diff --git a/src/main/java/org/apache/commons/math/transform/FastFourierTransformer.java b/src/main/java/org/apache/commons/math/transform/FastFourierTransformer.java
index 6e26f272e..249ec35e9 100644
--- a/src/main/java/org/apache/commons/math/transform/FastFourierTransformer.java
+++ b/src/main/java/org/apache/commons/math/transform/FastFourierTransformer.java
@@ -18,11 +18,11 @@ package org.apache.commons.math.transform;
import java.io.Serializable;
import java.lang.reflect.Array;
+import java.util.Arrays;
import org.apache.commons.math.analysis.FunctionUtils;
import org.apache.commons.math.analysis.UnivariateFunction;
import org.apache.commons.math.complex.Complex;
-import org.apache.commons.math.complex.RootsOfUnity;
import org.apache.commons.math.exception.DimensionMismatchException;
import org.apache.commons.math.exception.MathIllegalArgumentException;
import org.apache.commons.math.exception.util.LocalizedFormats;
@@ -85,7 +85,53 @@ import org.apache.commons.math.util.FastMath;
public class FastFourierTransformer implements Serializable {
/** Serializable version identifier. */
- static final long serialVersionUID = 20120501L;
+ static final long serialVersionUID = 20120802L;
+
+ /**
+ * {@code W_SUB_N_R[i]} is the real part of
+ * {@code exp(- 2 * i * pi / n)}:
+ * {@code W_SUB_N_R[i] = cos(2 * pi/ n)}, where {@code n = 2^i}.
+ */
+ private static final double[] W_SUB_N_R =
+ { 0x1.0p0, -0x1.0p0, 0x1.1a62633145c07p-54, 0x1.6a09e667f3bcdp-1
+ , 0x1.d906bcf328d46p-1, 0x1.f6297cff75cbp-1, 0x1.fd88da3d12526p-1, 0x1.ff621e3796d7ep-1
+ , 0x1.ffd886084cd0dp-1, 0x1.fff62169b92dbp-1, 0x1.fffd8858e8a92p-1, 0x1.ffff621621d02p-1
+ , 0x1.ffffd88586ee6p-1, 0x1.fffff62161a34p-1, 0x1.fffffd8858675p-1, 0x1.ffffff621619cp-1
+ , 0x1.ffffffd885867p-1, 0x1.fffffff62161ap-1, 0x1.fffffffd88586p-1, 0x1.ffffffff62162p-1
+ , 0x1.ffffffffd8858p-1, 0x1.fffffffff6216p-1, 0x1.fffffffffd886p-1, 0x1.ffffffffff621p-1
+ , 0x1.ffffffffffd88p-1, 0x1.fffffffffff62p-1, 0x1.fffffffffffd9p-1, 0x1.ffffffffffff6p-1
+ , 0x1.ffffffffffffep-1, 0x1.fffffffffffffp-1, 0x1.0p0, 0x1.0p0
+ , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
+ , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
+ , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
+ , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
+ , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
+ , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
+ , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0
+ , 0x1.0p0, 0x1.0p0, 0x1.0p0 };
+
+ /**
+ * {@code W_SUB_N_I[i]} is the imaginary part of
+ * {@code exp(- 2 * i * pi / n)}:
+ * {@code W_SUB_N_I[i] = -sin(2 * pi/ n)}, where {@code n = 2^i}.
