From 32354a1039ceccd4a6a71baea3329b27dff7a124 Mon Sep 17 00:00:00 2001
From: Sebastien Brisard
Date: Sat, 26 Nov 2011 06:17:49 +0000
Subject: [PATCH] - Merged ExponentialDistribution and
ExponentialDistributionImpl (MATH-711). - Merged FDistribution and
FDistributionImpl (MATH-711). - Merged GammaDistribution and
GammaDistributionImpl (MATH-711).
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1206399 13f79535-47bb-0310-9956-ffa450edef68
---
.../distribution/ChiSquaredDistribution.java | 428 +++++++++---------
.../distribution/ExponentialDistribution.java | 232 +++++++++-
.../ExponentialDistributionImpl.java | 279 ------------
.../math/distribution/FDistribution.java | 268 ++++++++++-
.../math/distribution/FDistributionImpl.java | 318 -------------
.../math/distribution/GammaDistribution.java | 259 ++++++++++-
.../distribution/GammaDistributionImpl.java | 297 ------------
.../commons/math/random/RandomDataImpl.java | 8 +-
.../math/stat/inference/OneWayAnovaImpl.java | 3 +-
.../ExponentialDistributionTest.java | 16 +-
.../math/distribution/FDistributionTest.java | 26 +-
.../distribution/GammaDistributionTest.java | 22 +-
.../commons/math/random/RandomDataTest.java | 16 +-
13 files changed, 977 insertions(+), 1195 deletions(-)
delete mode 100644 src/main/java/org/apache/commons/math/distribution/ExponentialDistributionImpl.java
delete mode 100644 src/main/java/org/apache/commons/math/distribution/FDistributionImpl.java
delete mode 100644 src/main/java/org/apache/commons/math/distribution/GammaDistributionImpl.java
diff --git a/src/main/java/org/apache/commons/math/distribution/ChiSquaredDistribution.java b/src/main/java/org/apache/commons/math/distribution/ChiSquaredDistribution.java
index 15c3cc728..efcd955f5 100644
--- a/src/main/java/org/apache/commons/math/distribution/ChiSquaredDistribution.java
+++ b/src/main/java/org/apache/commons/math/distribution/ChiSquaredDistribution.java
@@ -1,214 +1,214 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math.distribution;
-
-import java.io.Serializable;
-
-
-/**
- * Implementation of the chi-squared distribution.
- *
- * @see Chi-squared distribution (Wikipedia)
- * @see Chi-squared Distribution (MathWorld)
- * @version $Id$
- */
-public class ChiSquaredDistribution
- extends AbstractContinuousDistribution
- implements Serializable {
- /**
- * Default inverse cumulative probability accuracy
- * @since 2.1
- */
- public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier */
- private static final long serialVersionUID = -8352658048349159782L;
- /** Internal Gamma distribution. */
- private final GammaDistribution gamma;
- /** Inverse cumulative probability accuracy */
- private final double solverAbsoluteAccuracy;
-
- /**
- * Create a Chi-Squared distribution with the given degrees of freedom.
- *
- * @param degreesOfFreedom Degrees of freedom.
- */
- public ChiSquaredDistribution(double degreesOfFreedom) {
- this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
-
- /**
- * Create a Chi-Squared distribution with the given degrees of freedom and
- * inverse cumulative probability accuracy.
- *
- * @param degreesOfFreedom Degrees of freedom.
- * @param inverseCumAccuracy the maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @since 2.1
- */
- public ChiSquaredDistribution(double degreesOfFreedom,
- double inverseCumAccuracy) {
- gamma = new GammaDistributionImpl(degreesOfFreedom / 2, 2);
- solverAbsoluteAccuracy = inverseCumAccuracy;
- }
-
- /**
- * Access the number of degrees of freedom.
- *
- * @return the degrees of freedom.
- */
- public double getDegreesOfFreedom() {
- return gamma.getAlpha() * 2.0;
- }
-
- /** {@inheritDoc} */
- public double density(double x) {
- return gamma.density(x);
- }
-
- /** {@inheritDoc} */
- public double cumulativeProbability(double x) {
- return gamma.cumulativeProbability(x);
- }
-
- /**
- * {@inheritDoc}
- *
- * Returns {@code 0} when {@code p == 0} and
- * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
- */
- @Override
- public double inverseCumulativeProbability(final double p) {
- if (p == 0) {
- return 0d;
- }
- if (p == 1) {
- return Double.POSITIVE_INFINITY;
- }
- return super.inverseCumulativeProbability(p);
- }
-
- /** {@inheritDoc} */
- @Override
- protected double getDomainLowerBound(double p) {
- return Double.MIN_VALUE * gamma.getBeta();
- }
-
- /** {@inheritDoc} */
- @Override
- protected double getDomainUpperBound(double p) {
- // NOTE: chi squared is skewed to the left
- // NOTE: therefore, P(X < μ) > .5
-
- double ret;
-
- if (p < .5) {
- // use mean
- ret = getDegreesOfFreedom();
- } else {
- // use max
- ret = Double.MAX_VALUE;
- }
-
- return ret;
- }
-
- /** {@inheritDoc} */
- @Override
- protected double getInitialDomain(double p) {
- // NOTE: chi squared is skewed to the left
- // NOTE: therefore, P(X < μ) > 0.5
-
- double ret;
-
- if (p < 0.5) {
- // use 1/2 mean
- ret = getDegreesOfFreedom() * 0.5;
- } else {
- // use mean
- ret = getDegreesOfFreedom();
- }
-
- return ret;
- }
-
- /** {@inheritDoc} */
- @Override
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
-
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the
- * degrees of freedom.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
-
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity no matter the
- * degrees of freedom.
- *
- * @return upper bound of the support (always Double.POSITIVE_INFINITY)
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
-
- /**
- * {@inheritDoc}
- *
- * For {@code k} degrees of freedom, the mean is {@code k}.
- */
- @Override
- protected double calculateNumericalMean() {
- return getDegreesOfFreedom();
- }
-
- /**
- * {@inheritDoc}
- *
- * For {@code k} degrees of freedom, the variance is {@code 2 * k}.
- *
- * @return {@inheritDoc}
- */
- @Override
- protected double calculateNumericalVariance() {
- return 2*getDegreesOfFreedom();
- }
-
- /** {@inheritDoc} */
- @Override
- public boolean isSupportLowerBoundInclusive() {
- return true;
- }
-
- /** {@inheritDoc} */
- @Override
- public boolean isSupportUpperBoundInclusive() {
- return false;
- }
-}
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math.distribution;
+
+import java.io.Serializable;
+
+
+/**
+ * Implementation of the chi-squared distribution.
+ *
+ * @see Chi-squared distribution (Wikipedia)
+ * @see Chi-squared Distribution (MathWorld)
+ * @version $Id: ChiSquaredDistribution.java 1206060 2011-11-25 05:16:56Z celestin $
+ */
+public class ChiSquaredDistribution
+ extends AbstractContinuousDistribution
+ implements Serializable {
+ /**
+ * Default inverse cumulative probability accuracy
+ * @since 2.1
+ */
+ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
+ /** Serializable version identifier */
+ private static final long serialVersionUID = -8352658048349159782L;
+ /** Internal Gamma distribution. */
+ private final GammaDistribution gamma;
+ /** Inverse cumulative probability accuracy */
+ private final double solverAbsoluteAccuracy;
+
+ /**
+ * Create a Chi-Squared distribution with the given degrees of freedom.
+ *
+ * @param degreesOfFreedom Degrees of freedom.
+ */
+ public ChiSquaredDistribution(double degreesOfFreedom) {
+ this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Create a Chi-Squared distribution with the given degrees of freedom and
+ * inverse cumulative probability accuracy.
+ *
+ * @param degreesOfFreedom Degrees of freedom.
+ * @param inverseCumAccuracy the maximum absolute error in inverse
+ * cumulative probability estimates (defaults to
+ * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
+ * @since 2.1
+ */
+ public ChiSquaredDistribution(double degreesOfFreedom,
+ double inverseCumAccuracy) {
+ gamma = new GammaDistribution(degreesOfFreedom / 2, 2);
+ solverAbsoluteAccuracy = inverseCumAccuracy;
+ }
+
+ /**
+ * Access the number of degrees of freedom.
+ *
+ * @return the degrees of freedom.
