Changed deprecated MathRuntimeException in package stat.regression

JIRA: MATH-459

git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1239842 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
Thomas Neidhart 2012-02-02 21:02:54 +00:00
parent ab3935c4c9
commit 3109c12ec8
2 changed files with 60 additions and 57 deletions

View File

@ -16,8 +16,13 @@
*/ */
package org.apache.commons.math.stat.regression; package org.apache.commons.math.stat.regression;
import org.apache.commons.math.MathRuntimeException; import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.exception.MathIllegalArgumentException;
import org.apache.commons.math.exception.NoDataException;
import org.apache.commons.math.exception.NullArgumentException;
import org.apache.commons.math.exception.NumberIsTooSmallException;
import org.apache.commons.math.exception.util.LocalizedFormats; import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.linear.NonSquareMatrixException;
import org.apache.commons.math.linear.RealMatrix; import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.linear.Array2DRowRealMatrix; import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.RealVector; import org.apache.commons.math.linear.RealVector;
@ -87,20 +92,21 @@ public abstract class AbstractMultipleLinearRegression implements
* @param data input data array * @param data input data array
* @param nobs number of observations (rows) * @param nobs number of observations (rows)
* @param nvars number of independent variables (columns, not counting y) * @param nvars number of independent variables (columns, not counting y)
* @throws IllegalArgumentException if the preconditions are not met * @throws NullArgumentException if the data array is null
* @throws DimensionMismatchException if the length of the data array is not equal
* to <code>nobs * (nvars + 1)</code>
* @throws NumberIsTooSmallException if <code>nobs</code> is smaller than
* <code>nvars</code>
*/ */
public void newSampleData(double[] data, int nobs, int nvars) { public void newSampleData(double[] data, int nobs, int nvars) {
if (data == null) { if (data == null) {
throw MathRuntimeException.createIllegalArgumentException( throw new NullArgumentException();
LocalizedFormats.NULL_NOT_ALLOWED);
} }
if (data.length != nobs * (nvars + 1)) { if (data.length != nobs * (nvars + 1)) {
throw MathRuntimeException.createIllegalArgumentException( throw new DimensionMismatchException(data.length, nobs * (nvars + 1));
LocalizedFormats.INVALID_REGRESSION_ARRAY, data.length, nobs, nvars);
} }
if (nobs <= nvars) { if (nobs <= nvars) {
throw MathRuntimeException.createIllegalArgumentException( throw new NumberIsTooSmallException(nobs, nvars, false);
LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS);
} }
double[] y = new double[nobs]; double[] y = new double[nobs];
final int cols = noIntercept ? nvars: nvars + 1; final int cols = noIntercept ? nvars: nvars + 1;
@ -123,16 +129,15 @@ public abstract class AbstractMultipleLinearRegression implements
* Loads new y sample data, overriding any previous data. * Loads new y sample data, overriding any previous data.
* *
* @param y the array representing the y sample * @param y the array representing the y sample
* @throws IllegalArgumentException if y is null or empty * @throws NullArgumentException if y is null
* @throws NoDataException if y is empty
*/ */
protected void newYSampleData(double[] y) { protected void newYSampleData(double[] y) {
if (y == null) { if (y == null) {
throw MathRuntimeException.createIllegalArgumentException( throw new NullArgumentException();
LocalizedFormats.NULL_NOT_ALLOWED);
} }
if (y.length == 0) { if (y.length == 0) {
throw MathRuntimeException.createIllegalArgumentException( throw new NoDataException();
LocalizedFormats.NO_DATA);
} }
this.Y = new ArrayRealVector(y); this.Y = new ArrayRealVector(y);
} }
@ -158,16 +163,16 @@ public abstract class AbstractMultipleLinearRegression implements
* specifying a model including an intercept term. * specifying a model including an intercept term.