+ */
+ private static final double[] W_SUB_N_I =
+ { 0x1.1a62633145c07p-52, -0x1.1a62633145c07p-53, -0x1.0p0, -0x1.6a09e667f3bccp-1
+ , -0x1.87de2a6aea963p-2, -0x1.8f8b83c69a60ap-3, -0x1.917a6bc29b42cp-4, -0x1.91f65f10dd814p-5
+ , -0x1.92155f7a3667ep-6, -0x1.921d1fcdec784p-7, -0x1.921f0fe670071p-8, -0x1.921f8becca4bap-9
+ , -0x1.921faaee6472dp-10, -0x1.921fb2aecb36p-11, -0x1.921fb49ee4ea6p-12, -0x1.921fb51aeb57bp-13
+ , -0x1.921fb539ecf31p-14, -0x1.921fb541ad59ep-15, -0x1.921fb5439d73ap-16, -0x1.921fb544197ap-17
+ , -0x1.921fb544387bap-18, -0x1.921fb544403c1p-19, -0x1.921fb544422c2p-20, -0x1.921fb54442a83p-21
+ , -0x1.921fb54442c73p-22, -0x1.921fb54442cefp-23, -0x1.921fb54442d0ep-24, -0x1.921fb54442d15p-25
+ , -0x1.921fb54442d17p-26, -0x1.921fb54442d18p-27, -0x1.921fb54442d18p-28, -0x1.921fb54442d18p-29
+ , -0x1.921fb54442d18p-30, -0x1.921fb54442d18p-31, -0x1.921fb54442d18p-32, -0x1.921fb54442d18p-33
+ , -0x1.921fb54442d18p-34, -0x1.921fb54442d18p-35, -0x1.921fb54442d18p-36, -0x1.921fb54442d18p-37
+ , -0x1.921fb54442d18p-38, -0x1.921fb54442d18p-39, -0x1.921fb54442d18p-40, -0x1.921fb54442d18p-41
+ , -0x1.921fb54442d18p-42, -0x1.921fb54442d18p-43, -0x1.921fb54442d18p-44, -0x1.921fb54442d18p-45
+ , -0x1.921fb54442d18p-46, -0x1.921fb54442d18p-47, -0x1.921fb54442d18p-48, -0x1.921fb54442d18p-49
+ , -0x1.921fb54442d18p-50, -0x1.921fb54442d18p-51, -0x1.921fb54442d18p-52, -0x1.921fb54442d18p-53
+ , -0x1.921fb54442d18p-54, -0x1.921fb54442d18p-55, -0x1.921fb54442d18p-56, -0x1.921fb54442d18p-57
+ , -0x1.921fb54442d18p-58, -0x1.921fb54442d18p-59, -0x1.921fb54442d18p-60 };
/**
* {@code true} if the unitary version of the DFT should be used.
@@ -95,9 +141,6 @@ public class FastFourierTransformer implements Serializable {
*/
private final boolean unitary;
- /** The roots of unity. */
- private RootsOfUnity roots = new RootsOfUnity();
-
/**
* Creates a new instance of this class, with various normalization
* conventions.
@@ -136,6 +179,210 @@ public class FastFourierTransformer implements Serializable {
return new FastFourierTransformer(true);
}
+ public static void bitReversalShuffle2(double[] a, double[] b) {
+ final int n = a.length;
+ assert(b.length == n);
+ final int halfOfN = n >> 1;
+
+ int j = 0;
+ for (int i = 0; i < n; i++) {
+ if (i < j) {
+ // swap indices i & j
+ double temp = a[i];
+ a[i] = a[j];
+ a[j] = temp;
+
+ temp = b[i];
+ b[i] = b[j];
+ b[j] = temp;
+ }
+
+ int k = halfOfN;
+ while (k <= j && k > 0) {
+ j -= k;
+ k >>= 1;
+ }
+ j += k;
+ }
+ }
+
+ /**
+ * Computes the standard transform of the specified complex data. The
+ * computation is done in place. The input data is laid out as follows
+ *
+ * - {@code dataRI[0][i]} is the real part of the {@code i}-th data point,
+ *
+ * - {@code dataRI[1][i]} is the imaginary part of the {@code i}-th data
+ * point.