+ */
+ public double getDegreesOfFreedom() {
+ return gamma.getAlpha() * 2.0;
+ }
+
+ /** {@inheritDoc} */
+ public double density(double x) {
+ return gamma.density(x);
+ }
+
+ /** {@inheritDoc} */
+ public double cumulativeProbability(double x) {
+ return gamma.cumulativeProbability(x);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * Returns {@code 0} when {@code p == 0} and
+ * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
+ */
+ @Override
+ public double inverseCumulativeProbability(final double p) {
+ if (p == 0) {
+ return 0d;
+ }
+ if (p == 1) {
+ return Double.POSITIVE_INFINITY;
+ }
+ return super.inverseCumulativeProbability(p);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getDomainLowerBound(double p) {
+ return Double.MIN_VALUE * gamma.getBeta();
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getDomainUpperBound(double p) {
+ // NOTE: chi squared is skewed to the left
+ // NOTE: therefore, P(X < μ) > .5
+
+ double ret;
+
+ if (p < .5) {
+ // use mean
+ ret = getDegreesOfFreedom();
+ } else {
+ // use max
+ ret = Double.MAX_VALUE;
+ }
+
+ return ret;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getInitialDomain(double p) {
+ // NOTE: chi squared is skewed to the left
+ // NOTE: therefore, P(X < μ) > 0.5
+
+ double ret;
+
+ if (p < 0.5) {
+ // use 1/2 mean
+ ret = getDegreesOfFreedom() * 0.5;
+ } else {
+ // use mean
+ ret = getDegreesOfFreedom();
+ }
+
+ return ret;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getSolverAbsoluteAccuracy() {
+ return solverAbsoluteAccuracy;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The lower bound of the support is always 0 no matter the
+ * degrees of freedom.
+ *
+ * @return lower bound of the support (always 0)
+ */
+ @Override
+ public double getSupportLowerBound() {
+ return 0;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The upper bound of the support is always positive infinity no matter the
+ * degrees of freedom.
+ *
+ * @return upper bound of the support (always Double.POSITIVE_INFINITY)
+ */
+ @Override
+ public double getSupportUpperBound() {
+ return Double.POSITIVE_INFINITY;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * For {@code k} degrees of freedom, the mean is {@code k}.
+ */
+ @Override
+ protected double calculateNumericalMean() {
+ return getDegreesOfFreedom();
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * For {@code k} degrees of freedom, the variance is {@code 2 * k}.
+ *
+ * @return {@inheritDoc}
+ */
+ @Override
+ protected double calculateNumericalVariance() {
+ return 2*getDegreesOfFreedom();
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean isSupportLowerBoundInclusive() {
+ return true;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean isSupportUpperBoundInclusive() {
+ return false;
+ }
+}
diff --git a/src/main/java/org/apache/commons/math/distribution/ExponentialDistribution.java b/src/main/java/org/apache/commons/math/distribution/ExponentialDistribution.java
index 60da38277..934421935 100644
--- a/src/main/java/org/apache/commons/math/distribution/ExponentialDistribution.java
+++ b/src/main/java/org/apache/commons/math/distribution/ExponentialDistribution.java
@@ -16,24 +16,234 @@
*/
package org.apache.commons.math.distribution;
+import java.io.Serializable;
+
+import org.apache.commons.math.exception.NotStrictlyPositiveException;
+import org.apache.commons.math.exception.OutOfRangeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.util.FastMath;
+
/**
- * The Exponential Distribution.
- *
- *
- * References:
- *
- *
+ * Implementation of the exponential distribution.
*
+ * @see Exponential distribution (Wikipedia)
+ * @see Exponential distribution (MathWorld)
* @version $Id$
*/
-public interface ExponentialDistribution extends ContinuousDistribution {
+public class ExponentialDistribution extends AbstractContinuousDistribution
+ implements Serializable {
+ /**
+ * Default inverse cumulative probability accuracy.
+ * @since 2.1
+ */
+ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
+ /** Serializable version identifier */
+ private static final long serialVersionUID = 2401296428283614780L;
+ /** The mean of this distribution. */
+ private final double mean;
+ /** Inverse cumulative probability accuracy. */
+ private final double solverAbsoluteAccuracy;
+
+ /**
+ * Create a exponential distribution with the given mean.
+ * @param mean mean of this distribution.
+ */
+ public ExponentialDistribution(double mean) {
+ this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Create a exponential distribution with the given mean.
+ *
+ * @param mean Mean of this distribution.
+ * @param inverseCumAccuracy Maximum absolute error in inverse
+ * cumulative probability estimates (defaults to
+ * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
+ * @throws NotStrictlyPositiveException if {@code mean <= 0}.
+ * @since 2.1
+ */
+ public ExponentialDistribution(double mean, double inverseCumAccuracy)
+ throws NotStrictlyPositiveException{
+ if (mean <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
+ }
+ this.mean = mean;
+ solverAbsoluteAccuracy = inverseCumAccuracy;
+ }
+
/**
* Access the mean.
*
* @return the mean.
*/
- double getMean();
+ public double getMean() {
+ return mean;
+ }
+
+ /** {@inheritDoc} */
+ public double density(double x) {
+ if (x < 0) {
+ return 0;
+ }
+ return FastMath.exp(-x / mean) / mean;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The implementation of this method is based on:
+ *
+ */
+ public double cumulativeProbability(double x) {
+ double ret;
+ if (x <= 0.0) {
+ ret = 0.0;
+ } else {
+ ret = 1.0 - FastMath.exp(-x / mean);
+ }
+ return ret;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * Returns {@code 0} when {@code p= = 0} and
+ * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
+ */
+ @Override
+ public double inverseCumulativeProbability(double p) throws OutOfRangeException {
+ double ret;
+
+ if (p < 0.0 || p > 1.0) {
+ throw new OutOfRangeException(p, 0.0, 1.0);
+ } else if (p == 1.0) {
+ ret = Double.POSITIVE_INFINITY;
+ } else {
+ ret = -mean * FastMath.log(1.0 - p);
+ }
+
+ return ret;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * Algorithm Description: this implementation uses the
+ *
+ * Inversion Method to generate exponentially distributed random values
+ * from uniform deviates.
+ *
+ * @return a random value.
+ * @since 2.2
+ */
+ @Override
+ public double sample() {
+ return randomData.nextExponential(mean);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getDomainLowerBound(double p) {
+ return 0;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getDomainUpperBound(double p) {
+ // NOTE: exponential is skewed to the left
+ // NOTE: therefore, P(X < μ) > .5
+
+ if (p < 0.5) {
+ // use mean
+ return mean;
+ } else {
+ // use max
+ return Double.MAX_VALUE;
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getInitialDomain(double p) {
+ // TODO: try to improve on this estimate
+ // TODO: what should really happen here is not derive from
+ // AbstractContinuousDistribution
+ // TODO: because the inverse cumulative distribution is simple.
+ // Exponential is skewed to the left, therefore, P(X < μ) > .5
+ if (p < 0.5) {
+ // use 1/2 mean
+ return mean * 0.5;
+ } else {
+ // use mean
+ return mean;
+ }
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getSolverAbsoluteAccuracy() {
+ return solverAbsoluteAccuracy;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The lower bound of the support is always 0 no matter the mean parameter.
+ *
+ * @return lower bound of the support (always 0)
+ */
+ @Override
+ public double getSupportLowerBound() {
+ return 0;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The upper bound of the support is always positive infinity
+ * no matter the mean parameter.
+ *
+ * @return upper bound of the support (always Double.POSITIVE_INFINITY)
+ */
+ @Override
+ public double getSupportUpperBound() {
+ return Double.POSITIVE_INFINITY;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * For mean parameter {@code k}, the mean is {@code k}.
+ */
+ @Override
+ protected double calculateNumericalMean() {
+ return getMean();
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * For mean parameter {@code k}, the variance is {@code k^2}.
+ */
+ @Override
+ protected double calculateNumericalVariance() {
+ final double m = getMean();
+ return m * m;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean isSupportLowerBoundInclusive() {
+ return true;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean isSupportUpperBoundInclusive() {
+ return false;
+ }
}
diff --git a/src/main/java/org/apache/commons/math/distribution/ExponentialDistributionImpl.java b/src/main/java/org/apache/commons/math/distribution/ExponentialDistributionImpl.java
deleted file mode 100644
index 7106d8971..000000000
--- a/src/main/java/org/apache/commons/math/distribution/ExponentialDistributionImpl.java
+++ /dev/null
@@ -1,279 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math.distribution;
-
-import java.io.Serializable;
-
-import org.apache.commons.math.exception.NotStrictlyPositiveException;
-import org.apache.commons.math.exception.OutOfRangeException;
-import org.apache.commons.math.exception.util.LocalizedFormats;
-import org.apache.commons.math.util.FastMath;
-
-/**
- * The default implementation of {@link ExponentialDistribution}.
- *
- * @version $Id$
- */
-public class ExponentialDistributionImpl extends AbstractContinuousDistribution
- implements ExponentialDistribution, Serializable {
- /**
- * Default inverse cumulative probability accuracy.
