Avoid protected fields.
This commit is contained in:
parent
346a81d770
commit
355b55e4c6
|
@ -56,16 +56,19 @@ public abstract class AbstractFieldIntegrator<T extends RealFieldElement<T>> imp
|
|||
private static final double DEFAULT_FUNCTION_VALUE_ACCURACY = 1e-15;
|
||||
|
||||
/** Step handler. */
|
||||
protected Collection<FieldStepHandler<T>> stepHandlers;
|
||||
private Collection<FieldStepHandler<T>> stepHandlers;
|
||||
|
||||
/** Current step start. */
|
||||
protected FieldODEStateAndDerivative<T> stepStart;
|
||||
private FieldODEStateAndDerivative<T> stepStart;
|
||||
|
||||
/** Current stepsize. */
|
||||
protected T stepSize;
|
||||
private T stepSize;
|
||||
|
||||
/** Indicator for last step. */
|
||||
protected boolean isLastStep;
|
||||
private boolean isLastStep;
|
||||
|
||||
/** Indicator that a state or derivative reset was triggered by some event. */
|
||||
private boolean resetOccurred;
|
||||
|
||||
/** Field to which the time and state vector elements belong. */
|
||||
private final Field<T> field;
|
||||
|
@ -352,6 +355,7 @@ public abstract class AbstractFieldIntegrator<T extends RealFieldElement<T>> imp
|
|||
}
|
||||
|
||||
FieldODEState<T> newState = null;
|
||||
resetOccurred = false;
|
||||
for (final FieldEventState<T> state : eventsStates) {
|
||||
newState = state.reset(eventState);
|
||||
if (newState != null) {
|
||||
|
@ -359,6 +363,7 @@ public abstract class AbstractFieldIntegrator<T extends RealFieldElement<T>> imp
|
|||
// invalidate the derivatives, we need to recompute them
|
||||
final T[] y = equations.getMapper().mapState(newState);
|
||||
final T[] yDot = computeDerivatives(newState.getTime(), y);
|
||||
resetOccurred = true;
|
||||
return equations.getMapper().mapStateAndDerivative(newState.getTime(), y, yDot);
|
||||
}
|
||||
}
|
||||
|
@ -411,4 +416,52 @@ public abstract class AbstractFieldIntegrator<T extends RealFieldElement<T>> imp
|
|||
|
||||
}
|
||||
|
||||
/** Check if a reset occurred while last step was accepted.
|
||||
* @return true if a reset occurred while last step was accepted
|
||||
*/
|
||||
protected boolean resetOccurred() {
|
||||
return resetOccurred;
|
||||
}
|
||||
|
||||
/** Set the current step size.
|
||||
* @param stepSize step size to set
|
||||
*/
|
||||
protected void setStepSize(final T stepSize) {
|
||||
this.stepSize = stepSize;
|
||||
}
|
||||
|
||||
/** Get the current step size.
|
||||
* @return current step size
|
||||
*/
|
||||
protected T getStepSize() {
|
||||
return stepSize;
|
||||
}
|
||||
/** Set current step start.
|
||||
* @param stepStart step start
|
||||
*/
|
||||
protected void setStepStart(final FieldODEStateAndDerivative<T> stepStart) {
|
||||
this.stepStart = stepStart;
|
||||
}
|
||||
|
||||
/** Getcurrent step start.
|
||||
* @return current step start
|
||||
*/
|
||||
protected FieldODEStateAndDerivative<T> getStepStart() {
|
||||
return stepStart;
|
||||
}
|
||||
|
||||
/** Set the last state flag.
|
||||
* @param isLastStep if true, this step is the last one
|
||||
*/
|
||||
protected void setIsLastStep(final boolean isLastStep) {
|
||||
this.isLastStep = isLastStep;
|
||||
}
|
||||
|
||||
/** Check if this step is the last one.