+ *
+ *
+ * @param dataRI the two dimensional array of real and imaginary parts of
+ * the data
+ * @param inverse {@code true} if the inverse standard transform must be
+ * performed
+ * @throws DimensionMismatchException if the number of rows of the specified
+ * array is not two, or the array is not rectangular
+ * @throws MathIllegalArgumentException if the number of data points is not
+ * a power of two
+ */
+ public static void transformInPlace(final double[][] dataRI,
+ boolean inverse) throws
+ DimensionMismatchException, MathIllegalArgumentException {
+
+ if (dataRI.length != 2) {
+ throw new DimensionMismatchException(dataRI.length, 2);
+ }
+ final double[] dataR = dataRI[0];
+ final double[] dataI = dataRI[1];
+ if (dataR.length != dataI.length) {
+ throw new DimensionMismatchException(dataI.length, dataR.length);
+ }
+
+ final int n = dataR.length;
+ if (!ArithmeticUtils.isPowerOfTwo(n)) {
+ throw new MathIllegalArgumentException(
+ LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
+ Integer.valueOf(n));
+ }
+
+ if (n == 1) {
+ return;
+ } else if (n == 2) {
+ final double srcR0 = dataR[0];
+ final double srcI0 = dataI[0];
+ final double srcR1 = dataR[1];
+ final double srcI1 = dataI[1];
+
+ // X_0 = x_0 + x_1
+ dataR[0] = srcR0 + srcR1;
+ dataI[0] = srcI0 + srcI1;
+ // X_1 = x_0 - x_1
+ dataR[1] = srcR0 - srcR1;
+ dataI[1] = srcI0 - srcI1;
+
+ if (inverse) {
+ dataR[0] /= 2;
+ dataI[0] /= 2;
+ dataR[1] /= 2;
+ dataI[1] /= 2;
+ }
+ return;
+ }
+
+ bitReversalShuffle2(dataR, dataI);
+
+ // Do 4-term DFT.
+ if (inverse) {
+ for (int i0 = 0; i0 < n; i0 += 4) {
+ final int i1 = i0 + 1;
+ final int i2 = i0 + 2;
+ final int i3 = i0 + 3;
+
+ final double srcR0 = dataR[i0];
+ final double srcI0 = dataI[i0];
+ final double srcR1 = dataR[i2];
+ final double srcI1 = dataI[i2];
+ final double srcR2 = dataR[i1];
+ final double srcI2 = dataI[i1];
+ final double srcR3 = dataR[i3];
+ final double srcI3 = dataI[i3];
+
+ // 4-term DFT
+ // X_0 = x_0 + x_1 + x_2 + x_3
+ dataR[i0] = srcR0 + srcR1 + srcR2 + srcR3;
+ dataI[i0] = srcI0 + srcI1 + srcI2 + srcI3;
+ // X_1 = x_0 - x_2 + j * (x_3 - x_1)
+ dataR[i1] = srcR0 - srcR2 + (srcI3 - srcI1);
+ dataI[i1] = srcI0 - srcI2 + (srcR1 - srcR3);
+ // X_2 = x_0 - x_1 + x_2 - x_3
+ dataR[i2] = srcR0 - srcR1 + srcR2 - srcR3;
+ dataI[i2] = srcI0 - srcI1 + srcI2 - srcI3;
+ // X_3 = x_0 - x_2 + j * (x_1 - x_3)
+ dataR[i3] = srcR0 - srcR2 + (srcI1 - srcI3);
+ dataI[i3] = srcI0 - srcI2 + (srcR3 - srcR1);
+ }
+ } else {
+ for (int i0 = 0; i0 < n; i0 += 4) {
+ final int i1 = i0 + 1;