- * @since 2.1
- */
- public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier */
- private static final long serialVersionUID = 2401296428283614780L;
- /** The mean of this distribution. */
- private final double mean;
- /** Inverse cumulative probability accuracy. */
- private final double solverAbsoluteAccuracy;
-
- /**
- * Create a exponential distribution with the given mean.
- * @param mean mean of this distribution.
- */
- public ExponentialDistributionImpl(double mean) {
- this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
-
- /**
- * Create a exponential distribution with the given mean.
- *
- * @param mean Mean of this distribution.
- * @param inverseCumAccuracy Maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @throws NotStrictlyPositiveException if {@code mean <= 0}.
- * @since 2.1
- */
- public ExponentialDistributionImpl(double mean, double inverseCumAccuracy) {
- if (mean <= 0) {
- throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean);
- }
- this.mean = mean;
- solverAbsoluteAccuracy = inverseCumAccuracy;
- }
-
- /**
- * {@inheritDoc}
- */
- public double getMean() {
- return mean;
- }
-
- /**
- * {@inheritDoc}
- */
- public double density(double x) {
- if (x < 0) {
- return 0;
- }
- return FastMath.exp(-x / mean) / mean;
- }
-
- /**
- * {@inheritDoc}
- *
- * The implementation of this method is based on:
- *
- */
- public double cumulativeProbability(double x) {
- double ret;
- if (x <= 0.0) {
- ret = 0.0;
- } else {
- ret = 1.0 - FastMath.exp(-x / mean);
- }
- return ret;
- }
-
- /**
- * {@inheritDoc}
- *
- * It will return {@code 0} when {@code p = 0} and
- * {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
- */
- @Override
- public double inverseCumulativeProbability(double p) throws OutOfRangeException {
- double ret;
-
- if (p < 0.0 || p > 1.0) {
- throw new OutOfRangeException(p, 0.0, 1.0);
- } else if (p == 1.0) {
- ret = Double.POSITIVE_INFINITY;
- } else {
- ret = -mean * FastMath.log(1.0 - p);
- }
-
- return ret;
- }
-
- /**
- * Generates a random value sampled from this distribution.
- *
- * Algorithm Description: Uses the Inversion
- * Method to generate exponentially distributed random values from
- * uniform deviates.
- *
- * @return a random value.
- * @since 2.2
- */
- @Override
- public double sample() {
- return randomData.nextExponential(mean);
- }
-
- /**
- * Access the domain value lower bound, based on {@code p}, used to
- * bracket a CDF root.
- *
- * @param p Desired probability for the critical value.
- * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}.
- */
- @Override
- protected double getDomainLowerBound(double p) {
- return 0;
- }
-
- /**
- * Access the domain value upper bound, based on {@code p}, used to
- * bracket a CDF root.
- *
- * @param p Desired probability for the critical value.
- * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}.
- */
- @Override
- protected double getDomainUpperBound(double p) {
- // NOTE: exponential is skewed to the left
- // NOTE: therefore, P(X < μ) > .5
-
- if (p < 0.5) {
- // use mean
- return mean;
- } else {
- // use max
- return Double.MAX_VALUE;
- }
- }
-
- /**
- * Access the initial domain value, based on {@code p}, used to
- * bracket a CDF root.
- *
- * @param p Desired probability for the critical value.
- * @return the initial domain value.
- */
- @Override
- protected double getInitialDomain(double p) {
- // TODO: try to improve on this estimate
- // TODO: what should really happen here is not derive from AbstractContinuousDistribution
- // TODO: because the inverse cumulative distribution is simple.
- // Exponential is skewed to the left, therefore, P(X < μ) > .5
- if (p < 0.5) {
- // use 1/2 mean
- return mean * 0.5;
- } else {
- // use mean
- return mean;
- }
- }
-
- /**
- * Return the absolute accuracy setting of the solver used to estimate
- * inverse cumulative probabilities.
- *
- * @return the solver absolute accuracy.
- * @since 2.1
- */
- @Override
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
-
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the mean parameter.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
-
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity
- * no matter the mean parameter.
- *
- * @return upper bound of the support (always Double.POSITIVE_INFINITY)
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
-
- /**
- * {@inheritDoc}
- *
- * For mean parameter k
, the mean is
- * k
- *
- * @return {@inheritDoc}
- */
- @Override
- protected double calculateNumericalMean() {
- return getMean();
- }
-
- /**
- * {@inheritDoc}
- *
- * For mean parameter k
, the variance is
- * k^2
- *
- * @return {@inheritDoc}
- */
- @Override
- protected double calculateNumericalVariance() {
- final double m = getMean();
- return m * m;
- }
-
- /**
- * {@inheritDoc}
- */
- @Override
- public boolean isSupportLowerBoundInclusive() {
- return true;
- }
-
- /**
- * {@inheritDoc}
- */
- @Override
- public boolean isSupportUpperBoundInclusive() {
- return false;
- }
-}
diff --git a/src/main/java/org/apache/commons/math/distribution/FDistribution.java b/src/main/java/org/apache/commons/math/distribution/FDistribution.java
index f9c897bd3..18985fe91 100644
--- a/src/main/java/org/apache/commons/math/distribution/FDistribution.java
+++ b/src/main/java/org/apache/commons/math/distribution/FDistribution.java
@@ -14,33 +14,277 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
+
package org.apache.commons.math.distribution;
+import java.io.Serializable;
+
+import org.apache.commons.math.exception.NotStrictlyPositiveException;
+import org.apache.commons.math.exception.OutOfRangeException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.special.Beta;
+import org.apache.commons.math.util.FastMath;
+
/**
- * F-Distribution.
- *
- *
- * References:
- *
- *
+ * Implementation of the F-distribution.
*
+ * @see F-distribution (Wikipedia)
+ * @see F-distribution (MathWorld)
* @version $Id$
*/
-public interface FDistribution extends ContinuousDistribution {
+public class FDistribution
+ extends AbstractContinuousDistribution
+ implements Serializable {
+ /**
+ * Default inverse cumulative probability accuracy.
+ * @since 2.1
+ */
+ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -8516354193418641566L;
+ /** The numerator degrees of freedom. */
+ private final double numeratorDegreesOfFreedom;
+ /** The numerator degrees of freedom. */
+ private final double denominatorDegreesOfFreedom;
+ /** Inverse cumulative probability accuracy. */
+ private final double solverAbsoluteAccuracy;
+
+ /**
+ * Create a F distribution using the given degrees of freedom.
+ * @param numeratorDegreesOfFreedom Numerator degrees of freedom.
+ * @param denominatorDegreesOfFreedom Denominator degrees of freedom.
+ * @throws NotStrictlyPositiveException if
+ * {@code numeratorDegreesOfFreedom <= 0} or
+ * {@code denominatorDegreesOfFreedom <= 0}.
+ */
+ public FDistribution(double numeratorDegreesOfFreedom,
+ double denominatorDegreesOfFreedom)
+ throws NotStrictlyPositiveException {
+ this(numeratorDegreesOfFreedom, denominatorDegreesOfFreedom,
+ DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Create an F distribution using the given degrees of freedom
+ * and inverse cumulative probability accuracy.
+ * @param numeratorDegreesOfFreedom Numerator degrees of freedom.
+ * @param denominatorDegreesOfFreedom Denominator degrees of freedom.
+ * @param inverseCumAccuracy the maximum absolute error in inverse
+ * cumulative probability estimates.
+ * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
+ * @throws NotStrictlyPositiveException if
+ * {@code numeratorDegreesOfFreedom <= 0} or
+ * {@code denominatorDegreesOfFreedom <= 0}.
