diff --git a/src/main/java/org/apache/commons/math4/ode/nonstiff/AdamsBashforthFieldIntegrator.java b/src/main/java/org/apache/commons/math4/ode/nonstiff/AdamsBashforthFieldIntegrator.java
new file mode 100644
index 000000000..db6bf4f04
--- /dev/null
+++ b/src/main/java/org/apache/commons/math4/ode/nonstiff/AdamsBashforthFieldIntegrator.java
@@ -0,0 +1,374 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math4.ode.nonstiff;
+
+import org.apache.commons.math4.Field;
+import org.apache.commons.math4.RealFieldElement;
+import org.apache.commons.math4.exception.DimensionMismatchException;
+import org.apache.commons.math4.exception.MaxCountExceededException;
+import org.apache.commons.math4.exception.NoBracketingException;
+import org.apache.commons.math4.exception.NumberIsTooSmallException;
+import org.apache.commons.math4.linear.Array2DRowFieldMatrix;
+import org.apache.commons.math4.linear.FieldMatrix;
+import org.apache.commons.math4.ode.FieldExpandableODE;
+import org.apache.commons.math4.ode.FieldODEState;
+import org.apache.commons.math4.ode.FieldODEStateAndDerivative;
+import org.apache.commons.math4.util.MathArrays;
+
+
+/**
+ * This class implements explicit Adams-Bashforth integrators for Ordinary
+ * Differential Equations.
+ *
+ *
Adams-Bashforth methods (in fact due to Adams alone) are explicit
+ * multistep ODE solvers. This implementation is a variation of the classical
+ * one: it uses adaptive stepsize to implement error control, whereas
+ * classical implementations are fixed step size. The value of state vector
+ * at step n+1 is a simple combination of the value at step n and of the
+ * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
+ * steps one wants to use for computing the next value, different formulas
+ * are available:
+ *
+ * - k = 1: yn+1 = yn + h y'n
+ * - k = 2: yn+1 = yn + h (3y'n-y'n-1)/2
+ * - k = 3: yn+1 = yn + h (23y'n-16y'n-1+5y'n-2)/12
+ * - k = 4: yn+1 = yn + h (55y'n-59y'n-1+37y'n-2-9y'n-3)/24
+ * - ...
+ *
+ *
+ * A k-steps Adams-Bashforth method is of order k.
+ *
+ * Implementation details
+ *
+ * We define scaled derivatives si(n) at step n as:
+ *
+ * s1(n) = h y'n for first derivative
+ * s2(n) = h2/2 y''n for second derivative
+ * s3(n) = h3/6 y'''n for third derivative
+ * ...
+ * sk(n) = hk/k! y(k)n for kth derivative
+ *
+ *
+ * The definitions above use the classical representation with several previous first
+ * derivatives. Lets define
+ *
+ * qn = [ s1(n-1) s1(n-2) ... s1(n-(k-1)) ]T
+ *
+ * (we omit the k index in the notation for clarity). With these definitions,
+ * Adams-Bashforth methods can be written:
+ *
+ * - k = 1: yn+1 = yn + s1(n)
+ * - k = 2: yn+1 = yn + 3/2 s1(n) + [ -1/2 ] qn
+ * - k = 3: yn+1 = yn + 23/12 s1(n) + [ -16/12 5/12 ] qn
+ * - k = 4: yn+1 = yn + 55/24 s1(n) + [ -59/24 37/24 -9/24 ] qn
+ * - ...
+ *
+ *
+ * Instead of using the classical representation with first derivatives only (yn,
+ * s1(n) and qn), our implementation uses the Nordsieck vector with
+ * higher degrees scaled derivatives all taken at the same step (yn, s1(n)
+ * and rn) where rn is defined as:
+ *
+ * rn = [ s2(n), s3(n) ... sk(n) ]T
+ *
+ * (here again we omit the k index in the notation for clarity)
+ *
+ *
+ * Taylor series formulas show that for any index offset i, s1(n-i) can be
+ * computed from s1(n), s2(n) ... sk(n), the formula being exact
+ * for degree k polynomials.
+ *
+ * s1(n-i) = s1(n) + ∑j>0 (j+1) (-i)j sj+1(n)
+ *
+ * The previous formula can be used with several values for i to compute the transform between
+ * classical representation and Nordsieck vector. The transform between rn
+ * and qn resulting from the Taylor series formulas above is:
+ *
+ * qn = s1(n) u + P rn
+ *
+ * where u is the [ 1 1 ... 1 ]T vector and P is the (k-1)×(k-1) matrix built
+ * with the (j+1) (-i)j terms with i being the row number starting from 1 and j being
+ * the column number starting from 1:
+ *
+ * [ -2 3 -4 5 ... ]
+ * [ -4 12 -32 80 ... ]
+ * P = [ -6 27 -108 405 ... ]
+ * [ -8 48 -256 1280 ... ]
+ * [ ... ]
+ *
+ *
+ * Using the Nordsieck vector has several advantages:
+ *
+ * - it greatly simplifies step interpolation as the interpolator mainly applies
+ * Taylor series formulas,
+ * - it simplifies step changes that occur when discrete events that truncate
+ * the step are triggered,
+ * - it allows to extend the methods in order to support adaptive stepsize.
+ *
+ *
+ * The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
+ *
+ * - yn+1 = yn + s1(n) + uT rn
+ * - s1(n+1) = h f(tn+1, yn+1)
+ * - rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
+ *
+ * where A is a rows shifting matrix (the lower left part is an identity matrix):
+ *
+ * [ 0 0 ... 0 0 | 0 ]
+ * [ ---------------+---]
+ * [ 1 0 ... 0 0 | 0 ]
+ * A = [ 0 1 ... 0 0 | 0 ]
+ * [ ... | 0 ]
+ * [ 0 0 ... 1 0 | 0 ]
+ * [ 0 0 ... 0 1 | 0 ]
+ *
+ *
+ * The P-1u vector and the P-1 A P matrix do not depend on the state,
+ * they only depend on k and therefore are precomputed once for all.
+ *
+ * @param the type of the field elements
+ * @since 3.6
+ */
+public class AdamsBashforthFieldIntegrator> extends AdamsFieldIntegrator {
+
+ /** Integrator method name. */
+ private static final String METHOD_NAME = "Adams-Bashforth";
+
+ /**
+ * Build an Adams-Bashforth integrator with the given order and step control parameters.
+ * @param field field to which the time and state vector elements belong
+ * @param nSteps number of steps of the method excluding the one being computed
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param scalAbsoluteTolerance allowed absolute error
+ * @param scalRelativeTolerance allowed relative error
+ * @exception NumberIsTooSmallException if order is 1 or less
+ */
+ public AdamsBashforthFieldIntegrator(final Field field, final int nSteps,
+ final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance,
+ final double scalRelativeTolerance)
+ throws NumberIsTooSmallException {
+ super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
+ scalAbsoluteTolerance, scalRelativeTolerance);
+ }
+
+ /**
+ * Build an Adams-Bashforth integrator with the given order and step control parameters.
+ * @param field field to which the time and state vector elements belong
+ * @param nSteps number of steps of the method excluding the one being computed
+ * @param minStep minimal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param maxStep maximal step (sign is irrelevant, regardless of
+ * integration direction, forward or backward), the last step can
+ * be smaller than this
+ * @param vecAbsoluteTolerance allowed absolute error
+ * @param vecRelativeTolerance allowed relative error
+ * @exception IllegalArgumentException if order is 1 or less
+ */
+ public AdamsBashforthFieldIntegrator(final Field field, final int nSteps,
+ final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance,
+ final double[] vecRelativeTolerance)
+ throws IllegalArgumentException {
+ super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
+ vecAbsoluteTolerance, vecRelativeTolerance);
+ }
+
+ /** Estimate error.
+ *
+ * Error is estimated by interpolating back to previous state using
+ * the state Taylor expansion and comparing to real previous state.
+ *
+ * @param previousState state vector at step start
+ * @param predictedState predicted state vector at step end
+ * @param predictedScaled predicted value of the scaled derivatives at step end
+ * @param predictedNordsieck predicted value of the Nordsieck vector at step end
+ * @return estimated normalized local discretization error
+ */
+ private T errorEstimation(final T[] previousState,
+ final T[] predictedState,
+ final T[] predictedScaled,
+ final FieldMatrix predictedNordsieck) {
+
+ T error = getField().getZero();
+ for (int i = 0; i < mainSetDimension; ++i) {
+ final T yScale = predictedState[i].abs();
+ final T tol = (vecAbsoluteTolerance == null) ?
+ yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) :
+ yScale.multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
+
+ // apply Taylor formula from high order to low order,
+ // for the sake of numerical accuracy
+ T variation = getField().getZero();
+ int sign = predictedNordsieck.getRowDimension() % 2 == 0 ? -1 : 1;
+ for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) {
+ variation = variation.add(predictedNordsieck.getEntry(k, i).multiply(sign));
+ sign = -sign;
+ }
+ variation = variation.subtract(predictedScaled[i]);
+
+ final T ratio = predictedState[i].subtract(previousState[i]).add(variation).divide(tol);
+ error = error.add(ratio.multiply(ratio));
+
+ }
+
+ return error.divide(mainSetDimension).sqrt();
+
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public FieldODEStateAndDerivative integrate(final FieldExpandableODE equations,
+ final FieldODEState initialState,
+ final T finalTime)
+ throws NumberIsTooSmallException, DimensionMismatchException,
+ MaxCountExceededException, NoBracketingException {
+
+ sanityChecks(initialState, finalTime);
+ final T t0 = initialState.getTime();
+ final T[] y = equations.getMapper().mapState(initialState);
+ setStepStart(initIntegration(equations, t0, y, finalTime));
+ final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
+
+ // compute the initial Nordsieck vector using the configured starter integrator
+ start(equations, getStepStart(), finalTime);
+
+ // reuse the step that was chosen by the starter integrator
+ AdamsFieldStepInterpolator interpolator =
+ new AdamsFieldStepInterpolator(getStepSize(), getStepStart(), scaled, nordsieck,
+ forward, equations.getMapper());
+
+ // main integration loop
+ setIsLastStep(false);
+ do {
+
+ T[] predictedY = null;
+ final T[] predictedScaled = MathArrays.buildArray(getField(), y.length);
+ Array2DRowFieldMatrix predictedNordsieck = null;
+ T error = getField().getZero().add(10);
+ while (error.subtract(1.0).getReal() >= 0.0) {
+
+ // predict a first estimate of the state at step end
+ final FieldODEStateAndDerivative stepEnd = interpolator.getCurrentState();
+ predictedY = stepEnd.getState();
+
+ // evaluate the derivative
+ final T[] yDot = computeDerivatives(stepEnd.getTime(), predictedY);
+
+ // predict Nordsieck vector at step end
+ for (int j = 0; j < predictedScaled.length; ++j) {
+ predictedScaled[j] = getStepSize().multiply(yDot[j]);
+ }
+ predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck);
+ updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck);
+
+ // evaluate error
+ error = errorEstimation(y, predictedY, predictedScaled, predictedNordsieck);
+
+ if (error.subtract(1.0).getReal() >= 0.0) {
+ // reject the step and attempt to reduce error by stepsize control
+ final T factor = computeStepGrowShrinkFactor(error);
+ rescale(filterStep(getStepSize().multiply(factor), forward, false));
+ interpolator = new AdamsFieldStepInterpolator(getStepSize(), getStepStart(), scaled, nordsieck,
+ forward, equations.getMapper());
+
+ }
+ }
+
+ // discrete events handling
+ System.arraycopy(predictedY, 0, y, 0, y.length);
+ setStepStart(acceptStep(interpolator, finalTime));
+ scaled = predictedScaled;
+ nordsieck = predictedNordsieck;
+
+ if (!isLastStep()) {
+
+ if (resetOccurred()) {
+ // some events handler has triggered changes that
+ // invalidate the derivatives, we need to restart from scratch
+ start(equations, getStepStart(), finalTime);
+ interpolator = new AdamsFieldStepInterpolator(getStepSize(), getStepStart(), scaled, nordsieck,
+ forward, equations.getMapper());
+ }
+
+ // stepsize control for next step
+ final T factor = computeStepGrowShrinkFactor(error);
+ final T scaledH = getStepSize().multiply(factor);
+ final T nextT = getStepStart().getTime().add(scaledH);
+ final boolean nextIsLast = forward ?
+ nextT.subtract(finalTime).getReal() >= 0 :
+ nextT.subtract(finalTime).getReal() <= 0;
+ T hNew = filterStep(scaledH, forward, nextIsLast);
+
+ final T filteredNextT = getStepStart().getTime().add(hNew);
+ final boolean filteredNextIsLast = forward ?
+ filteredNextT.subtract(finalTime).getReal() >= 0 :
+ filteredNextT.subtract(finalTime).getReal() <= 0;
+ if (filteredNextIsLast) {
+ hNew = finalTime.subtract(getStepStart().getTime());
+ }
+
+ rescale(hNew);
+ interpolator = new AdamsFieldStepInterpolator(getStepSize(), getStepStart(), scaled, nordsieck,
+ forward, equations.getMapper());
+
+ }
+
+ } while (!isLastStep());
+
+ final FieldODEStateAndDerivative finalState = getStepStart();
+ setStepStart(null);
+ setStepSize(null);
+ return finalState;
+
+ }
+
+ /** Rescale the instance.
+ * Since the scaled and Nordsieck arrays are shared with the caller,
+ * this method has the side effect of rescaling this arrays in the caller too.
+ * @param newStepSize new step size to use in the scaled and Nordsieck arrays
+ */
+ public void rescale(final T newStepSize) {
+
+ final T ratio = newStepSize.divide(getStepSize());
+ for (int i = 0; i < scaled.length; ++i) {
+ scaled[i] = scaled[i].multiply(ratio);
+ }
+
+ final T[][] nData = nordsieck.getDataRef();
+ T power = ratio;
+ for (int i = 0; i < nData.length; ++i) {
+ power = power.multiply(ratio);
+ final T[] nDataI = nData[i];
+ for (int j = 0; j < nDataI.length; ++j) {
+ nDataI[j] = nDataI[j].multiply(power);
+ }
+ }
+
+ setStepSize(newStepSize);
+
+ }
+
+
+}
diff --git a/src/test/java/org/apache/commons/math4/ode/nonstiff/AdamsBashforthFieldIntegratorTest.java b/src/test/java/org/apache/commons/math4/ode/nonstiff/AdamsBashforthFieldIntegratorTest.java
new file mode 100644
index 000000000..408e64692
--- /dev/null
+++ b/src/test/java/org/apache/commons/math4/ode/nonstiff/AdamsBashforthFieldIntegratorTest.java
@@ -0,0 +1,78 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math4.ode.nonstiff;
+
+
+import org.apache.commons.math4.Field;
+import org.apache.commons.math4.RealFieldElement;
+import org.apache.commons.math4.exception.MathIllegalStateException;
+import org.apache.commons.math4.exception.MaxCountExceededException;
+import org.apache.commons.math4.exception.NumberIsTooSmallException;
+import org.apache.commons.math4.util.Decimal64Field;
+import org.junit.Test;
+
+public class AdamsBashforthFieldIntegratorTest extends AbstractAdamsFieldIntegratorTest {
+
+ protected > AdamsFieldIntegrator
+ createIntegrator(Field field, final int nSteps, final double minStep, final double maxStep,
+ final double scalAbsoluteTolerance, final double scalRelativeTolerance) {
+ return new AdamsBashforthFieldIntegrator(field, nSteps, minStep, maxStep,
+ scalAbsoluteTolerance, scalRelativeTolerance);
+ }
+
+ protected > AdamsFieldIntegrator
+ createIntegrator(Field field, final int nSteps, final double minStep, final double maxStep,
+ final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) {
+ return new AdamsBashforthFieldIntegrator(field, nSteps, minStep, maxStep,
+ vecAbsoluteTolerance, vecRelativeTolerance);
+ }
+
+ @Test(expected=NumberIsTooSmallException.class)
+ public void testMinStep() {
+ doDimensionCheck(Decimal64Field.getInstance());
+ }
+
+ @Test
+ public void testIncreasingTolerance() {
+ // the 7 and 121 factors are only valid for this test
+ // and has been obtained from trial and error
+ // there are no general relationship between local and global errors
+ doTestIncreasingTolerance(Decimal64Field.getInstance(), 7, 121);
+ }
+
+ @Test(expected = MaxCountExceededException.class)
+ public void exceedMaxEvaluations() {
+ doExceedMaxEvaluations(Decimal64Field.getInstance());
+ }
+
+ @Test
+ public void backward() {
+ doBackward(Decimal64Field.getInstance(), 4.3e-8, 4.3e-8, 1.0e-16, "Adams-Bashforth");
+ }
+
+ @Test
+ public void polynomial() {
+ doPolynomial(Decimal64Field.getInstance(), 5, 0.004, 6.0e-10);
+ }
+
+ @Test(expected=MathIllegalStateException.class)
+ public void testStartFailure() {
+ doTestStartFailure(Decimal64Field.getInstance());
+ }
+
+}