+ final int i2 = i0 + 2;
+ final int i3 = i0 + 3;
+
+ final double srcR0 = dataR[i0];
+ final double srcI0 = dataI[i0];
+ final double srcR1 = dataR[i2];
+ final double srcI1 = dataI[i2];
+ final double srcR2 = dataR[i1];
+ final double srcI2 = dataI[i1];
+ final double srcR3 = dataR[i3];
+ final double srcI3 = dataI[i3];
+
+ // 4-term DFT
+ // X_0 = x_0 + x_1 + x_2 + x_3
+ dataR[i0] = srcR0 + srcR1 + srcR2 + srcR3;
+ dataI[i0] = srcI0 + srcI1 + srcI2 + srcI3;
+ // X_1 = x_0 - x_2 + j * (x_3 - x_1)
+ dataR[i1] = srcR0 - srcR2 + (srcI1 - srcI3);
+ dataI[i1] = srcI0 - srcI2 + (srcR3 - srcR1);
+ // X_2 = x_0 - x_1 + x_2 - x_3
+ dataR[i2] = srcR0 - srcR1 + srcR2 - srcR3;
+ dataI[i2] = srcI0 - srcI1 + srcI2 - srcI3;
+ // X_3 = x_0 - x_2 + j * (x_1 - x_3)
+ dataR[i3] = srcR0 - srcR2 + (srcI3 - srcI1);
+ dataI[i3] = srcI0 - srcI2 + (srcR1 - srcR3);
+ }
+ }
+
+ int lastN0 = 4;
+ int lastLogN0 = 2;
+ while (lastN0 < n) {
+ int n0 = lastN0 << 1;
+ int logN0 = lastLogN0 + 1;
+ double wSubN0R = W_SUB_N_R[logN0];
+ double wSubN0I = W_SUB_N_I[logN0];
+ if (inverse) {
+ wSubN0I = -wSubN0I;
+ }
+
+ // Combine even/odd transforms of size lastN0 into a transform of size N0 (lastN0 * 2).
+ for (int destEvenStartIndex = 0; destEvenStartIndex < n; destEvenStartIndex += n0) {
+ int destOddStartIndex = destEvenStartIndex + lastN0;
+
+ double wSubN0ToRR = 1;
+ double wSubN0ToRI = 0;
+
+ for (int r = 0; r < lastN0; r++) {
+ double grR = dataR[destEvenStartIndex + r];
+ double grI = dataI[destEvenStartIndex + r];
+ double hrR = dataR[destOddStartIndex + r];
+ double hrI = dataI[destOddStartIndex + r];
+
+ // dest[destEvenStartIndex + r] = Gr + WsubN0ToR * Hr
+ dataR[destEvenStartIndex + r] = grR + wSubN0ToRR * hrR - wSubN0ToRI * hrI;
+ dataI[destEvenStartIndex + r] = grI + wSubN0ToRR * hrI + wSubN0ToRI * hrR;
+ // dest[destOddStartIndex + r] = Gr - WsubN0ToR * Hr
+ dataR[destOddStartIndex + r] = grR - (wSubN0ToRR * hrR - wSubN0ToRI * hrI);
+ dataI[destOddStartIndex + r] = grI - (wSubN0ToRR * hrI + wSubN0ToRI * hrR);
+
+ // WsubN0ToR *= WsubN0R
+ double nextWsubN0ToRR = wSubN0ToRR * wSubN0R - wSubN0ToRI * wSubN0I;
+ double nextWsubN0ToRI = wSubN0ToRR * wSubN0I + wSubN0ToRI * wSubN0R;
+ wSubN0ToRR = nextWsubN0ToRR;
+ wSubN0ToRI = nextWsubN0ToRI;
+ }
+ }
+
+ lastN0 = n0;
+ lastLogN0 = logN0;
+ }
+
+ if (inverse) {
+ final double scaleFactor = 1.0 / ((double) n);
+ for (int i = 0; i < n; i++) {
+ dataR[i] *= scaleFactor;
+ dataI[i] *= scaleFactor;
+ }
+ }
+ }
/**
* Returns the forward transform of the specified real data set.
@@ -146,11 +393,19 @@ public class FastFourierTransformer implements Serializable {
* not a power of two
*/
public Complex[] transform(double[] f) {
+ final double[][] dataRI = new double[][] {
+ Arrays.copyOf(f, f.length), new double[f.length]
+ };
+
+ transformInPlace(dataRI, false);
+
if (unitary) {
final double s = 1.0 / FastMath.sqrt(f.length);
- return TransformUtils.scaleArray(fft(f, false), s);
+ TransformUtils.scaleArray(dataRI[0], s);
+ TransformUtils.scaleArray(dataRI[1], s);
}
- return fft(f, false);
+
+ return TransformUtils.createComplexArray(dataRI);
}
/**
@@ -173,11 +428,7 @@ public class FastFourierTransformer implements Serializable {
double min, double max, int n) {
final double[] data = FunctionUtils.sample(f, min, max, n);
- if (unitary) {
- final double s = 1.0 / FastMath.sqrt(n);
- return TransformUtils.scaleArray(fft(data, false), s);
- }
- return fft(data, false);
+ return transform(data);
}
/**
@@ -189,12 +440,17 @@ public class FastFourierTransformer implements Serializable {
* not a power of two
*/
public Complex[] transform(Complex[] f) {
- roots.computeRoots(-f.length);
+ final double[][] dataRI = TransformUtils.createRealImaginaryArray(f);
+
+ transformInPlace(dataRI, false);
+
if (unitary) {
final double s = 1.0 / FastMath.sqrt(f.length);
- return TransformUtils.scaleArray(fft(f), s);
+ TransformUtils.scaleArray(dataRI[0], s);
+ TransformUtils.scaleArray(dataRI[1], s);
}
- return fft(f);
+
+ return TransformUtils.createComplexArray(dataRI);
}
/**
@@ -206,8 +462,19 @@ public class FastFourierTransformer implements Serializable {
* not a power of two
*/
public Complex[] inverseTransform(double[] f) {
- final double s = 1.0 / (unitary ? FastMath.sqrt(f.length) : f.length);
- return TransformUtils.scaleArray(fft(f, true), s);
+ final double[][] dataRI = new double[][] {
+ Arrays.copyOf(f, f.length), new double[f.length]
+ };
+
+ transformInPlace(dataRI, true);
+
+ if (unitary) {
+ final double s = FastMath.sqrt(f.length);
+ TransformUtils.scaleArray(dataRI[0], s);
+ TransformUtils.scaleArray(dataRI[1], s);
+ }
+
+ return TransformUtils.createComplexArray(dataRI);
}
/**
@@ -229,8 +496,7 @@ public class FastFourierTransformer implements Serializable {
public Complex[] inverseTransform(UnivariateFunction f,
double min, double max, int n) {
final double[] data = FunctionUtils.sample(f, min, max, n);
- final double s = 1.0 / (unitary ? FastMath.sqrt(n) : n);
- return TransformUtils.scaleArray(fft(data, true), s);
+ return inverseTransform(data);
}
/**
@@ -242,141 +508,19 @@ public class FastFourierTransformer implements Serializable {
* not a power of two
*/
public Complex[] inverseTransform(Complex[] f) {
- roots.computeRoots(f.length);
- final double s = 1.0 / (unitary ? FastMath.sqrt(f.length) : f.length);
- return TransformUtils.scaleArray(fft(f), s);
- }
+ final double[][] dataRI = TransformUtils.createRealImaginaryArray(f);
+ final double[] dataR = dataRI[0];
+ final double[] dataI = dataRI[1];
- /**
- * Returns the FFT of the specified real data set. Performs the base-4
- * Cooley-Tukey FFT algorithm.
- *
- * @param f the real data array to be transformed
- * @param isInverse {@code true} if inverse transform is to be carried out
- * @return the complex transformed array
- * @throws MathIllegalArgumentException if the length of the data array is
- * not a power of two
- */
- protected Complex[] fft(double[] f, boolean isInverse) {
+ transformInPlace(dataRI, true);
- if (!ArithmeticUtils.isPowerOfTwo(f.length)) {
- throw new MathIllegalArgumentException(
- LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
- Integer.valueOf(f.length));
- }
- Complex[] transformed = new Complex[f.length];
- if (f.length == 1) {
- transformed[0] = new Complex(f[0], 0.0);
- return transformed;
+ if (unitary) {
+ final double s = FastMath.sqrt(f.length);
+ TransformUtils.scaleArray(dataR, s);
+ TransformUtils.scaleArray(dataI, s);
}
- // Rather than the naive real to complex conversion, pack 2N
- // real numbers into N complex numbers for better performance.