+ * @since 2.1
+ */
+ public FDistribution(double numeratorDegreesOfFreedom,
+ double denominatorDegreesOfFreedom,
+ double inverseCumAccuracy)
+ throws NotStrictlyPositiveException {
+ if (numeratorDegreesOfFreedom <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM,
+ numeratorDegreesOfFreedom);
+ }
+ if (denominatorDegreesOfFreedom <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM,
+ denominatorDegreesOfFreedom);
+ }
+ this.numeratorDegreesOfFreedom = numeratorDegreesOfFreedom;
+ this.denominatorDegreesOfFreedom = denominatorDegreesOfFreedom;
+ solverAbsoluteAccuracy = inverseCumAccuracy;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @since 2.1
+ */
+ public double density(double x) {
+ final double nhalf = numeratorDegreesOfFreedom / 2;
+ final double mhalf = denominatorDegreesOfFreedom / 2;
+ final double logx = FastMath.log(x);
+ final double logn = FastMath.log(numeratorDegreesOfFreedom);
+ final double logm = FastMath.log(denominatorDegreesOfFreedom);
+ final double lognxm = FastMath.log(numeratorDegreesOfFreedom * x +
+ denominatorDegreesOfFreedom);
+ return FastMath.exp(nhalf * logn + nhalf * logx - logx +
+ mhalf * logm - nhalf * lognxm - mhalf * lognxm -
+ Beta.logBeta(nhalf, mhalf));
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The implementation of this method is based on
+ *
+ */
+ public double cumulativeProbability(double x) {
+ double ret;
+ if (x <= 0) {
+ ret = 0;
+ } else {
+ double n = numeratorDegreesOfFreedom;
+ double m = denominatorDegreesOfFreedom;
+
+ ret = Beta.regularizedBeta((n * x) / (m + n * x),
+ 0.5 * n,
+ 0.5 * m);
+ }
+ return ret;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * Returns {@code 0} when {@code p == 0} and
+ * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
+ */
+ @Override
+ public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
+ if (p == 0) {
+ return 0;
+ }
+ if (p == 1) {
+ return Double.POSITIVE_INFINITY;
+ }
+ return super.inverseCumulativeProbability(p);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getDomainLowerBound(double p) {
+ return 0;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getDomainUpperBound(double p) {
+ return Double.MAX_VALUE;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getInitialDomain(double p) {
+ double ret = 1;
+ double d = denominatorDegreesOfFreedom;
+ if (d > 2) {
+ // use mean
+ ret = d / (d - 2);
+ }
+ return ret;
+ }
+
/**
* Access the numerator degrees of freedom.
*
* @return the numerator degrees of freedom.
*/
- double getNumeratorDegreesOfFreedom();
+ public double getNumeratorDegreesOfFreedom() {
+ return numeratorDegreesOfFreedom;
+ }
/**
* Access the denominator degrees of freedom.
*
* @return the denominator degrees of freedom.
*/
- double getDenominatorDegreesOfFreedom();
+ public double getDenominatorDegreesOfFreedom() {
+ return denominatorDegreesOfFreedom;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getSolverAbsoluteAccuracy() {
+ return solverAbsoluteAccuracy;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The lower bound of the support is always 0 no matter the parameters.
+ *
+ * @return lower bound of the support (always 0)
+ */
+ @Override
+ public double getSupportLowerBound() {
+ return 0;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The upper bound of the support is always positive infinity
+ * no matter the parameters.
+ *
+ * @return upper bound of the support (always Double.POSITIVE_INFINITY)
+ */
+ @Override
+ public double getSupportUpperBound() {
+ return Double.POSITIVE_INFINITY;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * For denominator degrees of freedom parameter {@code b}, the mean is
+ *
+ * - if {@code b > 2} then {@code b / (b - 2)},
+ * - else undefined ({@code Double.NaN}).
+ *
+ */
+ @Override
+ protected double calculateNumericalMean() {
+ final double denominatorDF = getDenominatorDegreesOfFreedom();
+
+ if (denominatorDF > 2) {
+ return denominatorDF / (denominatorDF - 2);
+ }
+
+ return Double.NaN;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * For numerator degrees of freedom parameter {@code a} and denominator
+ * degrees of freedom parameter {@code b}, the variance is
+ *
+ * -
+ * if {@code b > 4} then
+ * {@code [2 * b^2 * (a + b - 2)] / [a * (b - 2)^2 * (b - 4)]},
+ *
+ * - else undefined ({@code Double.NaN}).
+ *
+ */
+ @Override
+ protected double calculateNumericalVariance() {
+ final double denominatorDF = getDenominatorDegreesOfFreedom();
+
+ if (denominatorDF > 4) {
+ final double numeratorDF = getNumeratorDegreesOfFreedom();
+ final double denomDFMinusTwo = denominatorDF - 2;
+
+ return ( 2 * (denominatorDF * denominatorDF) * (numeratorDF + denominatorDF - 2) ) /
+ ( (numeratorDF * (denomDFMinusTwo * denomDFMinusTwo) * (denominatorDF - 4)) );
+ }
+
+ return Double.NaN;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean isSupportLowerBoundInclusive() {
+ return true;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean isSupportUpperBoundInclusive() {
+ return false;
+ }
}
diff --git a/src/main/java/org/apache/commons/math/distribution/FDistributionImpl.java b/src/main/java/org/apache/commons/math/distribution/FDistributionImpl.java
deleted file mode 100644
index cd4689265..000000000
--- a/src/main/java/org/apache/commons/math/distribution/FDistributionImpl.java
+++ /dev/null
@@ -1,318 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package org.apache.commons.math.distribution;
-
-import java.io.Serializable;
-
-import org.apache.commons.math.exception.NotStrictlyPositiveException;
-import org.apache.commons.math.exception.OutOfRangeException;
-import org.apache.commons.math.exception.util.LocalizedFormats;
-import org.apache.commons.math.special.Beta;
-import org.apache.commons.math.util.FastMath;
-
-/**
- * Default implementation of
- * {@link org.apache.commons.math.distribution.FDistribution}.
- *
- * @version $Id$
- */
-public class FDistributionImpl
- extends AbstractContinuousDistribution
- implements FDistribution, Serializable {
- /**
- * Default inverse cumulative probability accuracy.
- * @since 2.1
- */
- public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier. */
- private static final long serialVersionUID = -8516354193418641566L;
- /** The numerator degrees of freedom. */
- private final double numeratorDegreesOfFreedom;
- /** The numerator degrees of freedom. */
- private final double denominatorDegreesOfFreedom;
- /** Inverse cumulative probability accuracy. */
- private final double solverAbsoluteAccuracy;
-
- /**
- * Create a F distribution using the given degrees of freedom.
- * @param numeratorDegreesOfFreedom Numerator degrees of freedom.
- * @param denominatorDegreesOfFreedom Denominator degrees of freedom.
- * @throws NotStrictlyPositiveException if {@code numeratorDegreesOfFreedom <= 0}
- * or {@code denominatorDegreesOfFreedom <= 0}.
- */
- public FDistributionImpl(double numeratorDegreesOfFreedom,
- double denominatorDegreesOfFreedom) {
- this(numeratorDegreesOfFreedom, denominatorDegreesOfFreedom,
- DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
-
- /**
- * Create an F distribution using the given degrees of freedom
- * and inverse cumulative probability accuracy.
- * @param numeratorDegreesOfFreedom Numerator degrees of freedom.
- * @param denominatorDegreesOfFreedom Denominator degrees of freedom.
- * @param inverseCumAccuracy the maximum absolute error in inverse
- * cumulative probability estimates.
- * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
- * @throws NotStrictlyPositiveException if {@code numeratorDegreesOfFreedom <= 0}
- * or {@code denominatorDegreesOfFreedom <= 0}.
- * @since 2.1
- */
- public FDistributionImpl(double numeratorDegreesOfFreedom,
- double denominatorDegreesOfFreedom,
- double inverseCumAccuracy) {
- if (numeratorDegreesOfFreedom <= 0) {
- throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM,
- numeratorDegreesOfFreedom);
- }
- if (denominatorDegreesOfFreedom <= 0) {
- throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM,
- denominatorDegreesOfFreedom);
- }
- this.numeratorDegreesOfFreedom = numeratorDegreesOfFreedom;
- this.denominatorDegreesOfFreedom = denominatorDegreesOfFreedom;
- solverAbsoluteAccuracy = inverseCumAccuracy;
- }
-
- /**
- * {@inheritDoc}
- *
- * @since 2.1
- */
- public double density(double x) {
- final double nhalf = numeratorDegreesOfFreedom / 2;
- final double mhalf = denominatorDegreesOfFreedom / 2;
- final double logx = FastMath.log(x);
- final double logn = FastMath.log(numeratorDegreesOfFreedom);
- final double logm = FastMath.log(denominatorDegreesOfFreedom);
- final double lognxm = FastMath.log(numeratorDegreesOfFreedom * x +
- denominatorDegreesOfFreedom);
- return FastMath.exp(nhalf * logn + nhalf * logx - logx +
- mhalf * logm - nhalf * lognxm - mhalf * lognxm -
- Beta.logBeta(nhalf, mhalf));
- }
-
- /**
- * {@inheritDoc}
- *
- * The implementation of this method is based on
- *
- */
- public double cumulativeProbability(double x) {
- double ret;
- if (x <= 0) {
- ret = 0;
- } else {
- double n = numeratorDegreesOfFreedom;
- double m = denominatorDegreesOfFreedom;
-
- ret = Beta.regularizedBeta((n * x) / (m + n * x),
- 0.5 * n,
- 0.5 * m);
- }
- return ret;
- }
-
- /**
- * {@inheritDoc}
- *
- * It will return {@code 0} when {@code p = 0} and
- * {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
- */
- @Override
- public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
- if (p == 0) {
- return 0;
- }
- if (p == 1) {
- return Double.POSITIVE_INFINITY;
- }
- return super.inverseCumulativeProbability(p);
- }
-
- /**
- * Access the domain value lower bound, based on {@code p}, used to
- * bracket a CDF root. This method is used by
- * {@link #inverseCumulativeProbability(double)} to find critical values.
- *
- * @param p Desired probability for the critical value.
- * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}.
- */
- @Override
- protected double getDomainLowerBound(double p) {
- return 0;
- }
-
- /**
- * Access the domain value upper bound, based on {@code p}, used to
- * bracket a CDF root. This method is used by
- * {@link #inverseCumulativeProbability(double)} to find critical values.
- *
- * @param p Desired probability for the critical value.
- * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}.
- */
- @Override
- protected double getDomainUpperBound(double p) {
- return Double.MAX_VALUE;
- }
-
- /**
- * Access the initial domain value, based on {@code p}, used to
- * bracket a CDF root. This method is used by
- * {@link #inverseCumulativeProbability(double)} to find critical values.
- *
- * @param p Desired probability for the critical value.
- * @return the initial domain value.
- */
- @Override
- protected double getInitialDomain(double p) {
- double ret = 1;
- double d = denominatorDegreesOfFreedom;
- if (d > 2) {
- // use mean
- ret = d / (d - 2);
- }
- return ret;
- }
-
- /**
- * {@inheritDoc}
- */
- public double getNumeratorDegreesOfFreedom() {
- return numeratorDegreesOfFreedom;
- }
-
- /**
- * {@inheritDoc}
- */
- public double getDenominatorDegreesOfFreedom() {
- return denominatorDegreesOfFreedom;
- }
-
- /**
- * Return the absolute accuracy setting of the solver used to estimate
- * inverse cumulative probabilities.
- *
- * @return the solver absolute accuracy
- * @since 2.1
- */
- @Override
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
-
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the parameters.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
-
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity
- * no matter the parameters.
- *
- * @return upper bound of the support (always Double.POSITIVE_INFINITY)
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
-
- /**
- * {@inheritDoc}
- *
- * For denominator degrees of freedom parameter b
,
- * the mean is
- *
- * - if
b > 2
then b / (b - 2)
- * - else
undefined
- *
- *
- * @return {@inheritDoc}
- */
- @Override
- protected double calculateNumericalMean() {
- final double denominatorDF = getDenominatorDegreesOfFreedom();
-
- if (denominatorDF > 2) {
- return denominatorDF / (denominatorDF - 2);
- }
-
- return Double.NaN;
- }
-
- /**
- * {@inheritDoc}
- *
- * For numerator degrees of freedom parameter a
- * and denominator degrees of freedom parameter b
,
- * the variance is
- *
- * -
- * if
b > 4
then
- * [ 2 * b^2 * (a + b - 2) ] / [ a * (b - 2)^2 * (b - 4) ]
- *
- * - else
undefined
- *
- *
- * @return {@inheritDoc}
- */
- @Override
- protected double calculateNumericalVariance() {
- final double denominatorDF = getDenominatorDegreesOfFreedom();
-
- if (denominatorDF > 4) {
- final double numeratorDF = getNumeratorDegreesOfFreedom();
- final double denomDFMinusTwo = denominatorDF - 2;
-
- return ( 2 * (denominatorDF * denominatorDF) * (numeratorDF + denominatorDF - 2) ) /
- ( (numeratorDF * (denomDFMinusTwo * denomDFMinusTwo) * (denominatorDF - 4)) );
- }
-
- return Double.NaN;
- }
-
- /**
- * {@inheritDoc}
- */
- @Override
- public boolean isSupportLowerBoundInclusive() {
- return true;
- }
-
- /**
- * {@inheritDoc}
- */
- @Override
- public boolean isSupportUpperBoundInclusive() {
- return false;
- }
-}
diff --git a/src/main/java/org/apache/commons/math/distribution/GammaDistribution.java b/src/main/java/org/apache/commons/math/distribution/GammaDistribution.java
index ab2e7a206..e7bcf1932 100644
--- a/src/main/java/org/apache/commons/math/distribution/GammaDistribution.java
+++ b/src/main/java/org/apache/commons/math/distribution/GammaDistribution.java
@@ -16,31 +16,254 @@
*/
package org.apache.commons.math.distribution;
+import java.io.Serializable;
+
+import org.apache.commons.math.exception.NotStrictlyPositiveException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
+import org.apache.commons.math.special.Gamma;
+import org.apache.commons.math.util.FastMath;
+
/**
- * The Gamma Distribution.
- *
- *
- * References:
- *
- *
+ * Implementation of the Gamma distribution.
*
+ * @see Gamma distribution (Wikipedia)
+ * @see Gamma distribution (MathWorld)
* @version $Id$
*/
-public interface GammaDistribution extends ContinuousDistribution {
+public class GammaDistribution extends AbstractContinuousDistribution
+ implements Serializable {
/**
- * Access the alpha shape parameter.
- *
- * @return alpha.
+ * Default inverse cumulative probability accuracy.
+ * @since 2.1
*/
- double getAlpha();
+ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
+ /** Serializable version identifier. */
+ private static final long serialVersionUID = -3239549463135430361L;
+ /** The shape parameter. */
+ private final double alpha;
+ /** The scale parameter. */
+ private final double beta;
+ /** Inverse cumulative probability accuracy. */
+ private final double solverAbsoluteAccuracy;
/**
- * Access the beta scale parameter.
- *
- * @return beta.
+ * Create a new gamma distribution with the given {@code alpha} and
+ * {@code beta} values.
+ * @param alpha the shape parameter.
+ * @param beta the scale parameter.
*/
- double getBeta();
+ public GammaDistribution(double alpha, double beta) {
+ this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
+ }
+
+ /**
+ * Create a new gamma distribution with the given {@code alpha} and
+ * {@code beta} values.
+ *
+ * @param alpha Shape parameter.
+ * @param beta Scale parameter.
+ * @param inverseCumAccuracy Maximum absolute error in inverse
+ * cumulative probability estimates (defaults to
+ * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
+ * @throws NotStrictlyPositiveException if {@code alpha <= 0} or
+ * {@code beta <= 0}.
+ * @since 2.1
+ */
+ public GammaDistribution(double alpha, double beta, double inverseCumAccuracy)
+ throws NotStrictlyPositiveException {
+ if (alpha <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.ALPHA, alpha);
+ }
+ if (beta <= 0) {
+ throw new NotStrictlyPositiveException(LocalizedFormats.BETA, beta);
+ }
+
+ this.alpha = alpha;
+ this.beta = beta;
+ solverAbsoluteAccuracy = inverseCumAccuracy;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The implementation of this method is based on:
+ *
+ * -
+ *
+ * Chi-Squared Distribution, equation (9).
+ *
+ * - Casella, G., & Berger, R. (1990). Statistical Inference.
+ * Belmont, CA: Duxbury Press.
+ *
+ *
+ */
+ public double cumulativeProbability(double x) {
+ double ret;
+
+ if (x <= 0) {
+ ret = 0;
+ } else {
+ ret = Gamma.regularizedGammaP(alpha, x / beta);
+ }
+
+ return ret;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * Returns {@code 0} when {@code p == 0} and
+ * {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
+ */
+ @Override
+ public double inverseCumulativeProbability(final double p) {
+ if (p == 0) {
+ return 0;
+ }
+ if (p == 1) {
+ return Double.POSITIVE_INFINITY;
+ }
+ return super.inverseCumulativeProbability(p);
+ }
+
+ /**
+ * Access the {@code alpha} shape parameter.
+ *
+ * @return {@code alpha}.
+ */
+ public double getAlpha() {
+ return alpha;
+ }
+
+ /**
+ * Access the {@code beta} scale parameter.
+ *
+ * @return {@code beta}.
+ */
+ public double getBeta() {
+ return beta;
+ }
+
+ /** {@inheritDoc} */
+ public double density(double x) {
+ if (x < 0) {
+ return 0;
+ }
+ return FastMath.pow(x / beta, alpha - 1) / beta *
+ FastMath.exp(-x / beta) / FastMath.exp(Gamma.logGamma(alpha));
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getDomainLowerBound(double p) {
+ // TODO: try to improve on this estimate
+ return Double.MIN_VALUE;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getDomainUpperBound(double p) {
+ // TODO: try to improve on this estimate
+ // NOTE: gamma is skewed to the left
+ // NOTE: therefore, P(X < μ) > .5
+
+ double ret;
+
+ if (p < 0.5) {
+ // use mean
+ ret = alpha * beta;
+ } else {
+ // use max value
+ ret = Double.MAX_VALUE;
+ }
+
+ return ret;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getInitialDomain(double p) {
+ // TODO: try to improve on this estimate
+ // Gamma is skewed to the left, therefore, P(X < μ) > .5
+
+ double ret;
+
+ if (p < 0.5) {
+ // use 1/2 mean
+ ret = alpha * beta * 0.5;
+ } else {
+ // use mean
+ ret = alpha * beta;
+ }
+
+ return ret;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected double getSolverAbsoluteAccuracy() {
+ return solverAbsoluteAccuracy;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The lower bound of the support is always 0 no matter the parameters.
+ *
+ * @return lower bound of the support (always 0)
+ */
+ @Override
+ public double getSupportLowerBound() {
+ return 0;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * The upper bound of the support is always positive infinity
+ * no matter the parameters.
+ *
+ * @return upper bound of the support (always Double.POSITIVE_INFINITY)
+ */
+ @Override
+ public double getSupportUpperBound() {
+ return Double.POSITIVE_INFINITY;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * For shape parameter {@code alpha} and scale parameter {@code beta}, the
+ * mean is {@code alpha * beta}.
+ */
+ @Override
+ protected double calculateNumericalMean() {
+ return getAlpha() * getBeta();
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * For shape parameter {@code alpha} and scale parameter {@code beta}, the
+ * variance is {@code alpha * beta^2}.
+ *
+ * @return {@inheritDoc}
+ */
+ @Override
+ protected double calculateNumericalVariance() {
+ final double b = getBeta();
+ return getAlpha() * b * b;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean isSupportLowerBoundInclusive() {
+ return true;
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ public boolean isSupportUpperBoundInclusive() {
+ return false;
+ }
}
diff --git a/src/main/java/org/apache/commons/math/distribution/GammaDistributionImpl.java b/src/main/java/org/apache/commons/math/distribution/GammaDistributionImpl.java
deleted file mode 100644
index 013e5de05..000000000
--- a/src/main/java/org/apache/commons/math/distribution/GammaDistributionImpl.java
+++ /dev/null
@@ -1,297 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math.distribution;
-
-import java.io.Serializable;
-
-import org.apache.commons.math.exception.NotStrictlyPositiveException;
-import org.apache.commons.math.exception.util.LocalizedFormats;
-import org.apache.commons.math.special.Gamma;
-import org.apache.commons.math.util.FastMath;
-
-/**
- * The default implementation of {@link GammaDistribution}.
- *
- * @version $Id$
- */
-public class GammaDistributionImpl extends AbstractContinuousDistribution
- implements GammaDistribution, Serializable {
- /**
- * Default inverse cumulative probability accuracy.
- * @since 2.1
- */
- public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
- /** Serializable version identifier. */
- private static final long serialVersionUID = -3239549463135430361L;
- /** The shape parameter. */
- private final double alpha;
- /** The scale parameter. */
- private final double beta;
- /** Inverse cumulative probability accuracy. */
- private final double solverAbsoluteAccuracy;
-
- /**
- * Create a new gamma distribution with the given alpha and beta values.
- * @param alpha the shape parameter.
- * @param beta the scale parameter.
- */
- public GammaDistributionImpl(double alpha, double beta) {
- this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
- }
-
- /**
- * Create a new gamma distribution with the given alpha and beta values.
- *
- * @param alpha Shape parameter.
- * @param beta Scale parameter.
- * @param inverseCumAccuracy Maximum absolute error in inverse
- * cumulative probability estimates (defaults to
- * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
- * @throws NotStrictlyPositiveException if {@code alpha <= 0} or
- * {@code beta <= 0}.
- * @since 2.1
- */
- public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) {
- if (alpha <= 0) {
- throw new NotStrictlyPositiveException(LocalizedFormats.ALPHA, alpha);
- }
- if (beta <= 0) {
- throw new NotStrictlyPositiveException(LocalizedFormats.BETA, beta);
- }
-
- this.alpha = alpha;
- this.beta = beta;
- solverAbsoluteAccuracy = inverseCumAccuracy;
- }
-
- /**
- * {@inheritDoc}
- *
- * The implementation of this method is based on:
- *
- * -
- *
- * Chi-Squared Distribution, equation (9).
- *
- * - Casella, G., & Berger, R. (1990). Statistical Inference.
- * Belmont, CA: Duxbury Press.
- *
- *
- */
- public double cumulativeProbability(double x) {
- double ret;
-
- if (x <= 0) {
- ret = 0;
- } else {
- ret = Gamma.regularizedGammaP(alpha, x / beta);
- }
-
- return ret;
- }
-
- /**
- * {@inheritDoc}
- *
- * It will return {@code 0} when {@cod p = 0} and
- * {@code Double.POSITIVE_INFINITY} when {@code p = 1}.
- */
- @Override
- public double inverseCumulativeProbability(final double p) {
- if (p == 0) {
- return 0;
- }
- if (p == 1) {
- return Double.POSITIVE_INFINITY;
- }
- return super.inverseCumulativeProbability(p);
- }
-
- /**
- * {@inheritDoc}
- */
- public double getAlpha() {
- return alpha;
- }
-
- /**
- * {@inheritDoc}
- */
- public double getBeta() {
- return beta;
- }
-
- /**
- * {@inheritDoc}
- */
- public double density(double x) {
- if (x < 0) {
- return 0;
- }
- return FastMath.pow(x / beta, alpha - 1) / beta *
- FastMath.exp(-x / beta) / FastMath.exp(Gamma.logGamma(alpha));
- }
-
- /**
- * Access the domain value lower bound, based on {@code p}, used to
- * bracket a CDF root. This method is used by
- * {@link #inverseCumulativeProbability(double)} to find critical values.
- *
- * @param p Desired probability for the critical value.
- * @return the domain value lower bound, i.e. {@code P(X < 'lower bound') < p}.
- */
- @Override
- protected double getDomainLowerBound(double p) {
- // TODO: try to improve on this estimate
- return Double.MIN_VALUE;
- }
-
- /**
- * Access the domain value upper bound, based on {@code p}, used to
- * bracket a CDF root. This method is used by
- * {@link #inverseCumulativeProbability(double)} to find critical values.
- *
- * @param p Desired probability for the critical value.
- * @return the domain value upper bound, i.e. {@code P(X < 'upper bound') > p}.
- */
- @Override
- protected double getDomainUpperBound(double p) {
- // TODO: try to improve on this estimate
- // NOTE: gamma is skewed to the left
- // NOTE: therefore, P(X < μ) > .5
-
- double ret;
-
- if (p < 0.5) {
- // use mean
- ret = alpha * beta;
- } else {
- // use max value
- ret = Double.MAX_VALUE;
- }
-
- return ret;
- }
-
- /**
- * Access the initial domain value, based on {@code p}, used to
- * bracket a CDF root. This method is used by
- * {@link #inverseCumulativeProbability(double)} to find critical values.
- *
- * @param p Desired probability for the critical value.
- * @return the initial domain value.
- */
- @Override
- protected double getInitialDomain(double p) {
- // TODO: try to improve on this estimate
- // Gamma is skewed to the left, therefore, P(X < μ) > .5
-
- double ret;
-
- if (p < 0.5) {
- // use 1/2 mean
- ret = alpha * beta * 0.5;
- } else {
- // use mean
- ret = alpha * beta;
- }
-
- return ret;
- }
-
- /**
- * Return the absolute accuracy setting of the solver used to estimate
- * inverse cumulative probabilities.
- *
- * @return the solver absolute accuracy.
- * @since 2.1
- */
- @Override
- protected double getSolverAbsoluteAccuracy() {
- return solverAbsoluteAccuracy;
- }
-
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the parameters.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public double getSupportLowerBound() {
- return 0;
- }
-
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is always positive infinity
- * no matter the parameters.
