(Too) poor javadoc for MATH-437 improved
git-svn-id: https://svn.apache.org/repos/asf/commons/proper/math/trunk@1083767 13f79535-47bb-0310-9956-ffa450edef68
This commit is contained in:
parent
ba9b83410c
commit
35fa22ed95
src/main/java/org/apache/commons/math/distribution
|
@ -17,40 +17,24 @@
|
|||
|
||||
package org.apache.commons.math.distribution;
|
||||
|
||||
import org.apache.commons.math.exception.MathArithmeticException;
|
||||
|
||||
/**
|
||||
* Treats the distribution of the two-sided
|
||||
* {@code P(D<sub>n</sup> < d)}
|
||||
* where {@code D<sub>n</sup> = sup_x | G(x) - Gn (x) |} for the
|
||||
* {@code P(D}<sub>{@code n}</sub>{@code < d)}
|
||||
* where {@code D}<sub>{@code n}</sub>{@code = sup_x | G(x) - Gn (x) |} for the
|
||||
* theoretical cdf G and the emperical cdf Gn.
|
||||
*
|
||||
* This implementation is based on [1] with certain quick
|
||||
* decisions for extreme values given in [2].
|
||||
*
|
||||
* In short, when wanting to evaluate {@code P(D<sub>n</sup> < d)},
|
||||
* the method in [1] is to write {@code d = (k - h) / n} for positive
|
||||
* integer {@code k} and {@code 0 <= h < 1}. Then
|
||||
* {@code P(D<sub>n</sup> < d) = (n!/n^n) * t_kk}
|
||||
* where {@code t_kk} is the (k, k)'th entry in the special matrix {@code H^n},
|
||||
* i.e. {@code H} to the {@code n}'th power.
|
||||
*
|
||||
* See also <a href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test">
|
||||
* Kolmogorov-Smirnov test on Wikipedia</a> for details.
|
||||
*
|
||||
* References:
|
||||
* [1] Evaluating Kolmogorov's Distribution by George Marsaglia, Wai
|
||||
* Wan Tsang, Jingbo Wang http://www.jstatsoft.org/v08/i18/paper
|
||||
*
|
||||
* [2] <a href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/ksdist.pdf">
|
||||
* Computing the Two-Sided Kolmogorov-Smirnov Distribution</a> by Richard Simard
|
||||
* and Pierre L'Ecuyer
|
||||
*
|
||||
* Note that [1] contains an error in computing h, refer to
|
||||
* <a href="https://issues.apache.org/jira/browse/MATH-437">MATH-437</a> for details.
|
||||
*
|
||||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public interface KolmogorovSmirnovDistribution {
|
||||
|
||||
/**
|
||||
* Calculates {@code P(D}<sub>n</sub> {@code < d)}.
|
||||
*
|
||||
* @param d statistic
|
||||
* @return the two-sided probability of {@code P(D}<sub>n</sub> {@code < d)}
|
||||
*/
|
||||
public double cdf(double d);
|
||||
|
||||
}
|
||||
|
|
|
@ -33,6 +33,37 @@ import org.apache.commons.math.linear.RealMatrix;
|
|||
/**
|
||||
* The default implementation of {@link KolmogorovSmirnovDistribution}.
|
||||
*
|
||||
* <p>Treats the distribution of the two-sided
|
||||
* {@code P(D}<sub>{@code n}</sub>{@code < d)}
|
||||
* where {@code D}<sub>{@code n}</sub>{@code = sup_x | G(x) - Gn (x) |} for the
|
||||
* theoretical cdf G and the emperical cdf Gn.</p>
|
||||
*
|
||||
* <p>This implementation is based on [1] with certain quick
|
||||
* decisions for extreme values given in [2].</p>
|
||||
*
|
||||
* <p>In short, when wanting to evaluate {@code P(D}<sub>{@code n}</sub>{@code < d)},
|
||||
* the method in [1] is to write {@code d = (k - h) / n} for positive
|
||||
* integer {@code k} and {@code 0 <= h < 1}. Then
|
||||
* {@code P(D}<sub>{@code n}</sub>{@code < d) = (n!/n}<sup>{@code n}</sup>{@code ) * t_kk}
|
||||
* where {@code t_kk} is the {@code (k, k)}'th entry in the special
|
||||
* matrix {@code H}<sup>{@code n}</sup>, i.e. {@code H} to the {@code n}'th power.</p>
|
||||
*
|
||||
* <p>See also <a href="http://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test">
|
||||
* Kolmogorov-Smirnov test on Wikipedia</a> for details.</p>
|
||||
*
|
||||
* <p>References:
|
||||
* <ul>
|
||||
* <li>[1] <a href="http://www.jstatsoft.org/v08/i18/paper">
|
||||
* Evaluating Kolmogorov's Distribution</a> by George Marsaglia, Wai
|
||||
* Wan Tsang, and Jingbo Wang</li>
|
||||
* <li>[2] <a href="http://www.iro.umontreal.ca/~lecuyer/myftp/papers/ksdist.pdf">
|
||||
* Computing the Two-Sided Kolmogorov-Smirnov Distribution</a> by Richard Simard
|
||||
* and Pierre L'Ecuyer</li>
|
||||
* </ul>
|
||||
* Note that [1] contains an error in computing h, refer to
|
||||
* <a href="https://issues.apache.org/jira/browse/MATH-437">MATH-437</a> for details.