- int n = f.length >> 1;
- Complex[] repacked = new Complex[n];
- for (int i = 0; i < n; i++) {
- repacked[i] = new Complex(f[2 * i], f[2 * i + 1]);
- }
- roots.computeRoots(isInverse ? n : -n);
- Complex[] z = fft(repacked);
-
- // reconstruct the FFT result for the original array
- roots.computeRoots(isInverse ? 2 * n : -2 * n);
- transformed[0] = new Complex(2 * (z[0].getReal() + z[0].getImaginary()), 0.0);
- transformed[n] = new Complex(2 * (z[0].getReal() - z[0].getImaginary()), 0.0);
- for (int i = 1; i < n; i++) {
- Complex a = z[n - i].conjugate();
- Complex b = z[i].add(a);
- Complex c = z[i].subtract(a);
- //Complex D = roots.getOmega(i).multiply(Complex.I);
- Complex d = new Complex(-roots.getImaginary(i),
- roots.getReal(i));
- transformed[i] = b.subtract(c.multiply(d));
- transformed[2 * n - i] = transformed[i].conjugate();
- }
-
- return TransformUtils.scaleArray(transformed, 0.5);
- }
-
- /**
- * Returns the FFT of the specified complex data set. Performs the base-4
- * Cooley-Tukey FFT algorithm.
- *
- * @param data the complex data array to be transformed
- * @return the complex transformed array
- * @throws MathIllegalArgumentException if the length of the data array is
- * not a power of two
- */
- protected Complex[] fft(Complex[] data) {
-
- if (!ArithmeticUtils.isPowerOfTwo(data.length)) {
- throw new MathIllegalArgumentException(
- LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
- Integer.valueOf(data.length));
- }
-
- final int n = data.length;
- final Complex[] f = new Complex[n];
-
- // initial simple cases
- if (n == 1) {
- f[0] = data[0];
- return f;
- }
- if (n == 2) {
- f[0] = data[0].add(data[1]);
- f[1] = data[0].subtract(data[1]);
- return f;
- }
-
- // permute original data array in bit-reversal order
- int ii = 0;
- for (int i = 0; i < n; i++) {
- f[i] = data[ii];
- int k = n >> 1;
- while (ii >= k && k > 0) {
- ii -= k; k >>= 1;
- }
- ii += k;
- }
-
- // the bottom base-4 round
- for (int i = 0; i < n; i += 4) {
- final Complex a = f[i].add(f[i + 1]);
- final Complex b = f[i + 2].add(f[i + 3]);
- final Complex c = f[i].subtract(f[i + 1]);
- final Complex d = f[i + 2].subtract(f[i + 3]);
- final Complex e1 = c.add(d.multiply(Complex.I));
- final Complex e2 = c.subtract(d.multiply(Complex.I));
- f[i] = a.add(b);
- f[i + 2] = a.subtract(b);
- // omegaCount indicates forward or inverse transform
- f[i + 1] = roots.isCounterClockWise() ? e1 : e2;
- f[i + 3] = roots.isCounterClockWise() ? e2 : e1;
- }
-
- // iterations from bottom to top take O(N*logN) time
- for (int i = 4; i < n; i <<= 1) {
- final int m = n / (i << 1);
- for (int j = 0; j < n; j += i << 1) {
- for (int k = 0; k < i; k++) {
- //z = f[i+j+k].multiply(roots.getOmega(k*m));
- final int km = k * m;
- final double omegaKmReal = roots.getReal(km);
- final double omegaKmImag = roots.getImaginary(km);
- //z = f[i+j+k].multiply(omega[k*m]);
- final Complex z = new Complex(
- f[i + j + k].getReal() * omegaKmReal -
- f[i + j + k].getImaginary() * omegaKmImag,
- f[i + j + k].getReal() * omegaKmImag +
- f[i + j + k].getImaginary() * omegaKmReal);
-
- f[i + j + k] = f[j + k].subtract(z);
- f[j + k] = f[j + k].add(z);
- }
- }
- }
- return f;
+ return TransformUtils.createComplexArray(dataRI);
}
/**
@@ -395,10 +539,7 @@ public class FastFourierTransformer implements Serializable {
* @return transform of {@code mdca} as a Multi-Dimensional Complex Array
