
// avoid repetitive calculations
if (n == omegaCount) { return; }
if (n + omegaCount == 0) {
for (int i = 0; i < Math.abs(omegaCount); i++) {
omega[i] = omega[i].conjugate();
}
omegaCount = n;
return;
}
// calculate everything from scratch
omega = new Complex[Math.abs(n)];
double t = 2.0 * Math.PI / n;
double cost = Math.cos(t);
double sint = Math.sin(t);
omega[0] = new Complex(1.0, 0.0);
for (int i = 1; i < Math.abs(n); i++) {
omega[i] = new Complex(
omega[i-1].getReal() * cost + omega[i-1].getImaginary() * sint,
omega[i-1].getImaginary() * cost - omega[i-1].getReal() * sint);
}
omegaCount = n;
}
/**
* Sample the given univariate real function on the given interval.
* <p>
@ -803,4 +770,143 @@ public class FastFourierTransformer implements Serializable {
}
}
}
/** Computes the n<sup>th</sup> roots of unity.
* A cache of already computed values is maintained.
*/
private static class RootsOfUnity {
private int omegaCount;
private double[] omegaReal;
private double[] omegaImaginaryForward;
private double[] omegaImaginaryInverse;
private boolean isForward;
public RootsOfUnity() {
omegaCount = 0;
omegaReal = null;
omegaImaginaryForward = null;
omegaImaginaryInverse = null;
isForward = true;
}
/**
* Check if computation has been done for forward or reverse transform.
* @return true if computation has been done for forward transform
* @throws IllegalStateException if no roots of unity have been computed yet
*/
public synchronized boolean isForward() throws IllegalStateException {
if (omegaCount == 0) {
throw MathRuntimeException.createIllegalStateException(
"roots of unity have not been computed yet",
null);
}
return isForward;
}
/** Computes the n<sup>th</sup> roots of unity.
* <p>The computed omega[] = { 1, w, w<sup>2</sup>, ... w<sup>(n-1)</sup> } where
* w = exp(-2 &pi; i / n), i = &sqrt;(-1).</p>
* <p>Note that n is positive for
* forward transform and negative for inverse transform.</p>
* @param n number of roots of unity to compute,
* positive for forward transform, negative for inverse transform
* @throws IllegalArgumentException if n = 0
*/
public synchronized void computeOmega(int n) throws IllegalArgumentException {
if (n == 0) {
throw MathRuntimeException.createIllegalArgumentException(
"cannot compute 0-th root of unity, indefinite result",
null);
}
isForward = (n > 0);
// avoid repetitive calculations
final int absN = Math.abs(n);
if (absN == omegaCount) {
return;
}
// calculate everything from scratch, for both forward and inverse versions
final double t = 2.0 * Math.PI / absN;
final double cosT = Math.cos(t);
final double sinT = Math.sin(t);
omegaReal = new double[absN];
omegaImaginaryForward = new double[absN];
omegaImaginaryInverse = new double[absN];
omegaReal[0] = 1.0;
omegaImaginaryForward[0] = 0.0;
omegaImaginaryInverse[0] = 0.0;
for (int i = 1; i < absN; i++) {
omegaReal[i] =
omegaReal[i-1] * cosT + omegaImaginaryForward[i-1] * sinT;
omegaImaginaryForward[i] =
omegaImaginaryForward[i-1] * cosT - omegaReal[i-1] * sinT;
omegaImaginaryInverse[i] = -omegaImaginaryForward[i];
}
omegaCount = absN;
}
/**
* Get the real part of the k<sup>th</sup> n<sup>th</sup> root of unity
* @param k index of the n<sup>th</sup> root of unity
* @return real part of the k<sup>th</sup> n<sup>th</sup> root of unity
* @throws IllegalStateException if no roots of unity have been computed yet
* @throws IllegalArgumentException if k is out of range
*/
public synchronized double getOmegaReal(int k)
throws IllegalStateException, IllegalArgumentException {
if (omegaCount == 0) {
throw MathRuntimeException.createIllegalStateException(
"roots of unity have not been computed yet",
null);
}
if ((k < 0) || (k >= omegaCount)) {
throw MathRuntimeException.createIllegalArgumentException(
"out of range root of unity index {0} (must be in [{1};{2}])",
new Object[] { k, 0, omegaCount - 1 });
}
return omegaReal[k];
}
/**
* Get the imaginary part of the k<sup>th</sup> n<sup>th</sup> root of unity
* @param k index of the n<sup>th</sup> root of unity
* @return imaginary part of the k<sup>th</sup> n<sup>th</sup> root of unity
* @throws IllegalStateException if no roots of unity have been computed yet
* @throws IllegalArgumentException if k is out of range
*/
public synchronized double getOmegaImaginary(int k)
throws IllegalStateException, IllegalArgumentException {
if (omegaCount == 0) {
throw MathRuntimeException.createIllegalStateException(
"roots of unity have not been computed yet",
null);
}
if ((k < 0) || (k >= omegaCount)) {
throw MathRuntimeException.createIllegalArgumentException(
"out of range root of unity index {0} (must be in [{1};{2}])",
new Object[] { k, 0, omegaCount - 1 });
}
return (isForward) ?
omegaImaginaryForward[k] : omegaImaginaryInverse[k];
}
}
}

View File

@ -39,6 +39,9 @@ The <action> type attribute can be add,update,fix,remove.
</properties>
<body>
<release version="2.0" date="TBD" description="TBD">
<action dev="luc" type="fix" issue="MATH-216" due-to="Cyril Briquet">
Improved fast Fourier transform efficiency.
</action>
<action dev="luc" type="add" >
Added factory methods to create Chebyshev, Hermite, Laguerre and Legendre polynomials.
</action>