|
||||
* </p>
|
||||
*
|
||||
* @version $Revision$ $Date$
|
||||
*/
|
||||
public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistribution, Serializable {
|
||||
|
@ -45,7 +76,7 @@ public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistr
|
|||
/**
|
||||
* @param n Number of observations
|
||||
* @throws NotStrictlyPositiveException
|
||||
* if n <= 0
|
||||
* if {@code n <= 0}
|
||||
*/
|
||||
public KolmogorovSmirnovDistributionImpl(int n) {
|
||||
if (n <= 0) {
|
||||
|
@ -56,7 +87,7 @@ public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistr
|
|||
}
|
||||
|
||||
/**
|
||||
* Calculates {@code P(D<sub>n</sup> < d)} using method described in
|
||||
* Calculates {@code P(D}<sub>n</sub> {@code < d)} using method described in
|
||||
* [1] with quick decisions for extreme values given in [2] (see above). The
|
||||
* result is not exact as with
|
||||
* {@link KolmogorovSmirnovDistributionImpl#cdfExact(double)} because
|
||||
|
@ -64,17 +95,19 @@ public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistr
|
|||
* {@link org.apache.commons.math.fraction.BigFraction}.
|
||||
*
|
||||
* @param d statistic
|
||||
* @return the two-sided probability of {@code P(D<sub>n</sup> < d)}
|
||||
* @return the two-sided probability of {@code P(D}<sub>n</sub> {@code < d)}
|
||||
* @throws MathArithmeticException
|
||||
* if algorithm fails to convert h to a BigFraction in
|
||||
* expressing d as (k - h) / m for integer k, m and 0 <= h < 1.
|
||||
* if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math.fraction.BigFraction} in
|
||||
* expressing {@code d} as {@code (k - h) / m} for integer
|
||||
* {@code k, m} and {@code 0 <= h < 1}.
|
||||
*/
|
||||
public double cdf(double d) throws MathArithmeticException {
|
||||
return this.cdf(d, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates {@code P(D<sub>n</sup> < d)} using method described in
|
||||
* Calculates {@code P(D}<sub>n</sub> {@code < d)} using method described in
|
||||
* [1] with quick decisions for extreme values given in [2] (see above).
|
||||
* The result is exact in the sense that BigFraction/BigReal is used everywhere
|
||||
* at the expense of very slow execution time. Almost never choose this in
|
||||
|
@ -83,17 +116,19 @@ public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistr
|
|||
* {@link KolmogorovSmirnovDistributionImpl#cdf(double)}
|
||||
*
|
||||
* @param d statistic
|
||||
* @return the two-sided probability of {@code P(D<sub>n</sup> < d)}
|
||||
* @return the two-sided probability of {@code P(D}<sub>n</sub> {@code < d)}
|
||||
* @throws MathArithmeticException
|
||||
* if algorithm fails to convert h to a BigFraction in
|
||||
* expressing d as (k - h) / m for integer k, m and 0 <= h < 1.
|
||||
* if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math.fraction.BigFraction} in
|
||||
* expressing {@code d} as {@code (k - h) / m} for integer
|
||||
* {@code k, m} and {@code 0 <= h < 1}.
|
||||
*/
|
||||
public double cdfExact(double d) throws MathArithmeticException {
|
||||
return this.cdf(d, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates {@code P(D<sub>n</sup> < d)} using method described in
|
||||
* Calculates {@code P(D}<sub>n</sub> {@code < d)} using method described in
|
||||
* [1] with quick decisions for extreme values given in [2] (see above).