* id est {@code Complex[][][][]}
* @throws IllegalArgumentException if any dimension is not a power of two
- * @deprecated see
- * MATH-736
*/
- @Deprecated
public Object mdfft(Object mdca, boolean forward) {
MultiDimensionalComplexMatrix mdcm = (MultiDimensionalComplexMatrix)
new MultiDimensionalComplexMatrix(mdca).clone();
@@ -467,10 +608,7 @@ public class FastFourierTransformer implements Serializable {
* eventually be replaced by jsr-83 of the java community process
* http://jcp.org/en/jsr/detail?id=83
* may require additional exception throws for other basic requirements.
- *
- * @deprecated see MATH-736
*/
- @Deprecated
private static class MultiDimensionalComplexMatrix
implements Cloneable {
diff --git a/src/main/java/org/apache/commons/math/transform/TransformUtils.java b/src/main/java/org/apache/commons/math/transform/TransformUtils.java
index 5b57e5277..3a7600b5b 100644
--- a/src/main/java/org/apache/commons/math/transform/TransformUtils.java
+++ b/src/main/java/org/apache/commons/math/transform/TransformUtils.java
@@ -16,7 +16,12 @@
*/
package org.apache.commons.math.transform;
+import java.util.Arrays;
+
import org.apache.commons.math.complex.Complex;
+import org.apache.commons.math.exception.DimensionMismatchException;
+import org.apache.commons.math.exception.MathIllegalArgumentException;
+import org.apache.commons.math.exception.util.LocalizedFormats;
/**
* Useful functions for the implementation of various transforms.
@@ -25,6 +30,20 @@ import org.apache.commons.math.complex.Complex;
* @since 3.0
*/
public class TransformUtils {
+ /**
+ * Table of the powers of 2 to facilitate binary search lookup.
+ *
+ * @see #exactLog2(int)
+ */
+ private static final int[] POWERS_OF_TWO = {
+ 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020,
+ 0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800,
+ 0x00001000, 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000,
+ 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000, 0x00800000,
+ 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000,
+ 0x40000000
+ };
+
/** Private constructor. */
private TransformUtils() {
super();
@@ -62,4 +81,85 @@ public class TransformUtils {
return f;
}
+
+ /**
+ * Builds a new two dimensional array of {@code double} filled with the real
+ * and imaginary parts of the specified {@link Complex} numbers. In the
+ * returned array {@code dataRI}, the data is laid out as follows
+ *
+ * - {@code dataRI[0][i] = dataC[i].getReal()},
+ * - {@code dataRI[1][i] = dataC[i].getImaginary()}.
+ *
+ *
+ * @param dataC the array of {@link Complex} data to be transformed
+ * @return a two dimensional array filled with the real and imaginary parts
+ * of the specified complex input
+ */
+ public static double[][] createRealImaginaryArray(final Complex[] dataC) {
+ final double[][] dataRI = new double[2][dataC.length];
+ final double[] dataR = dataRI[0];
+ final double[] dataI = dataRI[1];
+ for (int i = 0; i < dataC.length; i++) {
+ final Complex c = dataC[i];
+ dataR[i] = c.getReal();
+ dataI[i] = c.getImaginary();
+ }
+ return dataRI;
+ }
+
+ /**
+ * Builds a new array of {@link Complex} from the specified two dimensional
+ * array of real and imaginary parts. In the returned array {@code dataC},
+ * the data is laid out as follows
+ *
+ * - {@code dataC[i].getReal() = dataRI[0][i]},
+ * - {@code dataC[i].getImaginary() = dataRI[1][i]}.