- *
- * @return upper bound of the support (always Double.POSITIVE_INFINITY)
- */
- @Override
- public double getSupportUpperBound() {
- return Double.POSITIVE_INFINITY;
- }
-
- /**
- * {@inheritDoc}
- *
- * For shape parameter alpha
and scale
- * parameter beta
, the mean is
- * alpha * beta
- *
- * @return {@inheritDoc}
- */
- @Override
- protected double calculateNumericalMean() {
- return getAlpha() * getBeta();
- }
-
- /**
- * {@inheritDoc}
- *
- * For shape parameter alpha
and scale
- * parameter beta
, the variance is
- * alpha * beta^2
- *
- * @return {@inheritDoc}
- */
- @Override
- protected double calculateNumericalVariance() {
- final double b = getBeta();
- return getAlpha() * b * b;
- }
-
- /**
- * {@inheritDoc}
- */
- @Override
- public boolean isSupportLowerBoundInclusive() {
- return true;
- }
-
- /**
- * {@inheritDoc}
- */
- @Override
- public boolean isSupportUpperBoundInclusive() {
- return false;
- }
-}
diff --git a/src/main/java/org/apache/commons/math/random/RandomDataImpl.java b/src/main/java/org/apache/commons/math/random/RandomDataImpl.java
index 34f941a22..ba6c7db39 100644
--- a/src/main/java/org/apache/commons/math/random/RandomDataImpl.java
+++ b/src/main/java/org/apache/commons/math/random/RandomDataImpl.java
@@ -29,7 +29,7 @@ import org.apache.commons.math.distribution.BinomialDistribution;
import org.apache.commons.math.distribution.CauchyDistribution;
import org.apache.commons.math.distribution.ChiSquaredDistribution;
import org.apache.commons.math.distribution.ContinuousDistribution;
-import org.apache.commons.math.distribution.FDistributionImpl;
+import org.apache.commons.math.distribution.FDistribution;
import org.apache.commons.math.distribution.HypergeometricDistributionImpl;
import org.apache.commons.math.distribution.IntegerDistribution;
import org.apache.commons.math.distribution.PascalDistributionImpl;
@@ -654,7 +654,7 @@ public class RandomDataImpl implements RandomData, Serializable {
}
/**
- * Generates a random value from the {@link FDistributionImpl F Distribution}.
+ * Generates a random value from the {@link FDistribution F Distribution}.
* This implementation uses {@link #nextInversionDeviate(ContinuousDistribution) inversion}
* to generate random values.
*
@@ -664,12 +664,12 @@ public class RandomDataImpl implements RandomData, Serializable {
* @since 2.2
*/
public double nextF(double numeratorDf, double denominatorDf) {
- return nextInversionDeviate(new FDistributionImpl(numeratorDf, denominatorDf));
+ return nextInversionDeviate(new FDistribution(numeratorDf, denominatorDf));
}
/**
* Generates a random value from the
- * {@link org.apache.commons.math.distribution.GammaDistributionImpl Gamma Distribution}.
+ * {@link org.apache.commons.math.distribution.GammaDistribution Gamma Distribution}.
*
* This implementation uses the following algorithms:
*
diff --git a/src/main/java/org/apache/commons/math/stat/inference/OneWayAnovaImpl.java b/src/main/java/org/apache/commons/math/stat/inference/OneWayAnovaImpl.java
index 2d686eab1..5dadc8046 100644
--- a/src/main/java/org/apache/commons/math/stat/inference/OneWayAnovaImpl.java
+++ b/src/main/java/org/apache/commons/math/stat/inference/OneWayAnovaImpl.java
@@ -21,7 +21,6 @@ import java.util.Collection;
import org.apache.commons.math.MathException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.distribution.FDistribution;
-import org.apache.commons.math.distribution.FDistributionImpl;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.stat.descriptive.summary.Sum;
import org.apache.commons.math.stat.descriptive.summary.SumOfSquares;
@@ -84,7 +83,7 @@ public class OneWayAnovaImpl implements OneWayAnova {
public double anovaPValue(Collection categoryData)
throws IllegalArgumentException, MathException {
AnovaStats a = anovaStats(categoryData);
- FDistribution fdist = new FDistributionImpl(a.dfbg, a.dfwg);
+ FDistribution fdist = new FDistribution(a.dfbg, a.dfwg);
return 1.0 - fdist.cumulativeProbability(a.F);
}
diff --git a/src/test/java/org/apache/commons/math/distribution/ExponentialDistributionTest.java b/src/test/java/org/apache/commons/math/distribution/ExponentialDistributionTest.java
index 3ccb1ebe8..7c80247fb 100644
--- a/src/test/java/org/apache/commons/math/distribution/ExponentialDistributionTest.java
+++ b/src/test/java/org/apache/commons/math/distribution/ExponentialDistributionTest.java
@@ -43,7 +43,7 @@ public class ExponentialDistributionTest extends ContinuousDistributionAbstractT
/** Creates the default continuous distribution instance to use in tests. */
@Override
public ExponentialDistribution makeDistribution() {
- return new ExponentialDistributionImpl(5.0);
+ return new ExponentialDistribution(5.0);
}
/** Creates the default cumulative probability distribution test input values */
@@ -92,14 +92,14 @@ public class ExponentialDistributionTest extends ContinuousDistributionAbstractT
@Test
public void testDensity() {
- ExponentialDistribution d1 = new ExponentialDistributionImpl(1);
+ ExponentialDistribution d1 = new ExponentialDistribution(1);
Assert.assertTrue(Precision.equals(0.0, d1.density(-1e-9), 1));
Assert.assertTrue(Precision.equals(1.0, d1.density(0.0), 1));
Assert.assertTrue(Precision.equals(0.0, d1.density(1000.0), 1));
Assert.assertTrue(Precision.equals(FastMath.exp(-1), d1.density(1.0), 1));
Assert.assertTrue(Precision.equals(FastMath.exp(-2), d1.density(2.0), 1));
- ExponentialDistribution d2 = new ExponentialDistributionImpl(3);
+ ExponentialDistribution d2 = new ExponentialDistribution(3);
Assert.assertTrue(Precision.equals(1/3.0, d2.density(0.0), 1));
// computed using print(dexp(1, rate=1/3), digits=10) in R 2.5
Assert.assertEquals(0.2388437702, d2.density(1.0), 1e-8);
@@ -116,19 +116,19 @@ public class ExponentialDistributionTest extends ContinuousDistributionAbstractT
@Test(expected=NotStrictlyPositiveException.class)
public void testPreconditions() {
- new ExponentialDistributionImpl(0);
+ new ExponentialDistribution(0);
}
@Test
public void testMoments() {
final double tol = 1e-9;
ExponentialDistribution dist;
-
- dist = new ExponentialDistributionImpl(11d);
+
+ dist = new ExponentialDistribution(11d);
Assert.assertEquals(dist.getNumericalMean(), 11d, tol);
Assert.assertEquals(dist.getNumericalVariance(), 11d * 11d, tol);
-
- dist = new ExponentialDistributionImpl(10.5d);
+
+ dist = new ExponentialDistribution(10.5d);
Assert.assertEquals(dist.getNumericalMean(), 10.5d, tol);
Assert.assertEquals(dist.getNumericalVariance(), 10.5d * 10.5d, tol);
}
diff --git a/src/test/java/org/apache/commons/math/distribution/FDistributionTest.java b/src/test/java/org/apache/commons/math/distribution/FDistributionTest.java
index 6f35ad832..d60a9bf04 100644
--- a/src/test/java/org/apache/commons/math/distribution/FDistributionTest.java
+++ b/src/test/java/org/apache/commons/math/distribution/FDistributionTest.java
@@ -34,7 +34,7 @@ public class FDistributionTest extends ContinuousDistributionAbstractTest {
/** Creates the default continuous distribution instance to use in tests. */
@Override
public FDistribution makeDistribution() {
- return new FDistributionImpl(5.0, 6.0);
+ return new FDistribution(5.0, 6.0);
}
/** Creates the default cumulative probability distribution test input values */
@@ -91,13 +91,13 @@ public class FDistributionTest extends ContinuousDistributionAbstractTest {
@Test
public void testPreconditions() {
try {
- new FDistributionImpl(0, 1);
+ new FDistribution(0, 1);
Assert.fail("Expecting NotStrictlyPositiveException for df = 0");
} catch (NotStrictlyPositiveException ex) {
// Expected.
}
try {
- new FDistributionImpl(1, 0);
+ new FDistribution(1, 0);
Assert.fail("Expecting NotStrictlyPositiveException for df = 0");
} catch (NotStrictlyPositiveException ex) {
// Expected.
@@ -106,7 +106,7 @@ public class FDistributionTest extends ContinuousDistributionAbstractTest {
@Test
public void testLargeDegreesOfFreedom() throws Exception {
- FDistributionImpl fd = new FDistributionImpl(100000, 100000);
+ FDistribution fd = new FDistribution(100000, 100000);
double p = fd.cumulativeProbability(.999);
double x = fd.inverseCumulativeProbability(p);
Assert.assertEquals(.999, x, 1.0e-5);
@@ -114,12 +114,12 @@ public class FDistributionTest extends ContinuousDistributionAbstractTest {
@Test
public void testSmallDegreesOfFreedom() throws Exception {
- FDistributionImpl fd = new FDistributionImpl(1, 1);
+ FDistribution fd = new FDistribution(1, 1);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
Assert.assertEquals(0.975, x, 1.0e-5);
- fd = new FDistributionImpl(1, 2);
+ fd = new FDistribution(1, 2);
p = fd.cumulativeProbability(0.975);
x = fd.inverseCumulativeProbability(p);
Assert.assertEquals(0.975, x, 1.0e-5);
@@ -129,17 +129,17 @@ public class FDistributionTest extends ContinuousDistributionAbstractTest {
public void testMoments() {
final double tol = 1e-9;
FDistribution dist;
-
- dist = new FDistributionImpl(1, 2);
+
+ dist = new FDistribution(1, 2);
Assert.assertTrue(Double.isNaN(dist.getNumericalMean()));
Assert.assertTrue(Double.isNaN(dist.getNumericalVariance()));
-
- dist = new FDistributionImpl(1, 3);
+
+ dist = new FDistribution(1, 3);
Assert.assertEquals(dist.getNumericalMean(), 3d / (3d - 2d), tol);
Assert.assertTrue(Double.isNaN(dist.getNumericalVariance()));
-
- dist = new FDistributionImpl(1, 5);
+
+ dist = new FDistribution(1, 5);
Assert.assertEquals(dist.getNumericalMean(), 5d / (5d - 2d), tol);
- Assert.assertEquals(dist.getNumericalVariance(), (2d * 5d * 5d * 4d) / 9d, tol);
+ Assert.assertEquals(dist.getNumericalVariance(), (2d * 5d * 5d * 4d) / 9d, tol);
}
}
diff --git a/src/test/java/org/apache/commons/math/distribution/GammaDistributionTest.java b/src/test/java/org/apache/commons/math/distribution/GammaDistributionTest.java
index f2ba4c1b8..e38d1073f 100644
--- a/src/test/java/org/apache/commons/math/distribution/GammaDistributionTest.java
+++ b/src/test/java/org/apache/commons/math/distribution/GammaDistributionTest.java
@@ -35,7 +35,7 @@ public class GammaDistributionTest extends ContinuousDistributionAbstractTest {
/** Creates the default continuous distribution instance to use in tests. */
@Override
public GammaDistribution makeDistribution() {
- return new GammaDistributionImpl(4d, 2d);
+ return new GammaDistribution(4d, 2d);
}
/** Creates the default cumulative probability distribution test input values */
@@ -77,13 +77,13 @@ public class GammaDistributionTest extends ContinuousDistributionAbstractTest {
@Test
public void testPreconditions() {
try {
- new GammaDistributionImpl(0, 1);
+ new GammaDistribution(0, 1);
Assert.fail("Expecting NotStrictlyPositiveException for alpha = 0");
} catch (NotStrictlyPositiveException ex) {
// Expected.
}
try {
- new GammaDistributionImpl(1, 0);
+ new GammaDistribution(1, 0);
Assert.fail("Expecting NotStrictlyPositiveException for alpha = 0");
} catch (NotStrictlyPositiveException ex) {
// Expected.
@@ -108,13 +108,13 @@ public class GammaDistributionTest extends ContinuousDistributionAbstractTest {
}
private void testProbability(double x, double a, double b, double expected) throws Exception {
- GammaDistribution distribution = new GammaDistributionImpl( a, b );
+ GammaDistribution distribution = new GammaDistribution( a, b );
double actual = distribution.cumulativeProbability(x);
Assert.assertEquals("probability for " + x, expected, actual, 10e-4);
}
private void testValue(double expected, double a, double b, double p) throws Exception {
- GammaDistribution distribution = new GammaDistributionImpl( a, b );
+ GammaDistribution distribution = new GammaDistribution( a, b );
double actual = distribution.inverseCumulativeProbability(p);
Assert.assertEquals("critical value for " + p, expected, actual, 10e-4);
}
@@ -141,7 +141,7 @@ public class GammaDistributionTest extends ContinuousDistributionAbstractTest {
}
private void checkDensity(double alpha, double rate, double[] x, double[] expected) {
- GammaDistribution d = new GammaDistributionImpl(alpha, 1 / rate);
+ GammaDistribution d = new GammaDistribution(alpha, 1 / rate);
for (int i = 0; i < x.length; i++) {
Assert.assertEquals(expected[i], d.density(x[i]), 1e-5);
}
@@ -158,12 +158,12 @@ public class GammaDistributionTest extends ContinuousDistributionAbstractTest {
public void testMoments() {
final double tol = 1e-9;
GammaDistribution dist;
-
- dist = new GammaDistributionImpl(1, 2);
+
+ dist = new GammaDistribution(1, 2);
Assert.assertEquals(dist.getNumericalMean(), 2, tol);
- Assert.assertEquals(dist.getNumericalVariance(), 4, tol);
-
- dist = new GammaDistributionImpl(1.1, 4.2);
+ Assert.assertEquals(dist.getNumericalVariance(), 4, tol);
+
+ dist = new GammaDistribution(1.1, 4.2);
Assert.assertEquals(dist.getNumericalMean(), 1.1d * 4.2d, tol);
Assert.assertEquals(dist.getNumericalVariance(), 1.1d * 4.2d * 4.2d, tol);
}
diff --git a/src/test/java/org/apache/commons/math/random/RandomDataTest.java b/src/test/java/org/apache/commons/math/random/RandomDataTest.java
index 9859e1d36..67ee45c64 100644
--- a/src/test/java/org/apache/commons/math/random/RandomDataTest.java
+++ b/src/test/java/org/apache/commons/math/random/RandomDataTest.java
@@ -30,9 +30,9 @@ import org.apache.commons.math.distribution.BinomialDistribution;
import org.apache.commons.math.distribution.BinomialDistributionTest;
import org.apache.commons.math.distribution.CauchyDistribution;
import org.apache.commons.math.distribution.ChiSquaredDistribution;
-import org.apache.commons.math.distribution.ExponentialDistributionImpl;
-import org.apache.commons.math.distribution.FDistributionImpl;
-import org.apache.commons.math.distribution.GammaDistributionImpl;
+import org.apache.commons.math.distribution.ExponentialDistribution;
+import org.apache.commons.math.distribution.FDistribution;
+import org.apache.commons.math.distribution.GammaDistribution;
import org.apache.commons.math.distribution.HypergeometricDistributionImpl;
import org.apache.commons.math.distribution.HypergeometricDistributionTest;
import org.apache.commons.math.distribution.PascalDistributionImpl;
@@ -616,7 +616,7 @@ public class RandomDataTest {
long[] counts;
// Mean 1
- quartiles = TestUtils.getDistributionQuartiles(new ExponentialDistributionImpl(1));
+ quartiles = TestUtils.getDistributionQuartiles(new ExponentialDistribution(1));
counts = new long[4];
randomData.reSeed(1000);
for (int i = 0; i < 1000; i++) {
@@ -626,7 +626,7 @@ public class RandomDataTest {
TestUtils.assertChiSquareAccept(expected, counts, 0.001);
// Mean 5
- quartiles = TestUtils.getDistributionQuartiles(new ExponentialDistributionImpl(5));
+ quartiles = TestUtils.getDistributionQuartiles(new ExponentialDistribution(5));
counts = new long[4];
randomData.reSeed(1000);
for (int i = 0; i < 1000; i++) {
@@ -896,7 +896,7 @@ public class RandomDataTest {
@Test
public void testNextF() throws Exception {
- double[] quartiles = TestUtils.getDistributionQuartiles(new FDistributionImpl(12, 5));
+ double[] quartiles = TestUtils.getDistributionQuartiles(new FDistribution(12, 5));
long[] counts = new long[4];
randomData.reSeed(1000);
for (int i = 0; i < 1000; i++) {
@@ -912,7 +912,7 @@ public class RandomDataTest {
long[] counts;
// Tests shape > 1, one case in the rejection sampling
- quartiles = TestUtils.getDistributionQuartiles(new GammaDistributionImpl(4, 2));
+ quartiles = TestUtils.getDistributionQuartiles(new GammaDistribution(4, 2));
counts = new long[4];
randomData.reSeed(1000);
for (int i = 0; i < 1000; i++) {
@@ -922,7 +922,7 @@ public class RandomDataTest {
TestUtils.assertChiSquareAccept(expected, counts, 0.001);
// Tests shape <= 1, another case in the rejection sampling
- quartiles = TestUtils.getDistributionQuartiles(new GammaDistributionImpl(0.3, 3));
+ quartiles = TestUtils.getDistributionQuartiles(new GammaDistribution(0.3, 3));
counts = new long[4];
randomData.reSeed(1000);
for (int i = 0; i < 1000; i++) {