|
||||
* @return true if this step is the last one
|
||||
*/
|
||||
protected boolean isLastStep() {
|
||||
return isLastStep;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -399,6 +399,7 @@ public abstract class AbstractIntegrator implements FirstOrderIntegrator {
|
|||
}
|
||||
|
||||
boolean needReset = false;
|
||||
resetOccurred = false;
|
||||
for (final EventState state : eventsStates) {
|
||||
needReset = needReset || state.reset(eventT, eventYComplete);
|
||||
}
|
||||
|
|
|
@ -345,8 +345,8 @@ public abstract class AdaptiveStepsizeFieldIntegrator<T extends RealFieldElement
|
|||
|
||||
/** Reset internal state to dummy values. */
|
||||
protected void resetInternalState() {
|
||||
stepStart = null;
|
||||
stepSize = minStep.multiply(maxStep).sqrt();
|
||||
setStepStart(null);
|
||||
setStepSize(minStep.multiply(maxStep).sqrt());
|
||||
}
|
||||
|
||||
/** Get the minimal step.
|
||||
|
|
|
@ -222,7 +222,7 @@ public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldEleme
|
|||
sanityChecks(initialState, finalTime);
|
||||
final T t0 = initialState.getTime();
|
||||
final T[] y0 = equations.getMapper().mapState(initialState);
|
||||
stepStart = initIntegration(equations, t0, y0, finalTime);
|
||||
setStepStart(initIntegration(equations, t0, y0, finalTime));
|
||||
final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
|
||||
|
||||
// create some internal working arrays
|
||||
|
@ -236,7 +236,7 @@ public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldEleme
|
|||
boolean firstTime = true;
|
||||
|
||||
// main integration loop
|
||||
isLastStep = false;
|
||||
setIsLastStep(false);
|
||||
do {
|
||||
|
||||
// iterate over step size, ensuring local normalized error is smaller than 1
|
||||
|
@ -244,8 +244,8 @@ public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldEleme
|
|||
while (error.subtract(1.0).getReal() >= 0) {
|
||||
|
||||
// first stage
|
||||
y = equations.getMapper().mapState(stepStart);
|
||||
yDotK[0] = equations.getMapper().mapDerivative(stepStart);
|
||||
y = equations.getMapper().mapState(getStepStart());
|
||||
yDotK[0] = equations.getMapper().mapDerivative(getStepStart());
|
||||
|
||||
if (firstTime) {
|
||||
final T[] scale = MathArrays.buildArray(getField(), mainSetDimension);
|
||||
|
@ -258,18 +258,18 @@ public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldEleme
|
|||
scale[i] = y[i].abs().multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);
|
||||
}
|
||||
}
|
||||
hNew = initializeStep(forward, getOrder(), scale, stepStart, equations.getMapper());
|
||||
hNew = initializeStep(forward, getOrder(), scale, getStepStart(), equations.getMapper());
|
||||
firstTime = false;
|
||||
}
|
||||
|
||||
stepSize = hNew;
|
||||
setStepSize(hNew);
|
||||
if (forward) {
|
||||
if (stepStart.getTime().add(stepSize).subtract(finalTime).getReal() >= 0) {
|
||||
stepSize = finalTime.subtract(stepStart.getTime());
|
||||
if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() >= 0) {
|
||||
setStepSize(finalTime.subtract(getStepStart().getTime()));
|
||||
}
|
||||
} else {
|
||||
if (stepStart.getTime().add(stepSize).subtract(finalTime).getReal() <= 0) {
|
||||
stepSize = finalTime.subtract(stepStart.getTime());
|
||||
if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() <= 0) {
|
||||
setStepSize(finalTime.subtract(getStepStart().getTime()));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -281,10 +281,10 @@ public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldEleme
|
|||
for (int l = 1; l < k; ++l) {
|
||||
sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
|
||||
}
|
||||
yTmp[j] = y[j].add(stepSize.multiply(sum));
|
||||
yTmp[j] = y[j].add(getStepSize().multiply(sum));
|
||||
}
|
||||
|
||||