+ *
+ *
+ * @param dataRI the array of real and imaginary parts to be transformed
+ * @return an array of {@link Complex} with specified real and imaginary
+ * parts.
+ * @throws DimensionMismatchException if the number of rows of the specified
+ * array is not two, or the array is not rectangular
+ */
+ public static Complex[] createComplexArray(final double[][] dataRI)
+ throws DimensionMismatchException{
+
+ if (dataRI.length != 2) {
+ throw new DimensionMismatchException(dataRI.length, 2);
+ }
+ final double[] dataR = dataRI[0];
+ final double[] dataI = dataRI[1];
+ if (dataR.length != dataI.length) {
+ throw new DimensionMismatchException(dataI.length, dataR.length);
+ }
+
+ final int n = dataR.length;
+ final Complex[] c = new Complex[n];
+ for (int i = 0; i < n; i++) {
+ c[i] = new Complex(dataR[i], dataI[i]);
+ }
+ return c;
+ }
+
+
+ /**
+ * Returns the base-2 logarithm of the specified {@code int}. Throws an
+ * exception if {@code n} is not a power of two.
+ *
+ * @param n the {@code int} whose base-2 logarithm is to be evaluated
+ * @return the base-2 logarithm of {@code n}
+ * @throws MathIllegalArgumentException if {@code n} is not a power of two
+ */
+ public static int exactLog2(final int n)
+ throws MathIllegalArgumentException {
+
+ int index = Arrays.binarySearch(TransformUtils.POWERS_OF_TWO, n);
+ if (index < 0) {
+ throw new MathIllegalArgumentException(
+ LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
+ Integer.valueOf(n));
+ }
+ return index;
+ }
}
diff --git a/src/test/java/org/apache/commons/math/transform/FastFourierTransformerTest.java b/src/test/java/org/apache/commons/math/transform/FastFourierTransformerTest.java
index 68f2cf10d..7dfdec298 100644
--- a/src/test/java/org/apache/commons/math/transform/FastFourierTransformerTest.java
+++ b/src/test/java/org/apache/commons/math/transform/FastFourierTransformerTest.java
@@ -380,7 +380,7 @@ public final class FastFourierTransformerTest {
doTestTransformComplex(8, 1.0E-14, forward, standard);
doTestTransformComplex(16, 1.0E-13, forward, standard);
doTestTransformComplex(32, 1.0E-13, forward, standard);
- doTestTransformComplex(64, 1.0E-13, forward, standard);
+ doTestTransformComplex(64, 1.0E-12, forward, standard);
doTestTransformComplex(128, 1.0E-12, forward, standard);
}
@@ -468,7 +468,7 @@ public final class FastFourierTransformerTest {
doTestTransformComplex(8, 1.0E-14, forward, standard);
doTestTransformComplex(16, 1.0E-13, forward, standard);
doTestTransformComplex(32, 1.0E-13, forward, standard);
- doTestTransformComplex(64, 1.0E-13, forward, standard);
+ doTestTransformComplex(64, 1.0E-12, forward, standard);
doTestTransformComplex(128, 1.0E-12, forward, standard);
}
@@ -505,7 +505,7 @@ public final class FastFourierTransformerTest {
public void testUnitaryInverseTransformComplex() {
final boolean forward = false;
final boolean standard = false;
- doTestTransformComplex(2, 1.0E-15, forward, standard);
+ doTestTransformComplex(2, 1.0E-14, forward, standard);
doTestTransformComplex(4, 1.0E-14, forward, standard);
doTestTransformComplex(8, 1.0E-14, forward, standard);
doTestTransformComplex(16, 1.0E-13, forward, standard);