* </p> * </p>
* @param x the rectangular array representing the x sample * @param x the rectangular array representing the x sample
* @throws IllegalArgumentException if x is null, empty or not rectangular * @throws NullArgumentException if x is null
* @throws NoDataException if x is empty
* @throws DimensionMismatchException if x is not rectangular
*/ */
protected void newXSampleData(double[][] x) { protected void newXSampleData(double[][] x) {
if (x == null) { if (x == null) {
throw MathRuntimeException.createIllegalArgumentException( throw new NullArgumentException();
LocalizedFormats.NULL_NOT_ALLOWED);
} }
if (x.length == 0) { if (x.length == 0) {
throw MathRuntimeException.createIllegalArgumentException( throw new NoDataException();
LocalizedFormats.NO_DATA);
} }
if (noIntercept) { if (noIntercept) {
this.X = new Array2DRowRealMatrix(x, true); this.X = new Array2DRowRealMatrix(x, true);
@ -176,9 +181,7 @@ public abstract class AbstractMultipleLinearRegression implements
final double[][] xAug = new double[x.length][nVars + 1]; final double[][] xAug = new double[x.length][nVars + 1];
for (int i = 0; i < x.length; i++) { for (int i = 0; i < x.length; i++) {
if (x[i].length != nVars) { if (x[i].length != nVars) {
throw MathRuntimeException.createIllegalArgumentException( throw new DimensionMismatchException(x[i].length, nVars);
LocalizedFormats.DIFFERENT_ROWS_LENGTHS,
x[i].length, nVars);
} }
xAug[i][0] = 1.0d; xAug[i][0] = 1.0d;
System.arraycopy(x[i], 0, xAug[i], 1, nVars); System.arraycopy(x[i], 0, xAug[i], 1, nVars);
@ -198,22 +201,25 @@ public abstract class AbstractMultipleLinearRegression implements
* *
* @param x the [n,k] array representing the x data * @param x the [n,k] array representing the x data
* @param y the [n,1] array representing the y data * @param y the [n,1] array representing the y data
* @throws IllegalArgumentException if any of the checks fail * @throws NullArgumentException if {@code x} or {@code y} is null
* * @throws DimensionMismatchException if {@code x} and {@code y} do not
* have the same length
* @throws NoDataException if {@code x} or {@code y} are zero-length
* @throws MathIllegalArgumentException if the number of rows of {@code x}
* is not larger than the number of columns + 1
*/ */
protected void validateSampleData(double[][] x, double[] y) { protected void validateSampleData(double[][] x, double[] y) {
if ((x == null) || (y == null) || (x.length != y.length)) { if ((x == null) || (y == null)) {
throw MathRuntimeException.createIllegalArgumentException( throw new NullArgumentException();
LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, }
(x == null) ? 0 : x.length, if (x.length != y.length) {
(y == null) ? 0 : y.length); throw new DimensionMismatchException(y.length, x.length);
} }
if (x.length == 0) { // Must be no y data either if (x.length == 0) { // Must be no y data either
throw MathRuntimeException.createIllegalArgumentException( throw new NoDataException();
LocalizedFormats.NO_DATA);
} }
if (x[0].length + 1 > x.length) { if (x[0].length + 1 > x.length) {
throw MathRuntimeException.createIllegalArgumentException( throw new MathIllegalArgumentException(
LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS, LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS,
x.length, x[0].length); x.length, x[0].length);
} }
@ -225,18 +231,16 @@ public abstract class AbstractMultipleLinearRegression implements
* *
* @param x the [n,k] array representing the x sample * @param x the [n,k] array representing the x sample
* @param covariance the [n,n] array representing the covariance matrix * @param covariance the [n,n] array representing the covariance matrix
* @throws IllegalArgumentException if the number of rows in x is not equal * @throws DimensionMismatchException if the number of rows in x is not equal