|
||||
*
|
||||
* @param d statistic
|
||||
|
@ -101,13 +136,15 @@ public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistr
|
|||
* whether the probability should be calculated exact using
|
||||
* BigFraction everywhere at the expense of very
|
||||
* slow execution time, or if double should be used convenient
|
||||
* places to gain speed. Never choose true in real applications
|
||||
* unless you are very sure; true is almost solely for
|
||||
* verification purposes.
|
||||
* @return the two-sided probability of {@code P(D<sub>n</sup> < d)}
|
||||
* places to gain speed. Almost never choose {@code true} in
|
||||
* real applications unless you are very sure; {@code true} is
|
||||
* almost solely for verification purposes.
|
||||
* @return the two-sided probability of {@code P(D}<sub>n</sub> {@code < d)}
|
||||
* @throws MathArithmeticException
|
||||
* if algorithm fails to convert h to a BigFraction in
|
||||
* expressing d as (k - h) / m for integer k, m and 0 <= h < 1.
|
||||
* if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math.fraction.BigFraction} in
|
||||
* expressing {@code d} as {@code (k - h) / m} for integer
|
||||
* {@code k, m} and {@code 0 <= h < 1}.
|
||||
*/
|
||||
public double cdf(double d, boolean exact)
|
||||
throws MathArithmeticException {
|
||||
|
@ -146,14 +183,16 @@ public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistr
|
|||
}
|
||||
|
||||
/**
|
||||
* Calculates {@code P(D<sub>n</sup> < d)} exact using method
|
||||
* Calculates {@code P(D}<sub>n</sub> {@code < d)} exact using method
|
||||
* described in [1] and BigFraction (see above).
|
||||
*
|
||||
* @param d statistic
|
||||
* @return the two-sided probability of {@code P(D<sub>n</sup> < d)}
|
||||
* @return the two-sided probability of {@code P(D}<sub>n</sub> {@code < d)}
|
||||
* @throws MathArithmeticException
|
||||
* if algorithm fails to convert h to a BigFraction in
|
||||
* expressing d as (k - h) / m for integer k, m and 0 <= h < 1.
|
||||
* if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math.fraction.BigFraction} in
|
||||
* expressing {@code d} as {@code (k - h) / m} for integer
|
||||
* {@code k, m} and {@code 0 <= h < 1}.
|
||||
*/
|
||||
private double exactK(double d)
|
||||
throws MathArithmeticException {
|
||||
|
@ -180,14 +219,16 @@ public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistr
|
|||
}
|
||||
|
||||
/**
|
||||
* Calculates <code>P(D<sub>n</sup> < d)</code> using method described in
|
||||
* Calculates {@code P(D}<sub>n</sub> {@code < d)} using method described in
|
||||
* [1] and doubles (see above).
|
||||
*
|
||||
* @param d statistic
|
||||
* @return the two-sided probability of {@code P(D<sub>n</sup> < d)}
|
||||
* @return the two-sided probability of {@code P(D}<sub>n</sub> {@code < d)}
|
||||
* @throws MathArithmeticException
|
||||
* if algorithm fails to convert h to a BigFraction in
|
||||
* expressing d as (k - h) / m for integer k, m and 0 <= h < 1.
|
||||
* if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math.fraction.BigFraction} in
|
||||
* expressing {@code d} as {@code (k - h) / m} for integer
|
||||
* {@code k, m} and {@code 0 <= h < 1}.
|
||||
*/
|
||||
private double roundedK(double d)
|
||||
throws MathArithmeticException {
|
||||
|
@ -221,13 +262,15 @@ public class KolmogorovSmirnovDistributionImpl implements KolmogorovSmirnovDistr
|
|||
}
|
||||
|
||||
/***
|
||||
* Creates H of size m x m as described in [1] (see above).
|
||||
* Creates {@code H} of size {@code m x m} as described in [1] (see above).
|
||||
*
|
||||
* @param d statistic
|
||||
*
|
||||
* @throws MathArithmeticException
|
||||
* if algorithm fails to convert h to a BigFraction in
|
||||
* expressing x as (k - h) / m for integer k, m and 0 <= h < 1.
|
||||
* if algorithm fails to convert {@code h} to a
|
||||
* {@link org.apache.commons.math.fraction.BigFraction} in
|
||||
* expressing {@code d} as {@code (k - h) / m} for integer
|
||||
* {@code k, m} and {@code 0 <= h < 1}.
|
||||
*/
|
||||
private FieldMatrix<BigFraction> createH(double d)
|
||||
throws MathArithmeticException {
|
||||
|
|
Loading…
Reference in New Issue