yDotK[k] = computeDerivatives(stepStart.getTime().add(stepSize.multiply(c[k-1])), yTmp);
|
||||
yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp);
|
||||
|
||||
}
|
||||
|
||||
|
@ -294,53 +294,53 @@ public abstract class EmbeddedRungeKuttaFieldIntegrator<T extends RealFieldEleme
|
|||
for (int l = 1; l < stages; ++l) {
|
||||
sum = sum.add(yDotK[l][j].multiply(b[l]));
|
||||
}
|
||||
yTmp[j] = y[j].add(stepSize.multiply(sum));
|
||||
yTmp[j] = y[j].add(getStepSize().multiply(sum));
|
||||
}
|
||||
|
||||
// estimate the error at the end of the step
|
||||
error = estimateError(yDotK, y, yTmp, stepSize);
|
||||
error = estimateError(yDotK, y, yTmp, getStepSize());
|
||||
if (error.subtract(1.0).getReal() >= 0) {
|
||||
// reject the step and attempt to reduce error by stepsize control
|
||||
final T factor = MathUtils.min(maxGrowth,
|
||||
MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
|
||||
hNew = filterStep(stepSize.multiply(factor), forward, false);
|
||||
hNew = filterStep(getStepSize().multiply(factor), forward, false);
|
||||
}
|
||||
|
||||
}
|
||||
final T stepEnd = stepStart.getTime().add(stepSize);
|
||||
final T stepEnd = getStepStart().getTime().add(getStepSize());
|
||||
final T[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp);
|
||||
final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<T>(stepEnd, yTmp, yDotTmp);
|
||||
|
||||
// local error is small enough: accept the step, trigger events and step handlers
|
||||
System.arraycopy(yTmp, 0, y, 0, y0.length);
|
||||
stepStart = acceptStep(createInterpolator(forward, yDotK, stepStart, stateTmp, equations.getMapper()),
|
||||
finalTime);
|
||||
setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()),
|
||||
finalTime));
|
||||
|
||||
if (!isLastStep) {
|
||||
if (!isLastStep()) {
|
||||
|
||||
// stepsize control for next step
|
||||
final T factor = MathUtils.min(maxGrowth,
|
||||
MathUtils.max(minReduction, safety.multiply(error.pow(exp))));
|
||||
final T scaledH = stepSize.multiply(factor);
|
||||
final T nextT = stepStart.getTime().add(scaledH);
|
||||
final T scaledH = getStepSize().multiply(factor);
|
||||
final T nextT = getStepStart().getTime().add(scaledH);
|
||||
final boolean nextIsLast = forward ?
|
||||
nextT.subtract(finalTime).getReal() >= 0 :
|
||||
nextT.subtract(finalTime).getReal() <= 0;
|
||||
hNew = filterStep(scaledH, forward, nextIsLast);
|
||||
|
||||
final T filteredNextT = stepStart.getTime().add(hNew);
|
||||
final T filteredNextT = getStepStart().getTime().add(hNew);
|
||||
final boolean filteredNextIsLast = forward ?
|
||||
filteredNextT.subtract(finalTime).getReal() >= 0 :
|
||||
filteredNextT.subtract(finalTime).getReal() <= 0;
|
||||
if (filteredNextIsLast) {
|
||||
hNew = finalTime.subtract(stepStart.getTime());
|
||||
hNew = finalTime.subtract(getStepStart().getTime());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
} while (!isLastStep);
|
||||
} while (!isLastStep());
|
||||
|
||||
final FieldODEStateAndDerivative<T> finalState = stepStart;
|
||||
final FieldODEStateAndDerivative<T> finalState = getStepStart();
|
||||
resetInternalState();
|
||||
return finalState;
|
||||
|
||||
|
|
|
@ -120,7 +120,7 @@ public abstract class RungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
|
|||
sanityChecks(initialState, finalTime);
|
||||
final T t0 = initialState.getTime();
|
||||
final T[] y0 = equations.getMapper().mapState(initialState);
|
||||
stepStart = initIntegration(equations, t0, y0, finalTime);
|
||||
setStepStart(initIntegration(equations, t0, y0, finalTime));
|
||||
final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;
|
||||
|
||||
// create some internal working arrays
|
||||
|
@ -131,26 +131,26 @@ public abstract class RungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