* to the number of rows in covariance or covariance is not square. * to the number of rows in covariance
* @throws NonSquareMatrixException if the covariance matrix is not square
*/ */
protected void validateCovarianceData(double[][] x, double[][] covariance) { protected void validateCovarianceData(double[][] x, double[][] covariance) {
if (x.length != covariance.length) { if (x.length != covariance.length) {
throw MathRuntimeException.createIllegalArgumentException( throw new DimensionMismatchException(x.length, covariance.length);
LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, x.length, covariance.length);
} }
if (covariance.length > 0 && covariance.length != covariance[0].length) { if (covariance.length > 0 && covariance.length != covariance[0].length) {
throw MathRuntimeException.createIllegalArgumentException( throw new NonSquareMatrixException(covariance.length, covariance[0].length);
LocalizedFormats.NON_SQUARE_MATRIX,
covariance.length, covariance[0].length);
} }
} }

View File

@ -18,7 +18,6 @@
package org.apache.commons.math.stat.regression; package org.apache.commons.math.stat.regression;
import java.io.Serializable; import java.io.Serializable;
import org.apache.commons.math.MathException;
import org.apache.commons.math.exception.OutOfRangeException; import org.apache.commons.math.exception.OutOfRangeException;
import org.apache.commons.math.distribution.TDistribution; import org.apache.commons.math.distribution.TDistribution;
import org.apache.commons.math.exception.MathIllegalArgumentException; import org.apache.commons.math.exception.MathIllegalArgumentException;
@ -137,7 +136,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
} else { } else {
if( hasIntercept ){ if( hasIntercept ){
final double fact1 = 1.0 + n; final double fact1 = 1.0 + n;
final double fact2 = (n) / (1.0 + n); final double fact2 = n / (1.0 + n);
final double dx = x - xbar; final double dx = x - xbar;
final double dy = y - ybar; final double dy = y - ybar;
sumXX += dx * dx * fact2; sumXX += dx * dx * fact2;
@ -176,7 +175,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
if (n > 0) { if (n > 0) {
if (hasIntercept) { if (hasIntercept) {
final double fact1 = n - 1.0; final double fact1 = n - 1.0;
final double fact2 = (n) / (n - 1.0); final double fact2 = n / (n - 1.0);
final double dx = x - xbar; final double dx = x - xbar;
final double dy = y - ybar; final double dy = y - ybar;
sumXX -= dx * dx * fact2; sumXX -= dx * dx * fact2;
@ -609,9 +608,9 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* Bivariate Normal Distribution</a>.</p> * Bivariate Normal Distribution</a>.</p>
* *
* @return half-width of 95% confidence interval for the slope estimate * @return half-width of 95% confidence interval for the slope estimate
* @throws MathException if the confidence interval can not be computed. * @throws OutOfRangeException if the confidence interval can not be computed.
*/ */
public double getSlopeConfidenceInterval() throws MathException { public double getSlopeConfidenceInterval() {
return getSlopeConfidenceInterval(0.05d); return getSlopeConfidenceInterval(0.05d);
} }
@ -639,15 +638,14 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* <code>Double.NaN</code>. * <code>Double.NaN</code>.
* </li> * </li>
* <li><code>(0 < alpha < 1)</code>; otherwise an * <li><code>(0 < alpha < 1)</code>; otherwise an
* <code>IllegalArgumentException</code> is thrown. * <code>OutOfRangeException</code> is thrown.
* </li></ul></p> * </li></ul></p>
* *
* @param alpha the desired significance level * @param alpha the desired significance level
* @return half-width of 95% confidence interval for the slope estimate * @return half-width of 95% confidence interval for the slope estimate
* @throws MathException if the confidence interval can not be computed. * @throws OutOfRangeException if the confidence interval can not be computed.
*/ */
public double getSlopeConfidenceInterval(final double alpha) public double getSlopeConfidenceInterval(final double alpha) {
throws MathException {
if (alpha >= 1 || alpha <= 0) { if (alpha >= 1 || alpha <= 0) {
throw new OutOfRangeException(LocalizedFormats.SIGNIFICANCE_LEVEL, throw new OutOfRangeException(LocalizedFormats.SIGNIFICANCE_LEVEL,
alpha, 0, 1); alpha, 0, 1);
@ -676,9 +674,10 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
* <code>Double.NaN</code>.</p> * <code>Double.NaN</code>.</p>
* *
* @return significance level for slope/correlation * @return significance level for slope/correlation
* @throws MathException if the significance level can not be computed. * @throws org.apache.commons.math.exception.MaxCountExceededException
* if the significance level can not be computed.
*/ */
public double getSignificance() throws MathException { public double getSignificance() {
TDistribution distribution = new TDistribution(n - 2); TDistribution distribution = new TDistribution(n - 2);
return 2d * (1.0 - distribution.cumulativeProbability( return 2d * (1.0 - distribution.cumulativeProbability(
FastMath.abs(getSlope()) / getSlopeStdErr())); FastMath.abs(getSlope()) / getSlopeStdErr()));
@ -724,16 +723,16 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
if( FastMath.abs( sumXX ) > Precision.SAFE_MIN ){ if( FastMath.abs( sumXX ) > Precision.SAFE_MIN ){
final double[] params = new double[]{ getIntercept(), getSlope() }; final double[] params = new double[]{ getIntercept(), getSlope() };
final double mse = getMeanSquareError(); final double mse = getMeanSquareError();
final double _syy = sumYY + sumY * sumY / (n); final double _syy = sumYY + sumY * sumY / n;
final double[] vcv = new double[]{ final double[] vcv = new double[]{
mse * (xbar *xbar /sumXX + 1.0 / (n)), mse * (xbar *xbar /sumXX + 1.0 / n),
-xbar*mse/sumXX, -xbar*mse/sumXX,
mse/sumXX }; mse/sumXX };
return new RegressionResults( return new RegressionResults(
params, new double[][]{vcv}, true, n, 2, params, new double[][]{vcv}, true, n, 2,
sumY, _syy, getSumSquaredErrors(),true,false); sumY, _syy, getSumSquaredErrors(),true,false);
}else{ }else{
final double[] params = new double[]{ sumY/(n), Double.NaN }; final double[] params = new double[]{ sumY / n, Double.NaN };
//final double mse = getMeanSquareError(); //final double mse = getMeanSquareError();
final double[] vcv = new double[]{ final double[] vcv = new double[]{
ybar / (n - 1.0), ybar / (n - 1.0),
@ -797,7 +796,7 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
if( variablesToInclude[0] != 1 && variablesToInclude[0] != 0 ){ if( variablesToInclude[0] != 1 && variablesToInclude[0] != 0 ){
throw new OutOfRangeException( variablesToInclude[0],0,1 ); throw new OutOfRangeException( variablesToInclude[0],0,1 );
} }
final double _mean = sumY * sumY / (n); final double _mean = sumY * sumY / n;
final double _syy = sumYY + _mean; final double _syy = sumYY + _mean;
if( variablesToInclude[0] == 0 ){ if( variablesToInclude[0] == 0 ){
//just the mean //just the mean
@ -809,8 +808,8 @@ public class SimpleRegression implements Serializable, UpdatingMultipleLinearReg
}else if( variablesToInclude[0] == 1){ }else if( variablesToInclude[0] == 1){
//final double _syy = sumYY + sumY * sumY / ((double) n); //final double _syy = sumYY + sumY * sumY / ((double) n);
final double _sxx = sumXX + sumX * sumX / (n); final double _sxx = sumXX + sumX * sumX / n;
final double _sxy = sumXY + sumX * sumY / (n); final double _sxy = sumXY + sumX * sumY / n;
final double _sse = FastMath.max(0d, _syy - _sxy * _sxy / _sxx); final double _sse = FastMath.max(0d, _syy - _sxy * _sxy / _sxx);
final double _mse = _sse/((n-1)); final double _mse = _sse/((n-1));
if( !Double.isNaN(_sxx) ){ if( !Double.isNaN(_sxx) ){