|
|||
|
||||
// set up integration control objects
|
||||
if (forward) {
|
||||
if (stepStart.getTime().add(step).subtract(finalTime).getReal() >= 0) {
|
||||
stepSize = finalTime.subtract(stepStart.getTime());
|
||||
if (getStepStart().getTime().add(step).subtract(finalTime).getReal() >= 0) {
|
||||
setStepSize(finalTime.subtract(getStepStart().getTime()));
|
||||
} else {
|
||||
stepSize = step;
|
||||
setStepSize(step);
|
||||
}
|
||||
} else {
|
||||
if (stepStart.getTime().subtract(step).subtract(finalTime).getReal() <= 0) {
|
||||
stepSize = finalTime.subtract(stepStart.getTime());
|
||||
if (getStepStart().getTime().subtract(step).subtract(finalTime).getReal() <= 0) {
|
||||
setStepSize(finalTime.subtract(getStepStart().getTime()));
|
||||
} else {
|
||||
stepSize = step.negate();
|
||||
setStepSize(step.negate());
|
||||
}
|
||||
}
|
||||
|
||||
// main integration loop
|
||||
isLastStep = false;
|
||||
setIsLastStep(false);
|
||||
do {
|
||||
|
||||
// first stage
|
||||
y = equations.getMapper().mapState(stepStart);
|
||||
yDotK[0] = equations.getMapper().mapDerivative(stepStart);
|
||||
y = equations.getMapper().mapState(getStepStart());
|
||||
yDotK[0] = equations.getMapper().mapDerivative(getStepStart());
|
||||
|
||||
// next stages
|
||||
for (int k = 1; k < stages; ++k) {
|
||||
|
@ -160,10 +160,10 @@ public abstract class RungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
|
|||
for (int l = 1; l < k; ++l) {
|
||||
sum = sum.add(yDotK[l][j].multiply(a[k-1][l]));
|
||||
}
|
||||
yTmp[j] = y[j].add(stepSize.multiply(sum));
|
||||
yTmp[j] = y[j].add(getStepSize().multiply(sum));
|
||||
}
|
||||
|
||||
yDotK[k] = computeDerivatives(stepStart.getTime().add(stepSize.multiply(c[k-1])), yTmp);
|
||||
yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp);
|
||||
|
||||
}
|
||||
|
||||
|
@ -173,34 +173,34 @@ public abstract class RungeKuttaFieldIntegrator<T extends RealFieldElement<T>>
|
|||
for (int l = 1; l < stages; ++l) {
|
||||
sum = sum.add(yDotK[l][j].multiply(b[l]));
|
||||
}
|
||||
yTmp[j] = y[j].add(stepSize.multiply(sum));
|
||||
yTmp[j] = y[j].add(getStepSize().multiply(sum));
|
||||
}
|
||||
final T stepEnd = stepStart.getTime().add(stepSize);
|
||||
final T stepEnd = getStepStart().getTime().add(getStepSize());
|
||||
final T[] yDotTmp = computeDerivatives(stepEnd, yTmp);
|
||||
final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<T>(stepEnd, yTmp, yDotTmp);
|
||||
|
||||
// discrete events handling
|
||||
System.arraycopy(yTmp, 0, y, 0, y0.length);
|
||||
stepStart = acceptStep(createInterpolator(forward, yDotK, stepStart, stateTmp, equations.getMapper()),
|
||||
finalTime);
|
||||
setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()),
|
||||
finalTime));
|
||||
|
||||
if (!isLastStep) {
|
||||
if (!isLastStep()) {
|
||||
|
||||
// stepsize control for next step
|
||||
final T nextT = stepStart.getTime().add(stepSize);
|
||||
final T nextT = getStepStart().getTime().add(getStepSize());
|
||||
final boolean nextIsLast = forward ?
|
||||
(nextT.subtract(finalTime).getReal() >= 0) :
|
||||
(nextT.subtract(finalTime).getReal() <= 0);
|
||||
if (nextIsLast) {
|
||||
stepSize = finalTime.subtract(stepStart.getTime());
|
||||
setStepSize(finalTime.subtract(getStepStart().getTime()));
|
||||
}
|
||||
}
|
||||
|
||||
} while (!isLastStep);
|
||||
} while (!isLastStep());
|
||||
|
||||
final FieldODEStateAndDerivative<T> finalState = stepStart;
|
||||
stepStart = null;
|
||||
stepSize = null;
|
||||
final FieldODEStateAndDerivative<T> finalState = getStepStart();
|
||||
setStepStart(null);
|
||||
setStepSize(null);
|
||||
return finalState;
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue